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ABSTRACT: A lamb model of pulmonary hypertension, developed
by inserting an aortopulmonary vascular graft (shunt), displays vas-
cular remodeling and increased pulmonary blood flow characteristic
of children with congenital heart disease. The purpose of this study
was to determine whether expression of fibroblast growth factor-2
(FGF-2), a smooth muscle cell mitogen, is altered in shunt lambs.
FGF-2 mRNA and protein levels were increased in lung tissue
extracts from shunt lambs at 4 wk of age relative to age-matched
controls (p � 0.05). FGF-2 protein levels were also increased in the
pulmonary arteries and serum of shunt lambs (p � 0.05). Pulmonary
arterial smooth muscle cells (PASMC) and endothelial cells (PAEC)
were isolated from 4 wk-old lambs and subjected to cyclic stretch and
laminar shear stress to mimic increased pulmonary blood flow. Stretch
and shear increased FGF-2 promoter activity, and intracellular and
extracellular FGF-2 protein levels in both cell types (p � 0.05). Exog-
enous FGF-2 stimulated PASMC proliferation at levels detected in
the extracellular medium of sheared cells (p � 0.05). Elevated FGF-2
signaling by PASMC and PAEC exposed to increased pulmonary
blood flow may play a role in the pulmonary vascular remodeling
associated with the shunt model of pulmonary hypertension second-
ary to congenital heart disease. (Pediatr Res 61: 32–36, 2007)

CHD with increased pulmonary blood flow is often asso-
ciated with the development of pulmonary hypertension

(1). After birth, as pulmonary vascular resistance normally
decreases, the presence of a systemic to pulmonary commu-
nication generates an increase in pulmonary blood flow. This
abnormal postnatal hemodynamic state results in progressive
structural and functional abnormalities of the pulmonary vas-
cular bed (2,3). Our animal model of pulmonary hypertension,
developed by inserting an aortopulmonary vascular graft in
the late-gestational fetal lamb (4–6), may help elucidate the
mechanisms involved. Postnatally, these shunt lambs have
increased pulmonary blood flow and pressure (4). In addition,
they display vascular remodeling typical of pulmonary hyper-
tension secondary to CHD, characterized by increased medial
wall thickness of the small pulmonary arteries and abnormal
extension of muscle to peripheral pulmonary arteries (1,4,7).

Recent studies have demonstrated that shunt lambs display
abnormal signaling by several growth factors mitogenic for
vascular smooth muscle, including ET-1 (6), transforming
growth factor �-1 (TGF �-1) (8), and vascular endothelial
growth factor (VEGF) (9). Another potential contributor to
vascular remodeling is FGF-2. FGF-2 displays mitogenic
effects in the early proliferation of SMC (10,11) and in
neointimal thickening (12) following vascular injury. Further-
more, a progressive increase in FGF-2 protein within the
smooth muscle layer of pulmonary arteries was demonstrated
in a rat model of monocrotaline-induced pulmonary hyperten-
sion (13). In addition, elevated FGF-2 protein levels were
detected in the urine and plasma of patients with pulmonary
arterial hypertension, suggesting the involvement of FGF-2 in
the SMC proliferation characteristic of this disease (14).
Vascular cells within arterial walls are subjected to biome-

chanical forces, including cyclic stretch generated by pulsatile
blood flow. EC are also subjected to shear stress due to blood
flow, and fluid dynamic models of intact blood vessels suggest
that SMC also experience shear stress as a result of interstitial
flow (15). Cyclic stretch increased FGF-2 mRNA in PASMC
(16) and shear stress increased the release of FGF-2 from
aortic SMC (17) and aortic EC (18). Since these biomechani-
cal forces are increased in shunt pulmonary arteries due to
elevated pulmonary blood flow, we hypothesized that similar
to monocrotaline-induced and adult pulmonary hypertension,
increased FGF-2 signaling may be associated with pulmonary
vascular remodeling in shunt lambs. Thus, the purpose of this
study was to monitor FGF-2 expression in shunt lambs, to
determine the effects of cyclic stretch and shear stress on
FGF-2 expression in PASMC and PAEC, and to determine the
effects of exogenous FGF-2 on PASMC proliferation.

MATERIALS AND METHODS

Surgical preparation and care. Twenty mixed-breed Western pregnant
ewes (137–141 d gestation, term � 145 d) were operated on under sterile
conditions to insert an 8.0-mm Gore-tex vascular graft (2 mm length; W.L.
Gore, Milpitas, CA) between the ascending aorta and main pulmonary artery
of the fetus as previously described (4). Unoperated twin fetuses served as
controls, because we have previously shown that unoperated and sham-
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operated control lambs have similar physiology and morphology (4). Lambs
were delivered spontaneously, and at 4 wk of age were killed by an intrave-
nous injection of pentobarbital sodium (Euthanasia CII; Central City Medical,
Union City, CA) followed by bilateral thoracotomy. All procedures and
protocols were approved by the Committee on Animal Research of the
University of California, San Francisco.

Tissue/RNA/protein preparation. The heart and lungs were removed en
bloc. Two to three gram sections from each lobe of the lung and sections from
third- to fifth-generation intralobar pulmonary arteries and veins, with inside
diameters of 0.5–2.0 mm, were removed. These tissues were snap-frozen in
liquid nitrogen and stored at –80°C until used. RNA and protein were isolated
from snap-frozen lung tissue and analyzed by RNAase protection and West-
ern blotting as described below. Tissue was prepared for immunohistochem-
istry as previously described (9).

RNAase protection assay. Antisense single-stranded riboprobes were syn-
thesized by in vitro transcription from a plasmid containing an ovine FGF-2
cDNA fragment, and RNAse protection assays were performed on total RNA
prepared from peripheral lung tissue as previously described (5,19). Also
included was a probe for 18S to serve as a control for the amount of input total
RNA and the recovery of protected probe fragments. In all experiments,
sufficient counts were added such that the FGF-2 and 18S riboprobes were
always in molar excess.

Western blot analysis. Twenty micrograms of protein extracts were ana-
lyzed by Western blot analysis as previously described (5,19). Membranes
were incubated at room temperature with polyclonal antiserum raised against
FGF-2 (sc-79, 1:200, Santa Cruz Biochemicals, Santa Cruz, CA) then incu-
bated with a goat anti-rabbit IgG-horseradish peroxidase conjugate. After
washing, chemiluminescence was used to detect the protein bands.

Immunohistochemistry. Lung tissue samples (snap frozen and stored at
–80°C) were embedded in Tissue-Tek O.C.T Compound (Sakura Finetek
USA Inc., Torrance, CA), cryosectioned at 5 �m, and stored at –80°C until
needed. Immunohistochemistry was performed using a 1:200 dilution of the
anti-FGF-2 antibody (ab8880, Abcam Inc., Cambridge, MA) as described
previously (9). Slides were imaged using an Olympus IX51 (Leeds Precision
Instruments, Inc., Minneapolis, MN) and quantified using the Image Pro Plus
software (MediaCybernetics, Silver Spring, MD).

Serum FGF-2 quantification. Systemic arterial blood was prepared as
described previously (20). FGF-2 protein levels in serum samples were
determined using a quantitative sandwich enzyme immunoassay technique
(Quantikine, R & D Systems, Minneapolis, MN). The OD of each well was
read at 450 nm, with wavelength correction at 540 nm, using a Multiscan
MCC/340 microplate reader (Labsystem, Helsinki, Finland).

Cell culture. Primary cultures of PASMC from 4-wk old sheep that had
not previously been surgically operated were isolated by the explant technique
as described previously (21). Identity was confirmed as PASMC by immu-
nostaining (�99% positive) with antibodies against �-smooth muscle actin,
calponin, and caldesmon. This was taken as evidence that cultures were not
contaminated with fibroblasts or with endothelial cells. Primary cultures of
PAEC were isolated as described previously (22). Endothelial cell identity
was confirmed by their typical cobblestone appearance, contact inhibition,
specific uptake of DiI-Ac-LDL (Molecular Probes, Eugene, OR), and positive
staining for von Willebrand factor (DAKO, Carpinteria, CA).

All cultures for subsequent experiments were maintained in Dulbecco’s
modified Eagle medium (DMEM) supplemented with 10% FCS (Hyclone
Laboratories, Logan, UT), antibiotics (MediaTech, Herndon, VA), and anti-
mycotics (MediaTech) at 37°C in a humidified atmosphere with 5% CO2–
95% air. Cells were used between passages 3 and 10.

Promoter analysis.A plasmid containing human FGF-2 promoter DNA from
–1800 to �314 bp (relative to the transcription start site) fused to a luciferase
reporter gene was a gift from Dr. M. Stachowiak and Dr. J. Moffett. Cells were
co-transfected at 70% confluence with 4 �g of plasmid DNA and 0.1 �g of
Renilla luciferase internal control vector on a 10 cm2 tissue culture plate using
Effectine (QIAGEN, Valencia, CA) according to the manufacturer’s instructions.
After 24-h cells were split onto 6-well plates, maintained in DMEM containing 1%
serum and 10 �g/mL heparin, and left static or subjected to cyclic strain or laminar
shear stress for 8–24 h as described below. Luciferase activity of 20 �L protein
extracts was determined using theDual-Luciferase Reporter Assay System (Promega,
Madison, WI) and a Femtomaster FB12 luminometer (Zylux, Oak Ridge, TN).

Cyclic stretch and fluid shear stress. Cells were maintained in DMEM
containing 1% serum and 10 �g/mL heparin on 6-well BioFlex plates coated
with collagen type I (FlexCell) for 24 h, then subjected to biaxial cyclic
stretch using the FlexCell 3000 Strain Unit. Plates were placed on a loading
station and stretched by applying an oscillatory vacuum to the underside of
the membranes. Cells were stretched at a frequency of 1 Hz with 20%
amplitude for 8–24 h in accordance with a previous study (16).

Cells were maintained in DMEM containing 1% serum and 10 �g/mL
heparin on 6-well tissue culture plates (Costar) for 24 h before initiating shear

stress experiments. A cone-plate viscometer was designed and built such that
it accepts 6-well plates (22). This allowed the PASMC and PAEC monolayer
to be subjected to a radially constant fluid shear stress at laminar flow rates
representing levels of shear stress within physiologic parameters. Typical
physiologic shear stress in the major human arteries is in the range of 5–20
dynes/cm2 (23). Thus, we imparted a shear stress of 20 dynes/cm2 for 8–24
h to mimic the upper limit of the physiologic range.

FGF-2 quantification by ELISA. Intracellular and extracellular FGF-2
protein levels were determined using a quantitative sandwich enzyme immu-
noassay technique (Quantikine). Cell extracts were adjusted for protein
content then further diluted 1:100 before assay. To determine FGF-2 released,
100 �L of undiluted medium was added per well of the precoated microplate.
Samples and FGF-2 standards were assayed in duplicate for each assay
according to the manufacturer’s instructions. The OD of each well was read
at 450 nm, with wavelength correction at 540 nm, using a Multiscan MCC/
340 microplate reader (Labsystems).

Cell proliferation assays. Increases in PASMC number in response to
exogenous FGF-2 were determined as described previously (21). Cells were
seeded onto 96-well plates (Costar, Corning, NY) at approximately 25%
confluence, allowed to adhere for at least 18 h, then synchronized by serum
starvation for a further 24 h. Cells were then treated with 0–100 ng/mL
recombinant human FGF-2 (Invitrogen, Carlsbad, CA) in serum-free medium.
After 72 h, viable PASMC number was determined using the Cell Titer 96
AQueous One Solution kit (Promega), Twenty microliters of reagent was added
directly to cells in 100 �L medium, and, following a 2-h incubation period at
37°C, the absorbance at 492 nm was read using a Labsystems Multiskan EX
plate reader (Fisher Scientific, Pittsburgh, PA).

Statistical analysis. Unless otherwise stated, values are expressed as mean �
SD. Comparisons between treatment groups were made by the unpaired t test
using the GB-STAT or GraphPad Prism version 4.00 for Windows (GraphPad
Software, San Diego, CA) software programs. A p � 0.05 was considered
statistically significant.

RESULTS

Analysis of FGF-2 mRNA by RNAse protection assays
showed increased expression in shunt lambs relative to age-
matched control animals (Fig. 1 A). Densitometric analysis of
lower exposure autoradiographs to those presented in Figure 1 A
indicated an 80% increase in shunt FGF-2 mRNA normalized to
18S relative to control animals (Fig. 1 B).

Figure 1. RNAase protection assays for FGF-2 (bFGF) on lung tissue from
4-wk-old lambs with increased (shunt) and normal (control) pulmonary blood
flow and pressure. Representative RNAse protection assay (A) showing that
FGF-2 mRNA expression is increased in shunt lambs. A molecular weight
ladder with sizes in nucleotides is presented in the left lane. “tRNA” is tRNA plus
bFGF probe; “probe alone” is digested bFGF probe; “bFGF” is undigested bFGF
probe; “18S” is undigested 18S probe; “Shunt” is shunt RNA digested with bFGF
and 18S probes; “Control” is control RNA digested with bFGF and 18S probes.
18S RNA band indicates equal RNA loading. Densitometric values for relative
FGF-2 mRNA (normalized to 18S RNA and to controls) from four control and
four shunt lambs were determined (B). n � 4 shunt and 4 control animals. Values
are means � SD. *p � 0.05, shunt vs control.
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The increase in FGF-2 mRNA was consistent with a sig-
nificant increase in FGF-2 protein in lung tissue extracts from
shunt animals as detected by Western blotting (120% higher
than controls, Fig. 2, A and B).

The localization of FGF-2 protein expression in shunt and
control lambs was evaluated by immunohistochemistry using
peripheral lung tissue sections. FGF-2 staining was evident in
all animals, with strong expression in the vessels (Fig. 3, A and
B). Quantification of vessel-associated fluorescence demon-
strated that FGF-2 protein was increased by 180% in shunt
lamb vessels relative to controls (Fig. 3 C). Omission of either
the primary or secondary antibody resulted in undetectable
signals indicating lack of autofluorescence (data not shown).
ELISA indicated an increase in circulating FGF-2 protein in

shunt animals, with serum concentrations more than 4-fold
higher in shunts relative to controls (Fig. 4).

PASMC and PAEC isolated from 4-wk-old lambs were sub-
jected to 20% cyclic stretch at 1 Hz and 20 dyn/cm2 laminar shear
stress to mimic physiologic levels of these biomechanical forces
during pulsatile blood flow (23,24). Using an 1800 bp FGF-2
promoter fragment fused to a luciferase reporter gene we first
determined the time-dependent effects of biomechanical forces
on FGF-2 promoter activity. In PASMC, 24 h of stretch and shear
increased luciferase activity by 77% and 44%, respectively,
relative to static controls, with no significant change detectable
after 8 h (Fig. 5 A). In PAEC, promoter activity peaked after 8 h
of stretch and shear (33% and 39%, respectively) before decreas-
ing to basal levels by 24 h (Fig. 5 B).
Intracellular FGF-2 protein levels were quantified from

cells exposed to stretch and shear using an ELISA-based
assay. Significant increases in intracellular FGF-2 protein
were detected in PASMC after 8 and 24 h of stretch and shear
(Fig. 6 A). At 24 h, stretch and shear increased levels by 43%
and 178%, respectively (Fig. 6 A). Intracellular FGF-2 levels
were also elevated in PAEC, with values increasing by 59%
and 175% after 24-h stretch and shear, respectively (Fig. 6 B).

FGF-2 released by cells exposed to stretch and shear was
quantified by performing ELISA assays on the extracellular
media. Eight and 24 h of shear significantly increased
FGF-2 protein detected in the media surrounding PASMC by
15.9- and 13.6-fold, respectively, relative to static controls
(Fig. 7 A). Conversely, 8-h stretch significantly increased

Figure 2. Western blot for FGF-2 from shunt and control lung tissue. Repre-
sentativeWestern blot (A) showing that FGF-2 protein is increased in shunt lambs
relative to controls. Densitometric values for relative FGF-2 protein from four
control and four shunt lambs were determined (B). n � 4 shunt and 4 control
animals. Values are means � SD. *p � 0.05, shunt vs control.

Figure 3. Immunohistochemistry to determine FGF-2 protein distribution
and levels in lung tissue sections prepared from 4-wk-old shunt and control
lambs. Representative images of control (A) and shunt (B) lung tissue stained
with an anti-FGF-2 antibody. Calibration bars � 100 �m. Airways are
indicated by “AW.” Vessels are indicated by arrows. (C) Image Pro Plus
software analysis was used to quantify FGF-2 protein in vessels. Shunts: n �
7 animals, 70 vessels; controls: n � 3 animals, 27 vessels. Values are mean
� SD. *p � 0.05 shunt vs control.

Figure 4. ELISA to quantify FGF-2 protein in serum from 4-wk-old control
and shunt lambs. n � 4 shunt and 4 control animals. Values are mean � SEM.
*p � 0.05 shunt vs control.

Figure 5. Luciferase assays to determine the activity of an 1800 bp FGF-2
promoter fragment in PASMC (A) and PAEC (B) exposed to 8 h and 24 h stretch
(�) and shear (e); n � 4. Values are mean � SD. *p � 0.05 vs static cells.
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FGF-2 release by 5.9-fold, before decreasing to a statistically
insignificant level of 1.9-fold by 24 h (Fig. 7 A). In PAEC,
shear increased FGF-2 released by 5.0-fold and 7.5-fold after
8 h and 24 h, respectively (Fig. 7 B), while stretch increased
FGF-2 released by 1.9-fold at 8 h before decreasing to basal
levels by 24 h (Fig. 7 B).

We next determined the dose-dependent effects of exogenous
FGF-2 on PASMC proliferation. At 72 h, 100 pg/mL FGF-2
increased viable PASMC number by 30% relative to serum-free
medium (Fig. 8), while optimum growth medium containing
10% serum increased viable cell number by 92% (Fig. 8).

DISCUSSION

We have previously reported an underlying dysregulation
of growth factor expression in 4-wk-old shunt lambs, includ-
ing increases in ET-1 (6), TGF-�1 (8), and VEGF (9) signal-
ing. The present study identifies increased FGF-2 expression
as another potential contributor to abnormal PASMC growth
in the shunt model of pulmonary hypertension.
Our in vitro data suggest that biomechanical forces, result-

ing from increased pulmonary blood flow, may play a role in

the up-regulation of FGF-2 expression within shunt pulmo-
nary arteries. The increase in FGF-2 promoter activity in
PASMC after 24 h of stretch is in agreement with a previous
study demonstrating an 80% increase in FGF-2 mRNA in
ovine PASMC exposed to 24 h of cyclic stretch (16). Our data
further add to the existing knowledge of FGF-2 expression in
SMC by demonstrating a role for shear stress in its regulation.
Vascular SMC are normally exposed to shear stress due to
interstitial flow driven by transmural pressure gradients (15),
and to our knowledge this is the first study to provide evidence
of increased FGF-2 transcription in vascular SMC in response
to shear stress. The effects of biomechanical forces on endo-
thelial FGF-2 expression appear to depend on the location of
the cells within the vasculature. In bovine aortic EC, FGF-2
mRNA levels transiently increased after 6 h shear, while
cyclic stretch had no effect (25). Conversely, increased FGF-2
mRNA was detected in human umbilical vein EC after 24 h of
shear stress (26), while in vivo exposure of rat mesenteric
small arteries to elevated flow failed to alter endothelial
FGF-2 mRNA at any time over 7 d (27). Our data suggest that
in the pulmonary circulation, stretch and shear both transiently
increase FGF-2 promoter activity in PAEC.
The mechanisms that mediate the regulation of FGF-2

expression in PASMC and PAEC by biomechanical forces are
currently unknown. We detected temporal differences in
FGF-2 expression between PASMC and PAEC exposed to
stretch and shear suggesting that cell-specific mechanisms
including increased RNA and protein stability may be in-
volved. In addition, stretch and shear may regulate FGF-2
expression in the same cell type via different pathways. For
example, a shear stress–responsive element within the plate-
let-derived growth factor-B (PDGF-B) promoter was neces-
sary for increased expression in bovine aortic EC exposed to
shear (28), but not to stretch (29). Additional studies are
therefore warranted to characterize the transcriptional, post-
transcriptional, and posttranslational regulation of FGF-2 ex-
pression in PASMC and PAEC in response to stretch and shear.
Biomechanical forces may also exert indirect effects on

FGF-2 expression and signaling in shunt lambs. TGF-�1
expression was increased in 4-wk-old shunt animals relative to
controls (8), which may be due in part to increased TGF-�1
expression and release by PASMC exposed to stretch (30).
Furthermore, TGF-�1 expression was enhanced by increased
flow and shear stress in vivo (31), and TGF-�1 has been
shown to up-regulate FGF-2 in vascular SMC (32). Together,
these data suggest that induction of TGF-�1 expression and
release by biomechanical forces may stimulate FGF-2 expres-
sion in PASMC. Similar to patients with pulmonary arterial
hypertension (14), our results show that 4-wk-old shunt lambs
exhibit increased FGF-2 serum levels. This may be due, in
part, to the stimulation of expression and release of FGF-2
from pulmonary vascular cells exposed to biomechanical
forces. Several studies have demonstrated FGF-2 autoregula-
tion (33), raising the possibility of sustained increases in
FGF-2 expression in shunt pulmonary vascular cells via pos-
itive feedback mechanisms. While many other factors may be
involved, these data illustrate the potentially complex regula-
tion of FGF-2 expression in shunt lambs.

Figure 6. ELISA to determine FGF-2 protein content in cell extracts from
PASMC (A) and PAEC (B) exposed to 8 and 24-h stretch (�) and shear (e);
n � 4. Values are mean � SEM. *p � 0.05 vs static cells.

Figure 7. ELISA to determine FGF-2 protein content in extracellular media
of PASMC (A) and PAEC (B) exposed to 8 and 24 h stretch (�) and shear
(e); n � 4. Values are mean � SEM. *p � 0.05 vs static cells.

Figure 8. Viable cell assays to determine increases in PASMC number in response
to exogenous FGF-2; n � 4. Values are mean � SD. *p � 0.05 vs serum free.
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Circulating FGF-2 may trigger PASMC growth by binding
extracellular receptors, whereas increases in intracellular
FGF-2 in PASMC exposed to stretch and shear can potentially
stimulate cell proliferation by activating nuclear-localized re-
ceptors (33). FGF-2 may further contribute to pulmonary
hypertension and vascular remodeling via its interaction with
other growth factor signaling pathways. Neutralization of
FGF-2 reduced VEGF release from vascular SMC (34),
whereas FGF-2 was found to increase ET-1 subtype A recep-
tor (ETA) expression in PASMC (35). ETA mRNA and protein
levels were increased in shunt lambs (6), and ET-1 stimulated
the proliferation of fetal PASMC via ETA receptor-mediated
signaling (21). These data raise the possibility that FGF-2 may
exert an additional indirect mitogenic effect on PASMC growth
by up-regulating ETA receptor expression. In addition, this is
likely to enhance the contribution made by ET-1-mediated vaso-
constriction to pulmonary hypertension in shunt lambs. Further
studies are needed to characterize the interaction between FGF-2
and ET-1 signaling pathways in shunt pulmonary arteries.
This study has focused on the role of biomechanical forces,

although other factors may also contribute to abnormal FGF-2
expression in shunt lambs. Pulmonary arterial oxygen saturation
was significantly increased in shunts due to the mixing of aortic
and pulmonary arterial blood (4) (63.3 � 11.4% shunts vs 42.0 �
5.8% controls, p � 0.05; Dr. Jeffrey Fineman, unpublished
observations). Although it is not yet known whether this increase
in oxygen saturation is sufficient to stimulate FGF-2 expression in
shunt lambs, levels of FGF-2 mRNA and protein were increased
in the lungs of mice exposed to 80% O2 for 4 d (36). Further-
more, exposure to 60% O2 for 14 d increased ET-1–dependent
PDGF-beta receptor expression in a newborn rat model of pul-
monary hypertension with vascular remodeling (37). These data
suggest that increased pulmonary arterial oxygen saturationmay also
contribute to abnormal FGF-2 and ET-1 signaling in shunt lambs.
Overall, the above data demonstrate the potential complex

mechanisms that mediate abnormal FGF-2 signaling, and
highlight the many roles that FGF-2 may play in contributing
to pulmonary vascular remodeling in shunt lambs.
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