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ABSTRACT: Postnatal d 7 (p7) or p12 mice had their right carotid
artery (CA) and jugular vein (JV) ligated to mimic veno-arterial (VA)
access for extracorporeal membrane oxygenation (ECMO). At p9–11
(early) or p19–21 (late) mice were exposed to hyperthermia or
normothermia followed by assessment of neuropathological injury
score. In separate cohorts of mice, cerebral and peripheral blood flow
(CBF, PBF) and cerebral ATP content was measured. Hyperthermia
resulted in ischemic brain injury in 57% and 77% of mice subjected
to early or late hyperthermia, respectively. Isolated CA�JV ligation
induced minimal injury (score 0.47 � 0.34) in 2/8 mice from the late
normothermia group. No cerebral injury was detected in mice sub-
jected to early normothermia. In 3/19 shams (2/10 early, 1/9 late)
hyperthermia induced a subtle (score, 0.6 � 0.27) injury in the
ipsilateral to the site of surgery cortex. CBF and PBF increased in
response to hyperthermia in all mice. The rise in CBF was signifi-
cantly attenuated in the “ligated” versus intact hemisphere, which
was associated with a profound depletion of ATP content. Systemic
hyperthermia induces ischemic brain injury in mice with ligated
CA�JV. We speculate that hyperthermia/fever can be a potential risk
factor for brain injury in infants treated with VA ECMO. (Pediatr
Res 62: 65–70, 2007)

There is ongoing concern that permanent ligation of the CA
following VA ECMO-treatment may adversely affect ce-

rebral perfusion. An analysis of ECMO complications in 7667
neonates demonstrated that, in comparison with VA ECMO,
VV ECMO was associated with a significantly lower mortality
rate and incidence of major neurologic complications, includ-
ing cerebral infarction (1). Although the use of VV ECMO has
increased from 14% in 1990–1999 (2) to 24.7% in 2001–2004
(3), the VA ECMO remains the preferred mode. In ECMO-
treated neonates, CA-ligation, but not JV-ligation, resulted in
a significant decrease in oxyhemoglobin concentration (and
rise in the deoxyhemoglobin level) in the brain (4). The
incidence of cerebral ischemic lesions associated with later-
alized neuromotor dysfunction and abnormal electroencepha-
lography is significantly increased in the side ipsilateral to VA
ECMO cannulation (5–7). Reconstruction of CA following
VA ECMO results in a long-term patency of the CA in
76–93% of patients and may decrease the incidence of brain-
scan abnormalities and cerebral palsy (8,9). However, the lack

of data on direct causality of CA-ligation in cerebral compli-
cations of VA ECMO makes the rationale for routine recon-
struction of CA controversial.

Experimental studies showed that in healthy newborn lambs
an isolated CA ligation did not significantly alter CBF and
oxygen metabolism (10). In rats, CA-ligation induced a long-
term vascular adaptation with improvement of collateral cir-
culation between the ligated and nonligated hemispheres (11).
However, it is unknown whether the collateral circulation is
sufficient to meet increased cerebral metabolic demands. It is
well established that systemic hyperthermia (fever) signifi-
cantly increases cerebral metabolic demand and is associated
with a steep increase in CBF (12,13). Given that permanent
loss of the CA�JV can potentially limit the rise in CBF in
response to metabolic demand, we hypothesized that systemic
hyperthermia/fever may induce cerebral ischemia in a hemi-
sphere that has undergone CA�JV ligation.

MATERIALS AND METHODS

Three-day-old, C57/BL6J mice of both genders were purchased from
Jackson Laboratories (Bar Harbor, ME) with their birth mothers. All research
was conducted according to a protocol approved by the Columbia University
Animal Care and Use Committee.

The procedure and study-groups. At p7, under isoflurane anesthesia,
experimental mice had their right CA�JV permanently ligated using 10-0
polypropylene. To induce anesthesia, mice were placed for 20 s into a plastic,
100-mL-volume chamber containing an isoflurane-saturated cotton-tip. An-
esthesia was maintained for 5–7 min by holding the same cotton-tip near the
animal’s nose. In sham-operated mice, the CA�JV were exposed, but not
ligated. At 2 d after surgery, CA�JV-ligated and sham-mice were divided
into two subgroups: Hyperthermia and Normothermia. Hyperthermic mice
were exposed to ambient temperature of 38.5°C in a chamber partially
submerged in a water bath. To achieve an even exposure to the ambient
temperature, mice were placed into plastic-net hammock installed 2 cm above
the bottom of the chamber. During hyperthermic exposure, the chamber was
constantly flushed with humidified air at 1.5 L/min. Normothermic exposure
was produced by placing mice into isolette (Air-shields, Respironics, Mur-
rysville, PA ) preheated to 32°C, the average temperature in the mouse nest
(14). Each mouse was exposed to hyperthermia or normothermia for 10 min,
twice a day for three consecutive days. Hyperthermic exposure was produced
at p9–11 (early hyperthermia). Rodents at this age are widely used to model
infantile febrile seizures (15).

An additional cohort of p12 mice was subjected to the same experimental
protocol with the only difference that the hyperthermic stress was delayed to
p19–21 (late hyperthermia). At p12, the development of mouse brain corre-
sponds to that in full-term infant (16). The time of hyperthermic stress was
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delayed to a weanling age because at this age mice become independent on
dam’s nursing which is comparable to 12–24-mo-old infants, the age when the
incidence of febrile complications is the highest (17).

As the main goal of this study was to determine whether an isolated
ligation of CA�JV followed by hyperthermia induces cerebral ischemia, mice
were not subjected to hypoxia, which other investigators have used to model
preECMO hypoxemia in rodents (18).

A total of 90 mice were analyzed and the following groups were studied:
CA�JV�hyperthermia (43 mice), CA�JV�normothermia (18 mice), sham-
operated�hyperthermia (19 mice), and sham-operated�normothermia (10
mice). Each litter consisted of sham-operated and CA�JV-ligated mice
subjected to either hyperthermia or normothermia. Two mice from the
CV�JV�hyperthermia group that died before the neuropathological exam
were excluded. Mice that were cannibalized before hyperthermia exposure
were not studied.

Neurofunctional assessment. Neurofunctional assessment was performed
only in mice subjected to CA�JV ligation at p7. At 5 d following ligation (24
h after the last hyperthermia episode), neonatal sensorimotor mouse reflex
(geotaxis and cliff aversion) performance was tested and compared between
groups. The protocol for reflex performance assessment has been previously
described by our group (19). For the geotaxis reflex, mice were placed on
inclined (40°) foam-made and claw-friendly board. Time (seconds) that each
mouse took to turn its body �90° head-up was recorded. For the cliff-aversion
reflex, mice were placed with overhanging paws at the edge of the claw-
friendly, 20-cm-high board. The time (seconds) that a mouse took to crawl
away from the edge was recorded. Each mouse was given three attempts to
perform a reflex with 2 min of rest between trials. If a mouse was unable to
perform the reflex, 20 s of the allotted time was assigned to this animal. Mean
value of the time spent in all three attempts was used for data analysis.
Following an assessment of reflex performance, mice were decapitated under
deep isoflurane anesthesia and brains were removed and fixed in 4% para-
formaldehyde. Because neonatal murine reflexes disappear with the age, mice
subjected to hyperthermia in the weanling age were not tested.

Neuropathological assessment. Forty-micron coronal sections were cut on
a vibrating microtome and Nissl-stained. For neuropathological analysis,
three consecutive sections from anterior, mid, and posterior levels in relation
to bregma (–1.2 mm—anterior, �2 mm—mid, and �2.5 mm—posterior)
were analyzed. The neuropathological evaluation of injury was done using a
neuropathological score described by Sheldon et al. (20). The score was
analyzed in three regions of the cortex (anterior, mid, and posterior), four
regions of the hippocampus (CA1, CA2, CA3, DG), and one region of the
mid-thalamus. Analysis was performed in a blinded fashion. Regions were
scored: grade 0 � no evidence of injury; grade 1 � rare scattered pyknotic,
hyperchromic cells; grade 2 � single or small confluent areas of necrosis,
grade 3 � large, multiple areas of necrosis more then 50% of the tissue loss
thalamus or hippocampus, or/and areas of cystic infarction in the cortex.
Grades from each of the three cortical regions, mid-thalamus and four
hippocampal regions were summated.

Measurements of rectal temperature, cerebral and peripheral blood
flows. Two separate cohorts of mice were used to measure CBF and PBF. In
the first cohort, the real-time changes in CBF and PBF were recorded before
and immediately following CA�JV ligation, and for 80 min following
surgery (including a single episode of hyperthermia). This cohort of mice was
used to study changes in PBF and in CBF in relation to the preligation level.

In the second cohort of p9 mice, the rectal temperature, CBF, and PBF
were recorded during hyperthermic or normothermic exposure at 48 h after
sham- or ligation surgeries. Rectal temperature was measured in randomly
selected mice using a 1-mm-diameter rectal probe (Cole-Parmer, Vernon
Hills, IL) attached to the thermometer (Termalert TH-5, Physitemp, Clifton,
NJ). CBF was measured using a three-channel laser-Doppler flowmeter
“Periflux 5000,” as described earlier (21,22). Briefly, under isoflurane, anes-
thesia following small scalp incision two laser-Doppler probes were attached
to the skull using 15-cm-long fiberoptic extensions. To minimize a “cross-
talk” between hemispheres in CBF recording, fiberoptic extensions were
placed parallel to each other, 2.5–3 mm lateral to and 2 cm posterior to the
bregma. The wound was closed using tissue glue followed by an injection of
local anesthetic. PBF was recorded by the placement of the laser Doppler-
probe on supine surface of the hind paw. CBF and PBF changes were
recorded continuously and expressed as a percentage of the preligation value
in cohort 1 and as a percentage of the prehyperthermia level in cohort 2. In
cohort 1, changes in CBF and PBF were analyzed every 5 min following
ligation and every 2 min during exposure to hyperthermia. In cohort 2,
changes in CBF and PBF were analyzed every 2 min during exposure to
normothermia or hyperthermia.

The measurement of cerebral ATP content. To study changes in cerebral
metabolism, the ATP content was measured in both hemispheres at the end of
a single episode of normothermia or hyperthermia (cohort 2). ATP content

was determined using a Bioluminescence Assay CLS II (Roche Molecular
Biochemicals, Indianapolis, IN). Briefly, at the end of exposure, brains were
harvested and snap-frozen in the liquid nitrogen. Forty seconds were spent to
harvest the brain from each mouse. On the same or the next day, ipsilateral
and contralateral hemispheres were homogenized and kept in boiling, 100
mM Tris, 4 mM EDTA (pH 7.75) for 2 min. An aliquot was obtained for
determination of protein concentration using the Bio-Rad protein assay
(Bio-Rad, Hercules, CA) with BSA as a standard. The homogenate was
centrifuged at 15,000 g for 5 min. ATP was measured in supernatant using
black multiwell plates and SPECTRAFluor Plus Tecan luminometer
(Tecan, Mannedorf, Switzerland). The ATP concentration was expressed
in micromoles per gram of tissue protein.

Statistical analysis. One-way ANOVA and Bonferroni’s posthoc analyses
were used for comparative assessment of the extent of cerebral injury, neuro-
functional performance, cerebral ATP content, and summated values of CBF and
PBF changes between groups. To compare changes in rectal temperature,
CBF and PBF with the baseline the ANOVA for repeated measures was used.
Data were considered statistically significant if p � 0.05 between groups.

RESULTS

As expected, the exposure to 38.5°C for 10 min signifi-
cantly (p � 0.0001) increased rectal temperature in both
CA�JV-ligated (39.8 � 1.2°C n � 9) and sham-operated
mice (39.7 � 1.3°C n � 6) compared with the baseline
(29.4 � 2.2°C and 29.3 � 1.02°C, respectively). When
CA�JV-ligated and sham-operated mice were exposed to
normothermia, their rectal temperature increased (35.3 �
0.87°C and 34.3 � 0.4°C, respectively, n � 5), but signifi-
cantly (p � 0.0001) less than in hyperthermic counterparts.

The ligation of the CA�JV resulted in a significant de-
crease in CBF in the ipsilateral (ligated) hemisphere that
remained significantly less then the preligation level for 40
min of recording (Fig. 1, A and B). No changes in CBF were

Figure 1. (A) Changes in the CBF in “ligated” (black circles) and “nonli-
gated” (open circles) hemispheres during and after ligation of CA�JV (n �
4). Data are mean � SE. *p � 0.0002 compared with the preligation value.
(B) The real-time changes in CBF and PBF in a single mouse during ligation
of the CA�JV followed by the hyperthermic exposure. The arrow indicates
the moment of ligation and the beginning and the end of hyperthermia. The
blood flow changes are percentage of the preligation value.
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observed in the contralateral, “nonligated” hemisphere during
ligation (Fig. 1, A and B). In mice with CA�JV-ligation, the
hyperthermic stress resulted in a significant increase in CBF
and PBF compared with the preligation and prehyperthermia
levels (Fig. 1B, Fig. 2, D and E). The increase in CBF in
response to hyperthermia was significantly greater in the
“nonligated” hemisphere compared with that in the “ligated”
hemisphere (Fig. 1B, Fig. 2, D and E). Compared with that in
sham-operated mice, the same degree of hyperthermia caused
a significantly greater increase in PBF (p � 0.0001) and CBF
(p � 0.004) in the “nonligated” hemisphere in CA�JV-ligated
mice (Fig. 2, B and D, and Fig. 3, B and C). In contrast, the
hyperthermia-induced rise in CBF in the “ligated” hemisphere
was significantly less compared with that in the sham-operated
counterparts (Fig. 2, B and D, and Fig. 3A). Exposure to a
normothermic environment had no effect on PBF or CBF in
the contralateral hemisphere in either CA�JV-ligated or
sham-operated mice (Fig. 2, A and C, and Fig. 3, B and C).
However, the CBF in the “ligated” hemisphere decreased
slightly (by 20%) during the normothermic exposure and

remained significantly (p � 0.007) lower compared with that
in sham-operated normothermic counterparts (Fig. 3A).

The combination of CA�JV ligation with a superimposed
hyperthermic stress resulted in a profound (3.5-fold) decrease
in the cerebral ATP content compared with that in normother-
mic mice (Fig. 4A). Ligation of CA�JV and exposure of these
mice to normothermic environment also caused a significant
(p � 0.0057) decrease in the ATP content in the ipsilateral
hemisphere compared with the same hemisphere in sham-mice,
but not when compared with that in the contralateral hemisphere.
There was no difference in ATP content in sham-normothermic
compared with sham-hyperthermic mice (Fig. 4A).

Neuropathological exam revealed that isolated CA�JV-
ligation without hyperthermic stress induced cerebral damage
in 2/18 mice (Fig. 4F). Both of these mice had their CA�JV
ligated at p12 and exposed to normothermia at their weanling
age. In contrast, 26 out of 41 CA�JV-ligated animals expe-
riencing early (16/28) or delayed (10/13) hyperthermic stress

Figure 2. The real-time changes in CBF and PBF during normo- and
hyperthermia in sham�normothermia (A), sham�hyperthermia (B),
CA�JV�normothermia (C), and CA�JV�hyperthermia (D) p9 mice. All
data are expressed as percentage of the preexposure values and measured in
C [contralateral (nonligated)] and I [ipsilateral (ligated) hemispheres], and P
(hind paw). (E) The mean values of the CBF changes in the “ligated” (black
circles) and “nonligated” (open circles) hemispheres during hyperthermia in
CA�JV-ligated mice (n � 10). CBF changes are percentage of the prehy-
perthermia values. p Values for comparison of CBF-changes between hemi-
spheres are indicated. *p � 0.003 and †p � 0.01 compared with the
prehyperthermia level.

Figure 3. Blood flow changes in the ipsilateral (A) and contralateral (B)
hemispheres and in the hind paw (C) in p9 mice during normothermic or
hyperthermic exposure. Star, CA�JV�t (n � 10); triangle, CA�JV-t
(n � 9); square, Sham�t (n � 7); circle, Sham-t (n � 4). Data expressed
as mean � SE (%) of preexposure values.
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developed an infarct in the hemisphere ipsilateral to the
ligation side (Fig. 4, D and G, and Fig. 5, A and B). Unex-
pectedly, in 3 (2 from early and 1 from late hyperthermia
groups) out of 19 sham-operated mice the neuropathological
exam revealed small areas of cerebral necrosis (hyperchromia,
cellular shrinkage) in the hemisphere ipsilateral to the surgical
site (Fig. 4, B and E). The neuropathological score in CA�JV-
hyperthermic mice was significantly higher which was asso-

ciated with a significantly more sluggish reflex performance
compared with that in their normothermic counterparts and
sham-hyperthermic mice (Fig. 5, A–D).

DISCUSSION

This study demonstrates that, in neonatal mice, permanent
CA�JV ligation followed by delayed repetitive short-term
systemic hyperthermia can produce an ischemic cerebral in-
jury in the hemisphere ipsilateral to the ligation side. The
ischemic nature of this damage is supported by a significant
reduction of the CBF following CA�JV ligation and a pro-
found depletion of the ATP content during superimposed
hyperthermic stress. These animal data raise a critical ques-
tion: Is fever/hyperthermia a potential risk factor for cerebral
injury in infants following VA ECMO?

Clinical data suggest that infants treated with VA ECMO
exhibit a significantly higher rate of seizures and cerebral
infarcts compared with VV ECMO-treated counterparts (2).
Experimental data showed that in healthy newborn lambs VA
ECMO, but not VV ECMO altered cerebral autoregulation
and significantly decreased CBF in the hemisphere ipsilateral
to the cannulation side (23). In our experiments, mice with
CA�JV ligation exhibited a significant (by 50%) and pro-
longed (40 min) reduction of CBF in the “ligated” hemisphere.
In contrast, Hunter et al. (24) using an ECMO-model in
neonatal lambs reported only a transient (60 s) drop in CBF
following ipsilateral CA�JV ligation. Short and co-workers
(25) also reported that CA�JV ligation in neonatal lambs did
not alter either CBF or the CBF-response to hypoxia. It is
possible that CBF-response to CA�JV ligation may be spe-
cies-dependent. In baboons, ligation of the right carotid artery
resulted in an immediate fall of the right ophthalmic artery
pressure that was sustained for 2 wk (26). In human infants,
the blood flow in the internal carotid artery was reduced by
74% even at 4–9 y after ipsilateral CA ligation (27).

Lewin and co-authors (23) reported that 50% of neonates
treated with VA ECMO exhibited an antegrade CBF in their
right, ligated internal CA with blood velocities comparable to
that in normal infants or in the contralateral side. Using
magnetic resonance angiography, the same investigators dem-
onstrated full patency of the right internal CA in 9 out of 16
infants at less then a week after VA ECMO (28). These data
indicate that collateral blood flow develops shortly after VA
ECMO has ended. Pearlman et al. (29) reported a symmetrical
pattern of the CBF in both hemispheres in 1-y-old infants
treated with VA ECMO as neonates. However, it is unknown

Figure 4. (A) Cerebral ATP-content in the ipsilateral (black bars) and
contralateral (white bars) hemispheres at the end of normothermic or hyper-
thermic exposure in p9 mice; 1) CA�JV�t (n � 9), 2) CA�JV-t (n � 9), 3)
Sham�t (n � 7), and 4) Sham-t (n � 4). Data are mean � SE *p � 0.035
compared with the CA�JV�normothermia mice. (B–G) Nissl-stained coro-
nal sections of brain from mice subjected to early, p9-11 (B–D) and late,
p19-21 (E–G) hyperthermia (B, E) Sham�t, (C, F) CA�JV-t ,and (D, G)
CA�JV�t mice. Scale bars � 2 mm, 1 mm, 100 �m.

Figure 5. Neuropathological score in
CA�JV mice subjected to early (A) and
late (B) hyperthermia. (C) Geotaxis and
(D) cliff-aversion reflex performance in
mice subjected to early hyperthermia.
CA�JV�t (black bar), CA�JV-t (white
bar), and sham�t (checkered bar) mice.
Data are mean � SE n and p values are
indicated.
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whether cerebral perfusion would have remained symmetrical
if cerebral metabolic demand had increased. In this study, we
demonstrated that ligation of CA�JV significantly attenuates
the CBF-response to hyperthermia and was associated with
development of cerebral infarct in the “ligated” hemisphere.

Systemic hyperthermia significantly increases cerebral met-
abolic rate in adult humans (23%) (13), and in newborn pigs
(65%) (12). In parallel with the increase in cerebral metabolic
rate, there is a sharp (by 97%) rise in CBF in response to
systemic hyperthermia in pigs (12). The hypermetabolic state
during hyperthermia has been implicated in the pathogenesis
of the heat stroke. Heat stroke is characterized by the devel-
opment of cerebral ischemic injury following severe heat
exposure (30,31). The ambient temperature (38.5°C) used in
this study was significantly lower compared with that used in
heat-stroke models in rats (43°C) (32) and mice (41.8°C) (33).
Nevertheless, the CA�JV-ligated mice developed brain in-
farcts ipsilateral to the ligation side. This finding suggests that
permanent CA�JV ligation limits the CBF-response to hy-
perthermia, which may cause a mismatch between O2-demand
and delivery. This statement is supported by the data showing
a profound ATP depletion in the “ligated” hemisphere after
hyperthermic stress. During heat stroke, the ATP content falls
significantly in the ischemic brain in rodents (34).

The normothermic exposure induced a mild (scores 3 and 6,
max score � 24) cerebral injury in 2/18 CA�JV-ligated mice.
Both these mice were subjected to 32°C at their weanling age,
the age when mice are not dependent on heat generated by
dam or nesting. The ambient temperature of 32°C can be
viewed as a relatively hot environment for these mice. It has
been reported that isolated CA ligation resulted in an ischemic
brain injury in 71% of p12 mice (10,35). However, in this
study authors used a mouse strain (CD-1) known to be highly
susceptible to ischemic brain injury (36). Furthermore, these
mice were exposed to 35°C for 4 h following ligation. In adult
rats, CA�JV ligation combined with or without preceding
hypoxia was shown to cause sporadic and occasional brain
damage (18). In CA�JV-ligated mice subjected to normother-
mia at p9–11, no cerebral damage was detected. Although,
rectal temperature in these mice increased significantly com-
pared with the baseline, no significant changes in CBF, PBF,
or ATP-content were recorded. The increase in rectal temper-
ature during normothermic exposure in p9 mice can be viewed
as a normalization of the temperature-balance following rela-
tive hypothermia induced by exposure to the room tempera-
ture of 25°C during handling and placement of the CBF, PBF,
and rectal temperature-probes. In our study, the rectal temper-
ature of 39°C was strongly associated with brain damage in
mice with CA�JV ligation. The incidence of cerebral injury
increased from 57% in mice with ligation at p7 and hyper-
thermia at p9–11 to 77% in mice with delayed ligation and
hyperthermia (p12 and p19–21). Of note, it has been reported
that the incidence of abnormal neuro-outcome at 36 mo
following ECMO-treatment of noncardiac respiratory failure
was higher among pediatric ECMO (30%) than among neo-
natal ECMO (8.3%) patients (37).

Hyperthermia increased PBF and CBF (in the contralateral
hemisphere) in CA�JV-ligated mice significantly greater

compared with that in the sham-animals. It is possible that
hyperthermia-induced hypermetabolism in the “ligated” (isch-
emic) hemisphere demanded an increase in systemic blood
flow which resulted in relative hyperperfusion of the contralat-
eral hemisphere and peripheral tissue. Lohrer and co-workers
(38) have reported a significant increase in diastolic and mean
CBF velocities in the internal CA contralateral to the cannu-
lation side during and after ECMO compared with the
preECMO level and compared with that in controls.

Three out of 19 sham-hyperthermic mice exhibited subtle,
microscopically identifiable focal areas of cerebral damage.
This finding was unexpected. Given that brain injury in these
mice was observed in the cortex ipsilateral to the surgery site,
it is possible that the postsurgical tissue edema altered CA and
JV blood flow during hyperthermia, which resulted in brain
damage.

In conclusion, our study has identified a hyperthermic stress
as a potential risk factor for ischemic brain injury in infants
treated with VA ECMO. Unilateral CA�JV ligation followed
by hyperthermia exposure may serve as a modified heat-stroke
model for immature rodents.
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