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ABSTRACT: Insulin-like growth factor binding protein (IGFBP)-3
binds to IGF and modulates their actions and also possesses intrinsic
activities. We investigated its effects on insulin action and found that
when IGFBP-3 was added to fully differentiated 3T3-L1 adipocytes
in culture, insulin-stimulated glucose transport was significantly in-
hibited to 60% of control in a time- and dose-dependent manner.
Tumor necrosis factor (TNF)-� treatment also inhibited glucose
transport to the same degree as IGFBP-3 and, in addition, increased
IGFBP-3 levels 3-fold. Co-treatment with TNF-� and IGFBP-3
antisense partially prevented the inhibitory effect of TNF-� on glu-
cose transport, indicating a role for IGFBP-3 in cytokine-induced
insulin resistance. Insulin-stimulated phosphorylation of the insulin
receptor was markedly decreased by IGFBP-3 treatment. IGFBP-3
treatment suppressed adiponectin expression in 3T3-L1 adipocytes.
Infusion of IGFBP-3 to Sprague-Dawley rats for 3 h decreased
peripheral glucose uptake by 15% compared with controls as well as
inhibiting glycogen synthesis. Systemic administration of IGFBP-3
to rats for 7 d resulted in a dramatic 40% decrease in peripheral
glucose utilization and glycogen synthesis. These in vitro and in vivo
findings demonstrate that IGFBP-3 has potent insulin-antagonizing
capability and suggest a role for IGFBP-3 in cytokine-induced insulin
resistance and other mechanisms involved in the development of
type-2 diabetes. (Pediatr Res 61: 159–164, 2007)

IGF-I and -II are involved in the regulation of cell growth
and differentiation in a variety of cell types (1). However,

the IGF also mimic some of the metabolic actions of insulin
and act as insulin sensitizers (2). IGF-I has approximately
1/12th the glucose-lowering capacity of insulin (3), in vivo and
an equipotent effect on ex vivo muscle strips (4), as well as
being an insulin sensitizer, and has been considered as a
putative treatment agent for both type-1 and type-2 diabetes
(5,6). The IGFBP are a family of six binding proteins that bind
to IGF with high affinity and specificity. A variety IGFBP
profiles are observed in different tissues, presumably regulat-
ing specific cellular activities. IGFBP-3 is the most abundant
circulating IGF binding protein and is expressed in most
tissues. IGFBP-3 not only regulates IGF bioavailability and

action (so-called IGF-dependent actions), but also mediates
IGF independent actions on cell survival and apoptosis (7–9).
By binding IGF in the circulation, the IGFBP reduce the levels
of free IGF and antagonize their insulin-like activity; in
addition, they may be involved in carbohydrate metabolism in
ways that remain poorly characterized (10). IGFBP-3 levels
are regulated by multiple factors, including cytokines that
have been implicated in insulin resistance, such as TNF-�.
Recently, it has been shown that IGFBP-3 reduces insulin-
stimulated glucose uptake in both rodent and human adipo-
cytes (11). We carried out a series of experiments to elucidate
the effects of IGFBP-3 on insulin sensitivity in vitro and in
vivo and the mechanisms involved in its actions. In addition,
we show here that the insulin-antagonistic effects of tumor
necrosis factor (TNF)-� are mediated in part by IGFBP-3.

MATERIALS AND METHODS

Materials. Recombinant hIGFBP-3 was a generous gift from Celtrix
(Mountain View, CA). Human recombinant insulin was obtained from Sigma
Chemical Co. (Saint Louis, MO). 2-[3H (G)] deoxy-D-glucose was purchased
from New England Nuclear, Inc. (Boston, MA). Anti-human IGFBP-3 anti-
bodies, which were affinity purified on an IGFBP-3 column, were purchased
from Diagnostic Systems Laboratories (Webster, TX). 125-I-labeled IGF-I
and IGF-II were purchased from Amersham (Piscataway, NJ). Anti-phospho-
insulin receptor beta subunit antibody was purchased from BioSource Inter-
national (Camarillo, CA). Anti-adiponectin antibody was purchased from
Chemicon International (Temecula, CA) The Bradford protein assay kit and
all electrophoresis chemicals were obtained from Bio-Rad (Richmond, CA).
All other chemicals were purchased form Sigma Chemical Co. The antisense
oligonucleotide designed to flank the initiation codon of murine IGFBP-3 (12)
was GCGCGCGGGATGCATGGCGCCGGGTGGACG, with the corre-
sponding sense oligonucleotide being 5=- CGTCCAC-CCGGCGCCATG-
CATCCCGCGCGC. Thio-ester bonds linked the first three and final three
nucleotides of each oligo (Sigma-Genosys, Ltd., The Woodlands, TX).

Cell culture. All cell lines and tissue culture reagents were purchased from
ATCC (Rockville, MD). 3T3-L1 adipocytes were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and an antibiotic mixture containing penicillin and streptomycin.
For the experiments, cells were cultured in 12-well dishes and differentiated
into adipocytes using 3-isobutyl 1-methylxanthine, dexamethasone and insu-
lin, according to methods previously described (13). Briefly, confluent cul-
tures were incubated with the differentiation medium containing dexametha-
sone (25 �M), isobutyl methylxanthine (0.5 mM), and insulin (100 nmol/L)
in DMEM with 10% FBS for 48 h. The cells were then maintained in a
medium containing 10% FBS and insulin (10nmol/L). Experiments were
performed when greater than 90% of the cells were differentiated into
adipocytes.
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Glucose transport assay. Before glucose transport assays, the cells were
incubated in serum-free media, with or without treatment (IGFBP-3 or
TNF-�). Treatment with IGFBP-3 was performed at various concentrations
and durations (see “Results”). TNF-� treatment was performed at a concen-
tration of 10 ng/mL for 24 h. All experiments were done in triplicate unless
otherwise indicated. The procedure for glucose transport measurement was
modified from methods previously described (14). After the treatment period,
the cells were washed twice with PBS and incubated in the same buffer for 30
min with insulin (10 nmol/L). The transport reaction was started by addition
of 10 �L substrate (3H-2-deoxyglucose 0.1 �Ci to produce a final concen-
tration of 0.1 mM) and halted after 5 min by aspirating the reaction mixture
and rapidly rinsing each well five times with 4-degree PBS. Cells were
solubilized by addition of 0.5 mL 0.1 N NaOH and incubated with shaking.
An aliquot (100 �L) of the suspension was removed for protein analysis using
Bio-Rad reagent (Richmond, CA) (15). After solubilization, 400 �L of the
suspension was placed in a scintillation vial and neutralized with 1.0 N HCL
and scintillation fluid was added. Radioactivity in this lysate was determined
by scintillation counting.

Western immunoblots. Phosphorylated insulin receptor beta subunit levels
were detected using cell lysate from differentiated 3T3-L1 adipocytes that
were treated with or without IGFBP-3 (1 �g/mL) for 24 h. Each of these
experiments was performed in the presence or absence of insulin (10 nmol/L)
for the last 30 min of the treatment period. Adiponectin was detected using
cell lysates from 3T3-L1 adipocytes that were treated with or without
IGFBP-3 (1 �g/mL) and rosiglitazone (10 �M/L) for 24 h. All experiments
were repeated three times. Samples of 50 �L were separated by nonreducing
8% SDS-PAGE overnight at constant voltage and electroblotted onto nitro-
cellulose. The membranes were then sequentially washed with NP40,
1%BSA, and Tween 20, blocked with 5% nonfat dry milk in Tris-buffered
saline, probed with the specified antibody and detected using a peroxidase-
linked enhanced chemiluminescence detection system (Amersham, Arlington
Heights, IL).

Immunofluorescence confocal microscopy. Fully differentiated 3T3-L1
adipocytes, 1 � 104, were plated on cover-glass in serum containing media for
2 d. The cells were then incubated in serum-free medium for 24 h. For the last
6 h, half of the wells were treated with IGFBP-3 in a dose of 1 �g/mL for 6 h.
The cells were then exposed to insulin (10 nmol/L) for 30 min. After three
washes in PBS, fixation and permeabilization of the cells were performed with
1% paraformaldehyde in PBS for 15 min at room temperature and 0.2%
Triton X-100 in PBS for 15 min on ice, and cells were washed twice with
PBS. Specimens were incubated with primary antibodies in PBS for 1 h at
room temperature, with secondary antibodies in PBS for 40 min at room
temperature, and then incubated with Hoechst from Electron Microscopy
Sciences (Ft. Washington, PA) for 2 min. Samples were analyzed using the
Inverted Confocal Microscope (Leica, Wetzlar, Germany), equipped by dig-
ital camera (Hamamatsu, Hamamatsu City, Japan), and operated by QED-
image software. DAPI (blue) identifies the nuclei.

To examine IGFBP-3 induction by TNF-�, 1 � 104 fully differentiated
3T3-L1 adipocytes were plated on cover-glass in serum containing media for
2 d. The cells were then incubated in serum-free media with or without TNF-�
at a concentration of 10 ng/mL for 48 h, before staining for immunofluores-
cence as described above. IGFBP-3 protein localization was detected using
the DSL hIGFBP-3 goat polyclonal antibody (which was previously purified
on an IGFBP-3 column), diluted 1:200, followed by fluorescein anti-goat
antibody (Vector Laboratories, Burlingame, CA). Samples were then ana-
lyzed using the Inverted Confocal Microscope at 60� magnification (Leica),
equipped by digital camera (Hiramitsu), and operated by QED-image soft-
ware.

Western ligand blotting. IGFBP-3 protein levels were assessed using cell
lysate from 3T3-L1 adipocytes that were treated with or without TNF-� (10
ng/mL) for 48 h. Samples of 50 �L were separated by nonreducing 10%
SDS-PAGE overnight at constant voltage and electroblotted onto nitrocellu-
lose. The membranes were then sequentially washed with NP40, 1% BSA,
and Tween 20, incubated with 106 cpm each of 125I-labeled IGF-I and IGF-II
for 12 h, dried, and exposed to film for 5 d. All experiments were done in
triplicate.

IGFBP-3 antisense treatment. 3T3-L1 adipocytes were grown and differ-
entiated in 12-well plates (in quadruplicates) as described above. The cells
were then preincubated with sense or antisense IGFBP-3 oligos (detailed
above), at concentrations of 500 ng/plate for 30 min in the presence of
LipofectAMINE (Invitrogen). Following the preincubation, the cells were
incubated in serum-free medium for 24 h with and without TNF-� (10
ng/mL). At the end of the 24 h, the cells were treated with insulin (10 nmol/L)
and a glucose transport assay was performed as described above.

In vivo hyperinsulinemic euglycemic clamps. The principles of laboratory
animal care set out by the National Institutes of Health were followed strictly.
The study protocol was reviewed and approved by the Animal Care and Use

Committee of the Albert Einstein College of Medicine. Male Sprague-Dawley
rats (Charles River Laboratories, Wilmington, MA) were housed in individual
cages and subjected to a standard light (0600–1800 h) and dark (1800–0600
h) cycle. They were fed ad libitum using regular rat chow that consisted of
64% carbohydrate, 30% protein, and 6% fat with a physiologic fuel value of
3.3 kcal/g chow.

To study the acute effects of an infusion of IGFBP-3, two groups of awake,
unstressed, chronically catheterized Sprague-Dawley rats (0.3 kg) were stud-
ied for 300 min. All rats received a primer continuous infusion (15–49
�Ci/min bolus, 0.4 �Ci/min) of [3-3H] glucose throughout the study. After
establishing rates of basal glucose turnover, a primed infusion of somatostatin
(1.5 �g/kg/min), insulin (3 mU/kg/min), and a variable infusion of 25%
glucose to clamp the plasma concentration of euglycemic levels of 140 mg/dL
was administered for 2 h. At 120 min, the rats received a primed continuous
infusion of IGFBP-3 (60 �g/kg/h) or saline (control) for an additional 3 h.

For the chronic IGFBP-3 infusion experiments, Sprague-Dawley rats (0.3
kg) received either IGFBP-3 (40 �g/kg/h) or saline as control by osmotic
minipumps for 7 d and clamp studies were performed on d 7. All rats received
a primed continuous infusion (15–49 �Ci/min bolus, 0.4 �Ci/min) of [3-3H]
glucose throughout the study. After establishing rates of basal glucose turn-
over, a primed infusion of somatostatin (1.5 �g/kg/min), insulin (3 mU/kg/
min), and a variable infusion of 25% glucose to clamp the plasma glucose
concentration at euglycemic levels of 140 mg/dL were administered for 2 h.
Recombinant human IGFBP-3 levels in rat sera were measured by ELISA
(DSL, Webster, TX). There was no cross-reactivity between human and rat
IGFBP-3 in this assay.

Statistical analysis. Statistical significance was evaluated using t tests and
ANOVA and two-tailed p values were calculated. Significance was accepted
at the p � 0.05 level.

RESULTS

IGFBP-3 inhibits glucose uptake in 3t3-L1 adipocytes.
Addition of 1 �g/mL IGFBP-3 to 3T3 adipocytes for 24 h
resulted in a �40% decrease in insulin-stimulated glucose
transport compared with serum-free controls. When adipo-
cytes were exposed to IGFBP-3 for 24 h at a concentration of
1 �g/mL, glucose transport decreased by �40% (Fig. 1A).
This is similar to the decrease in insulin-stimulated glucose
transport observed when adipocytes are exposed to 10 ng/mL
TNF-� over the same time period.

Treatment with IGFBP-3 for 24 h suppressed glucose up-
take in adipocytes in a dose-dependent manner. The effect was
maximal at an IGFBP-3 concentration of 1 �g/mL where
glucose transport decreased by 40% compared with serum-
free controls. Treatment with IGFBP-3 at a concentration of
1.5 �g/mL did not increase the response (Fig. 1B). In addition,
a time course treatment with IGFBP-3 at a concentration of 1
�g/mL demonstrated suppression of glucose uptake in a time-
dependent manner. The suppression was greatest after 24 h of
treatment; however, an effect was detectable as early as 30
min of treatment (Fig. 1C). These results indicate that
IGFBP-3 induces insulin resistance in vitro, in a time- and
dosage-dependent manner. IGFBP-3 inhibited basal glucose
transport by 20% (Fig. 1D).

TNF-� induces the production of IGFBP-3 in 3T3-L1
adipocytes. To test whether TNF-� induces IGFBP-3 produc-
tion in 3T3-L1 adipocytes, adipocytes in serum-free media
were treated with TNF-� for 48 h at a concentration of 10
ng/mL. Production of IGFBP-3 was then detected by immu-
nofluorescence confocal microscopy using a rodent IGFBP-3-
specific antibody. Following TNF-� treatment, the overall
levels of IGFBP-3, (stained in green) in the cells rose dramat-
ically compared with serum-free controls (Fig. 2), implying
increased endogenous production. Interestingly, IGFBP-3 lo-
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cated within the nuclei at low levels in basal conditions
appears to increase to a greater extent in response to treatment
with TNF-�.

The increase in IGFBP-3 protein levels in response to
treatment with TNF-� was also demonstrated by densitomet-

ric analysis of Western ligand blots using 125I-IGF-I and -II.
We quantified the protein levels of IGFBP-3 in total cell
lysates of adipocytes that were exposed to treatment with
TNF-� at a concentration of 10 ng/mL for 72 h. When the blot
was assessed by densitometric analysis, it was found that
TNF-� induced a 3-fold increase in production of IGFBP-3
compared with serum-free conditions (p � 0.05, Fig. 2B).

Insulin-antagonistic effect of TNF-� is partially blocked
by pretreatment with IGFBP-3 antisense. To test whether the
insulin-antagonistic action of TNF-� may be mediated via
induction of IGFBP-3, 3T3-L1 adipocytes were exposed to
TNF-� after transfection of IGFBP-3 antisense or sense oli-
gonucleotides. Cells pretreated with antisense IGFBP-3 oligos
and then treated with TNF-� 10 ng/mL exhibited a signifi-
cantly smaller decrease in insulin-mediated glucose transport
(p � 0.05, Fig. 2C). Cell extracts transfected with antisense
IGFBP-3 demonstrate �50% reduction in IGFBP-3 content by
immunoblot with no change noted in the sense-transfected cells.

IGFBP-3 inhibits insulin-receptor-phosphorylation in
3T3-L1 adipocytes. To examine whether IGFBP-3 induces
insulin resistance by decreasing the tyrosine phosphorylation
of insulin receptors on the cell membrane, phosphorylated
insulin receptor levels were assayed. Cells were treated with
and without IGFBP-3 (1 �g/mL) for 24 h in serum-free media.
Each of these conditions was performed in the presence or
absence of insulin (10 nmol/L) for the final 30 min of the
treatment period. Western blotting of phosphorylated insulin
receptor beta subunit proteins from these insulin-treated cells,
which were also treated with IGFBP-3, revealed a 70% de-
crease in insulin-stimulated phosphorylation of the insulin
receptor compared with cells treated with insulin alone
(Fig. 3).

IGFBP-3 inhibit adiponectin expression in mature adipo-
cyte. To determine whether IGFBP-3 regulates additional
adipocyte functions, we examined the effects of IGFBP-3 on

Figure 2. Exposure to TNF-� induces IGFBP-3 production in 3T3-L1 adipocytes that is involved in glucose transport regulation. (A) Confocal microscopy of
3T3-L1 adipocytes in culture treated with TNF-� (10 ng/mL) � 48 h, then stained with IGFBP-3 antibody and counterstained with fluorescein-labeled anti-rabbit
antibody before confocal microscopy. (B) Cells similarly treated with TNF-� (10 ng/mL) � 72 h were lysed and IGFBP-3 content was assayed using
Western-ligand blotting and quantified densitometrically. (C) 3T3-L1 adipocytes were pretreated with IGFBP-3 sense and antisense oligos (n � 4 per group) for
30 min as described. They were then treated with TNF-� 10 ng/mL for 24 h and pulsed with insulin 10nmol/L and glucose transport was assayed as described.
Results are expressed as percentage of serum-free. *p � 0.05.

Figure 1. Effect of IGFBP-3 on insulin-stimulated glucose uptake in 3T3-L1
adipocytes. (A) 3T3-L1 adipocytes treated (n � 3 per condition) with 1
�g/mL IGFBP-3 or with 10 ng/mL TNF-� for 24 h and pulsed with insulin
(10 nmol/L) �30 min before measurement of glucose transport as described.
Glucose transport expressed as percentage of serum-free conditions. Dose
response (B) and time course (C) are also shown. The effects of 1 �g/mL
IGFBP-3 on basal glucose transport (n � 4 per group) are shown in (D).
*p � 0.05.
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adiponectin expression. Adiponectin immunoblots were per-
formed on cell lysates from differentiated 3T3-L1 adipocytes
that were treated with and without IGFBP-3 and the PPAR�
agonist rosiglitazone for 24 h in serum-free media. Western
blotting of adiponectin from IGFBP-3 treated cells revealed a
55% decrease in adiponectin expression compared with con-
trol. PPAR�-stimulated adiponectin was also inhibited by
IGFBP-3 (Fig. 4).

Infusion of IGFBP-3 impairs glucose metabolism in
Sprague-Dawley rats. To examine the effect of elevated IG-
FBP-3 levels upon insulin sensitivity in vivo, we studied
Sprague-Dawley rats utilizing the insulin clamp technique.
Acute effects were studied by infusing IGFBP-3 (60 �g/kg/h)

for 3 h. Because maximal effect in vitro is seen after several
days, we also performed IGFBP-3 infusion for 7 d and the
effects of prolonged exposure were studied by continuously
infusing 40 �g/kg/h over 7 d.

Infusion of IGFBP-3 for 3 h decreased peripheral glucose
uptake by 15% compared with controls (19.0 � 0.7 versus
22.8 � 0.3 mg/kg/min, treatment versus control; p � 0.05).
Glycogen synthesis was decreased by 25% (7.3 � 0.3 mg/kg/
min vs 10.8 � 1.4, treatment versus control; p � 0.05) (Fig.
5, A and B).

Seven days of IGFBP-3 infusion decreased the peripheral
glucose uptake (Rd) by 40% in rats treated with IGFBP-3
compared with control (14.0 � 0.2 versus 23.2 � 0.5 mg/kg/
min, treatment versus control; p � 0.01). This decrease in Rd
was primarily accounted for by a 50% decrease in glycogen
synthesis (4.5 � 1.0 versus 10.8 � 1.4 mg/kg/min, treatment
versus control; p � 0.005) (Fig. 5, C and D). Human IGFBP-3
levels were undetectable in preinfusion sera and achieved
levels of 1200 � 225 ng/mL at the end of 7 d, well within the
physiologic range.

DISCUSSION

In this study, we have shown that IGFBP-3 rapidly induces
insulin resistance in vivo and in vitro and that this effect occurs
at physiologic concentrations of IGFBP-3. We have also
demonstrated a link between IGFBP-3 induction and the
insulin-antagonistic effect of inflammatory cytokines.

It has previously been shown that transgenic mice that
over-express human IGFBP-3 cDNA exhibit fasting hypergly-
cemia, impaired glucose toleranc, and insulin resistance, with-
out an apparent change in total IGF-I levels, and this was not

Figure 5. Effects of a 3 h infusion of IGFBP-3 (A and B) and of 7 d of
IGFBP-3 infusion (C and D) on peripheral glucose uptake and glycogen
synthesis in Sprague-Dawley rats. Rats (n � 6 per group) were infused with
IGFBP-3 (60 �g/kg/h) for 3 h or with IGFBP-3 40 �g/kg/h for 7 d. Glucose
uptake and glycogen synthesis were assayed as described. *p � 0.05.

Figure 3. Effect of IGFBP-3 on insulin-stimulated phosphorylation of the
insulin receptor. 3T3-L1 adipocytes (n � 3 per group) treated with 1 �g/mL
IGFBP-3 for 24 h and pulsed with insulin (10 nmol/L) � 30 min. Cells were
lysed and lysates were electrophoresed and blotted with phospho-specific
insulin receptor antibody. Western blot densitometry was expressed as percent
of SF. *p � 0.05.

Figure 4. Effect of IGFBP-3 on adiponectin expression in 3T3-L1 adipo-
cytes. 3T3-L1 adipocytes (n � 3 per group) treated with 1 �g/mL IGFBP-3
for 24 h with or without rosiglitazone. Cells were lysed and lysates were
electrophoresed and blotted with adiponectin antibody. Western blot densi-
tometry was expressed as percentage of control. *p � 0.05.
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clearly explained by disturbances in growth hormone secre-
tion or adiposity (16).

A relationship of elevated circulating IGFBP-3 levels to
hyperglycemia is also suggested in certain clinical states
characterized by impaired insulin action including puberty
(17), acromegaly (18), and treatment with recombinant hGH
(19). These conditions are associated with the development of
insulin resistance and glucose intolerance despite a concomi-
tant elevation of circulating IGF-I levels in each case. We
show in this paper that IGFBP-3 is a potent insulin antagonist
in 3T3-L1 adipocytes and in Sprague-Dawley rats. Our results
also show that the magnitude of this effect is similar to the
effect of TNF-�, a multifunctional cytokine that may be an
important mediator of insulin resistance linked to obesity (20).

It was not directly tested in our studies whether IGFBP-3
insulin-antagonizing effects are dependent or independent of
IGF-I. But Chan et al. (13) recently showed that IGFBP-3
mutants with reduced binding to IGF-I and -II were still able
to reduce insulin-stimulated glucose uptake and both that
group’s as well as our data demonstrated that other IGFBP do
not mediate this effect. This suggests the possibility that the
inhibitory effect of IGFBP-3 may be independent of its bind-
ing to IGF, although an IGF-inhibitory mechanism is also
possible. Distinguishing between these possibilities in vivo
will require additional studies involving the systemic admin-
istration of non-IGF-binding mutants of IGFBP-3. Hypergly-
cemia has been convincingly demonstrated after the injection
of IGFBP-1 (21) in rats and in transgenic mice, which over-
express IGFBP-1 (22), however, an IGF-dependent mecha-
nism for this phenomena has been postulated.

IGFBP-3 in serum inhibits the effects of IGF on IGF-
activated glucose consumption in mouse fibroblasts (23). In
addition, glucose intolerance is observed in liver-specific
IGF-I knockout mice (24) where circulating IGF-I levels are
reduced to a larger degree than those of IGFBP-3. In these
situations, the hyperglycemia could be attributable to a reduc-
tion in free IGF-I levels. It is possible that excess IGFBP-3
binds free (unbound) IGF-I, thereby decreasing its bioavail-
ability and its hypoglycemic effect.

However, in addition to modulating the availability of
IGF-I, IGFBP-3 has been shown to have independent effects
in a variety of cell lines. For example, IGFBP-3 has antipro-
liferative effects on breast cells that are unresponsive to IGF
(8) and on mouse fibroblasts that lack IGF-1 receptors (9).
IGFBP-3 has been shown to inhibit type-1 IGF receptor
activation independently of its IGF binding affinity in breast
cancer cells (25). In addition, proteolytic fragments of IG-
FBP-3 that have markedly reduced affinity for IGF-I retain
antiproliferative effects in vitro. These IGFBP-3 effects may
be mediated via cell surface binding proteins (26), nuclear
binding sites (27), or other pathways (28). The IGFBP-3 NLS
mutant, which is known to not translocate to the nucleus, also
inhibited insulin-stimulated glucose uptake (13) Thus, it is
possible that some of the insulin-antagonistic effects of IG-
FBP-3 are mediated via IGF-independent pathways that does
not require nuclear localization. For example, a previously
published study reports that IGFBP-3 is capable of activating
a phosphotyrosine phosphatase independent of its IGF binding

affinity (29). Activation of a phosphotyrosine phosphatase and
subsequent de-phosphorylation could be a mechanism respon-
sible for the decreased phosphorylated insulin receptor levels
observed in our study. Of note is that Chan et al. (13) did not
observe reduced IR phosphorylation but did see less Thr (308)
phosphorylation of Akt after IGFBP-3 treatment. These inves-
tigators also did not observe an effect of IGFBP-3 on baseline
(insulin-free) glucose transport, which we have. The possible
differences between these studies may include either subtle
differences in the experimental conditions or a different be-
havior of the substrain of the 3T3-L1 cells, which may be
susceptible to biologic drift over time in repeat culturing as
described for many other cell lines (30).

TNF-� is thought to play an important role in the patho-
genesis of insulin resistance associated with obesity. In adi-
pose tissue, levels of TNF-� and its mRNA correlate posi-
tively with the degree of obesity or hyperinsulinemia (31).
TNF-�’s main mechanism of action is unknown, although it
has been shown to decrease insulin receptor and the insulin-
receptor substrate IRS-1 phosphorylation (32) by attenuating
tyrosine kinase activity and/or activating phospho-protein
phosphatase-1. Here, we report that TNF-� induces the pro-
duction of IGFBP-3 in 3T3-L1 adipocytes and that the insulin-
antagonistic effect of TNF-� on cultured adipocytes is par-
tially blocked by the presence of IGFBP-3 antisense. This
raises the possibility that some of the insulin antagonistic
activity of TNF-� may be mediated via induction of IGFBP-3.
Such a role is not unexpected as IGFBP-3 has been shown to
mediate other effects of TNF-� in various cell types (33) and
has also been implicated in mediating the effects of other
growth-inhibitory and apoptosis-inducing agents such as tu-
mor suppressor gene p53 (34), retinoic acid, (35), and trans-
forming growth factor-beta (36).

We have previously reported that IGFBP-3 is a binding
partner for the ligand-dependent nuclear receptor, retinoid X
receptor-� (RXR-�) and modulates its transcriptional activity
(37). RXR-� is the obligate heterodimeric partner for the
nuclear receptor PPAR-� (38), which controls the transcrip-
tion of genes important in the regulation of carbohydrate and
lipid metabolism. TNF-� has previously been shown to an-
tagonize PPAR-� (39). Our observation that TNF-� appears to
increase the nuclear localization of IGFBP-3 hints at the
possibility that TNF-� may exert some of its insulin-
antagonizing effects by modulating the transcriptional activity
of PPAR-� via induction and nuclear translocation of IG-
FBP-3.

Regardless of the possible numerous interactions of IG-
FBP-3 with the insulin-signaling pathway, the strength of this
report is in demonstrating that IGFPB-3 rapidly induces pe-
ripheral insulin resistance in rodents, which is evident within
hours. Furthermore, after several days, the degree of insulin
resistance induced by IGFBP-3 is similar in magnitude to that
seen in many diabetic states. This suggests that IGFBP-3
effects are important in vivo and may explain the alterations in
insulin action during pubertal development, and in pathophys-
iological conditions such as in acromegaly, when IGFBP-3
levels are high.
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Adiponectin, an important adipocytokine that is induced by
thiazolidinediones (TZD), is closely related to insulin sensi-
tivity (40). We also show here that IGFBP-3 inhibits adi-
ponectin expression both at the basal state and after PPAR-�
agonist stimulation. These findings may further explain how
IGFBP-3 induces insulin resistance in vivo.

In conclusion, our results show that IGFBP-3 is a potent
inhibitor of insulin action in cultured adipocytes as well as in
vivo. This effect is of the same magnitude as the insulin
antagonistic effect of TNF-�. In addition, we show that TNF-�
induces IGFBP-3 production in cultured adipocytes and that
IGFBP-3 may mediate some of the insulin-antagonistic activ-
ity of TNF-�. We also show that IGFBP-3 suppresses adi-
ponectin expression. The mechanisms of IGFBP-3-induced
insulin resistance action are as yet fully uncharacterized and
are likely multiple. Further studies of the role of IGFBP-3 in
insulin resistance will shed light on the molecular mechanisms
of insulin resistance in general and the physiologic signifi-
cance of IGFBP-3 in particular.
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