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ABSTRACT: We have taken a basic biologic approach to elucidate
the pathophysiology of bronchopulmonary dysplasia (BPD), the
chronic lung disease of prematurity, based on cell/molecular mech-
anisms of physiologic lung development. Stretch coordinates para-
thyroid hormone-related protein (PTHrP) signaling between the al-
veolar type II cell and the mesoderm to coordinately up-regulate key
genes for the homeostatic fibroblast phenotype- including peroxi-
some proliferator activated receptor gamma (PPAR�), adipocyte
differentiation related protein (ADRP), and leptin- and the retrograde
stimulation of type II cell surfactant synthesis by leptin. Each of these
paracrine interactions requires cell-specific receptors on adjacent
cells derived from the mesoderm or endoderm, respectively, to
serially up-regulate the signaling pathways between and within each
cell-type. It is this functional compartmentation that is key to under-
standing how specific agonists and antagonists can predictably affect
this mechanism of alveolar homeostasis. Using a wide variety of
pathophysiologic insults associated with BPD- barotrauma, oxo-
trauma, and infection, we have found that there are type II cell and/or
fibroblast cell/molecular effects generated by these insults, which can
lead to the BPD phenotype. We have exploited these cell-specific
mechanisms to effectively prevent and treat lung injuries using
PPAR� agonists to sustain this signaling pathway. It is critically
important to judiciously select physiologically and developmentally
relevant interventions when treating the preterm neonate. (Pediatr
Res 62: 2–7, 2007)

In the current reductionist era of genomics, proteomics,
metabolomics, etc., it is important to bear in mind that genes

can only be understood functionally within their biologic
context (1). We cannot decipher complex diseases merely by
identifying the genes that are associated with them without
understanding how those genes relate to their pathophysio-
logic phenotypes. In this spirit, we will review a series of
studies performed in our laboratory designed to determine the
cell/molecular etiology and treatment of chronic lung disease
based on an integrated model of lung development, homeosta-
sis, and disease (2).

Lung morphogenesis and repair are characterized by a
complex sequence of cell-cell interactions of endodermal and
mesodermal origins, which has evolved an alveolar structure
that can effectively exchange gases between the circulation
and the alveolar space (3). By determining the spatio-temporal
nature of this process, we can gain insights into the patho-
physiology of a broad spectrum of chronic lung diseases
caused by both intrinsic and extrinsic factors, bearing in mind
that they descriptively funnel into just a few pathologies—
epithelial, interstitial, and/or vascular.
The global mechanisms that mediate mesenchymal-

epithelial interactions and the plasticity of mesenchymal cells
in normal lung development and remodeling provide a func-
tional genomic model that offers insights to the cell/molecular
basis for lung homeostasis (4–6), as depicted in Figure 1.
Because we can effectively recapitulate the natural processes
of development that determine normal lung structure, func-
tion, and homeostasis by this approach, we should be able to
exploit this knowledge to understand lung pathophysiology
and treat it effectively. With this concept in mind, we present
a synopsis of work in our laboratory designed to identify such
developmentally based mechanisms and how to use that
knowledge for the safe, effective treatment of BPD, the
chronic lung disease (CLD) of prematurity.
The pathophysiology of BPD involves interactions between

multiple extrinsic and intrinsic factors, including oxygen free
radicals, ventilator-induced lung injury, and release of inflam-
matory cytokines and cytotoxic enzymes such as proteases
and elastases. Injury at early developmental stages leads to an
arrest of both alveolar and vascular growth. The histopatho-
logical changes are characterized by fewer, larger alveoli and
fewer capillaries, otherwise seen as alveolar simplification.
Compared with the BPD first described by Northway in 1967,
the “new” BPD is characterized by less airway injury, such as
fibrosis, epithelial metaplasia, and scarring (6a).

Received September 27, 2006; accepted January 1, 2007.
Correspondence: John S. Torday, Ph.D., 1124 W. Carson St., Torrance, CA 90502;

e-mail: jtorday@labiomed.org
This work was supported by grants from the American Heart Association (grant no.

0265127), the National Institutes of Health (grant nos. HL55268 and HL75405), the
March of Dimes Foundation, Philip Morris USA Inc. and Philip Morris International, and
the Tobacco-Related Disease Research Program (grant nos. 14RT-0073 and 15IT-0250).

Abbreviations: ADRP, adipocyte differentiation related protein; �SMA,
alpha smooth muscle actin; BPD, bronchopulmonary dysplasia; FRLF, fetal
rat lung fibroblast; PGJ2, prostaglandin J2; PPAR�, peroxisome proliferator
activated receptor gamma; RGZ, rosiglitazone; VLBWI, very low birth
weight infant

0031-3998/07/6201-0002
PEDIATRIC RESEARCH Vol. 62, No. 1, 2007
Copyright © 2007 International Pediatric Research Foundation, Inc. Printed in U.S.A.

2



BPD has been associated with perturbations in key factors
associated with normal alveolarization, including retinoic acid
(7), vascular endothelial growth factor (VEGF) (8), and para-
thyroid hormone-related protein (PTHrP) (9), suggesting dys-
regulation of the normal cellular processes of lung maturation.
However, human trials of vitamin A supplementation have
shown either no change or only a slight decrease in the
incidence of BPD in infants delivered prematurely (10,11).
Furthermore, although extensive animal data suggest an es-
sential role of VEGF signaling in normal alveolarization, there
are no human data suggesting its central involvement in BPD.
We have focused on the role of PTHrP signaling in both
normal and abnormal alveolar development because it is a
stretch-regulated gene that is unusual among the alveolar
paracrine growth factors that have been identified to mediate
lung development [see Fig. 1] for a number of reasons: 1) the
PTHrP knock-out is stage specific, resulting in failed alveo-
larization, which can be ‘rescued’ with exogenous PTHrP
(12); 2) unlike other such growth factors, PTHrP is expressed
in the endoderm, and it binds to the mesoderm; 3) only PTHrP
has been shown to act pleiotropically to integrate surfactant
synthesis and alveolar capillary perfusion, i.e. alveolar ho-
meostasis; 4) preterm newborns are PTHrP deficient (9).
Below, we review the role of PTHrP in lung development,
homeostasis and repair.

EPITHELIAL-MESENCHYMAL INTERACTIONS
THAT ESTABLISH ALVEOLAR LUNG

DEVELOPMENT

Our laboratory has used a developmental biologic approach
to understand the etiology of CLD in newborns. We began
with a paracrine growth factor model for the maturation of the

pulmonary surfactant system based on classic mesenchymal-
epithelial interactions (see Fig. 1, steps 1–7). These studies
were originally fostered by Barry Smith’s seminal observation
(13) that glucocorticoids accelerate alveolar type II cell sur-
factant synthesis by stimulating fibroblast synthesis of an
oligopeptide he termed fibroblast-pneumonocyte factor (FPF).
It was known at that time that lung, prostate, and mammary
mesodermal development were under endocrine control, and
importantly, Kratochwil (14) had shown that early signals
emanated from the epithelium to differentiate the immature
mesenchyme in the neighboring epithelium. Moreover, Bro-
dy’s laboratory had shown that the developing lung fibroblast
acquired an adipocyte-like phenotype (15), termed the lipid-
laden fibroblast, leaving open the question as to whether these
cells might be a source of lipid substrate for surfactant syn-
thesis by the alveolar type II cell. We discovered that co-
culture of the lipid-laden fibroblasts with type II cells resulted
in the trafficking of the lipid from the fibroblast to the type II
cell and its highly enriched incorporation into surfactant phos-
pholipids, particularly when treated with glucocorticoids, sug-
gesting a specific, regulated mechanism for neutral lipid traf-
ficking (16). Interestingly, the fibroblasts took up the neutral
lipid, but did not release it unless they were in the presence of
type II cells; conversely, the type II cells were unable to take
up neutral lipid. These observations led to the discovery that
type II cell secretion of prostaglandin E2 caused the release of
neutral lipid from the fibroblasts (17), but the nature of the
lipid uptake mechanism by the type II cells remained un-
known. Yet, we were aware that the synthesis of pulmonary
surfactant was an “on demand” system (18–20) in which
increased respiration resulted in increased surfactant produc-
tion, suggesting a stretch-sensitive signal from the type II cell.
With this in mind, we began studying the role of PTHrP in
lung development because a) it was expressed in the embry-
onic endoderm (21), b) its receptor was present on the adepi-
thelial mesoderm (22), c) it had been shown to be stretch-
regulated in the urinary bladder (23) and uterus (24), and
distension of the lung was known to be of physiologic impor-
tance in normal lung development (25), and d) knock-out of
PTHrP caused stage-specific inhibition of fetal lung alveolar-
ization in the transition from the pseudoglandular to the
canalicular stage (12).
Early functional studies of PTHrP had shown that it was a

paracrine factor that stimulated surfactant phospholipid syn-
thesis (26), and that it was stretch-regulated (27). We subse-
quently discovered that PTHrP stimulated neutral lipid uptake
by the developing lung fibroblast, which we chose to call
lipofibroblasts (28), by up-regulating ADRP, a molecule
shown to be necessary for lipid uptake and storage (29). We
subsequently found that ADRP was the factor necessary for
the transit of neutral lipid from the lipofibroblast to the
alveolar type II cell for surfactant phospholipid synthesis (30).
The missing component for PTHrP regulation of lung surfac-
tant was the lipofibroblast paracrine factor that stimulated
surfactant synthesis. Reasoning that lipofibroblasts were sim-
ilar to adipocytes, we hypothesized that lipofibroblasts would,
like fat cells, express leptin, which would bind to the type II
cell and stimulate surfactant synthesis. We found that lipofi-

Figure 1. Schematic for paracrine determinants of alveolar homeostasis and
disease. We have observed coordinating effects of stretch on alveolar type II
cell expression of parathyroid hormone-related protein (PTHrP) (step 1), the
lipofibroblast PTHrP receptor (step 2), its downstream effect on lipofibroblast
ADRP expression (step 3), and triglyceride uptake (step 4), and on the
interaction between lipofibroblast-produced leptin (step 5) and the alveolar
type II cell leptin receptor (step 6), stimulating de novo surfactant phospho-
lipid synthesis by alveolar type II cells (step 7). The schematic depicts
lipofibroblast-to-myofibroblast transdifferentiation (step 8) due to decreased
PTHrP after exposure to hyperoxia (O2), volutrauma (stretch), or infection
(lipopolysaccharides). All of these effects are shown to be prevented by
PPAR� agonists (step 9).
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broblasts do express leptin during rat lung development just
before the onset of surfactant synthesis by the type II cell (31).
Importantly, type II cells express the leptin receptor (31), thus
providing a ligand-receptor signaling pathway between the
lipofibroblast and type II cell. Moreover, PTHrP was discov-
ered to stimulate leptin expression by fetal lung fibroblasts
(32), thus providing a complete growth factor-mediated para-
crine loop for the synthesis of pulmonary surfactant, as pre-
dicted by the PTHrP-based model of lung development.
Because the major inducers of BPD—barotrauma (33),

oxotrauma (34), and infection (35)—cause alveolar type II
cell injury and damage, we investigated the effects of PTHrP
deprivation on the lipofibroblast phenotype, only to discover
that in the absence of PTHrP, the lipofibroblast transdifferen-
tiates to a myofibroblast, the cell-type that characterizes lung
fibrosis. Furthermore, myofibroblasts cannot sustain type II
cell growth and differentiation, whereas the lipofibroblast can
(36), demonstrating the functional significance of these two
fibroblast phenotypes for lung development; importantly,
when myofibroblasts are treated with a PPAR� agonist they
revert back to the lipofibroblast phenotype, including their
ability to promote type II cell growth and differentiation.
These novel observations regarding the regulated develop-

ment of the alveolus by paracrine growth factors have been
exploited as a model for determining several cell/molecular
causes of neonatal lung injury, including volutrauma, oxo-
trauma, and infection.

THE EFFECT OF VOLUTRAUMA
ON PTHrP SIGNALING

The effective distension of the newborn lung has a profound
physiologic effect on pulmonary homeostasis (37). Con-
versely, overdistension can almost instantaneously disrupt that
homeostatic mechanism (refer to Fig. 1, step 8), resulting in
volutrauma/atelectrauma (38). As indicated in the mechanism
section above, the stretching of the alveolar type II cell
increases the expression and production of PTHrP (27), po-
tentially explaining why increased lung tidal volume stimu-
lates pulmonary surfactant synthesis. And may explain why
Wirtz and Dobbs (39) observed secretion of surfactant by
isolated type II cells, but only after one stretching maneuver,
without any effect of subsequent stretching maneuvers, per-
haps due to the absence of lipid substrate from the neighboring
fibroblast. In contrast to the increased synthesis of surfactant
in response to mild stretch (3–5%), overdistension of the type
II cell (40) results in down-regulation of PTHrP expression,
simulating the consequences of volutrauma or atelectrauma. In
other experiments, we found that when the type II cell con-
tracts in the simulated microgravity created by a rotating wall
bioreactor that PTHrP is also down-regulated (41), indicating
that the set-point for the effect of stretch on type II cells is
finely regulated and has likely evolved to effectively regulate
surfactant synthesis (3).

EFFECT OF OXOTRAUMA ON PTHrP SIGNALING

In vitro. Since lipofibroblasts play an important role in
injury-repair mechanisms in the lung, we studied the effects of

hyperoxia on the fibroblast phenotype in immature and rela-
tively mature alveolar interstitial fibroblasts, and found that
exposure to hyperoxia down-regulated PTHrP signaling, aug-
menting the transdifferentiation of pulmonary lipofibroblasts
to myofibroblasts (refer to Fig. 1, step 8) (42). FRLF from e
(embryonic, term � e22) 18 and e21 gestation were studied.
After initial culture in Minimum Essential Medium (MEM)
and 10% fetal bovine serum (FBS) in 21% O2/5% CO2 at
37°C, FRLF were maintained in MEM and 10%FBS at 37°C
under control (21% O2/5% CO2) and experimental conditions
(24-h exposure to 95% O2/5% CO2) at passages (P) 1 and P5.
Passage 1 and 5 cells were analyzed for the expression of
well-characterized lipogenic and myogenic markers (PTHrP
receptor, ADRP, and �SMA) based on semi-quantitative com-
petitive RT-PCR, triglyceride uptake, and leptin assay. Serial
passaging and maintenance of cells in 21% O2 resulted in a
significant spontaneous decrease in the expression of the
lipogenic markers between P1 and P5. This decrease was
greater for immature (e18) than for (near-mature) e21 FRLF.
However, exposing cells to 95% O2 augmented the loss of the
lipogenic markers and gain of the myogenic marker from P1
to P5 in comparison to cells maintained in 21% O2. This
augmentation was also greater for e18 versus e21 lipofibro-
blasts. The changes in mRNA expression were accompanied
by decreased triglyceride uptake and leptin secretion on ex-
posure to hyperoxia. These data suggest that exposure to
hyperoxia augments the transdifferentiation of pulmonary li-
pofibroblasts to myofibroblasts. Further, pretreatment with a
PPAR� agonist, prostaglandin J2 (PGJ2), at least partially
attenuated the hyperoxia-augmented lipo-to-myofibroblast
transdifferentiation.
In an accompanying series of experiments (43), using [1,2-

13C2]-D-glucose tracer and gas chromatography/mass spec-
trometry, we metabolically profiled e18 and e21 FRLF with
and without hyperoxia exposure at passages 1, 4, 7, and 10.
For this series of studies, glucose carbon redistribution be-
tween the nucleic acid ribose, lactate, and palmitate synthetic
pathways and ADRP expression by RT-PCR were examined.
Exposure to hyperoxia at each passage caused a decrease in
ADRP mRNA expression. This passage-dependent transdif-
ferentiation was accompanied by a moderate (9–20%) in-
crease in the synthesis of nucleic acid ribose from glucose
through the nonoxidative steps of the pentose cycle. E18
fibroblasts showed over an 85% decrease in the de novo
synthesis of palmitate from glucose, while e21 fibroblasts
showed a less pronounced 32–38% decrease in de novo lipid
synthesis in hyperoxia-exposed cultures. From these data we
conclude that 1) there is a maturation-dependent sensitivity to
hyperoxia; 2) transdifferentiation of the lipofibroblast, as dem-
onstrated by changes in ADRP expression, accompanied by
metabolic enzyme changes affecting ribose synthesis from
glucose; and 3) hyperoxia specifically inhibits lipogenesis
from glucose. These molecular and metabolomic data were
further complemented by genome-wide microarray analysis of
RNA extracted from P1 and P10 e19 FRLF with or without
exposure to hyperoxia (95% O2 for 24 h) (43a). In accord with
our molecular and metabolomic data, cluster analysis of the
microarray data confirmed the down-regulation of cholesterol
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and fatty acid synthetic genes and up-regulation of fatty acid
degradation and Wnt signaling pathway genes on passaging
e19 FRLF from P1 to P10, and on exposure to hyperoxia at
passages 1 and 10, thereby confirming lipo-to-myofibro-
blast transdifferenation under these conditions. Based on these
data, it appears that lipo-to-myofibroblast transdifferentiation
may be an important mechanism for hyperoxia-induced lung
injury and likely a key element in the pathophysiology of
BPD, allowing us to speculate that induction of adipogenic
transcription factors may not only prevent, but in fact may
revert the myogenic fibroblast phenotype back to the adipo-
genic fibroblast phenotype.
In vivo. Following our in vitro studies, as outlined above,

we next determined whether upon exposure to hyperoxia,
pulmonary alveolar lipo-to-myofibroblast transdifferentiation
occurs in vivo, and whether treatment with a potent PPAR�
(the key lipogenic fibroblast nuclear transcription factor) ag-
onist, RGZ, would prevent this process (see Fig. 1, step 9)
(45). Newborn Sprague-Dawley rat pups were exposed to
hyperoxia alone (95% O2 for 24 h), or hyperoxia with RGZ
(95% O2 for 24 h � RGZ, 3 mg/kg, administered intraperi-
toneally) conditions.
We observed a significant decrease in the expression of

lipogenic markers, and a significant increase in the expression
of myogenic markers in the hyperoxia alone group. Exposure
of rat pups to 24 h of hyperoxia dramatically affected normal
postnatal lung development. Histologic examination of lungs
obtained from hyperoxic pups revealed a remarkable arrest of
alveolarization compared with their normoxic littermate con-
trols. Hyperoxia-exposed lungs demonstrated relatively large
air spaces, thinned interstitia, and decreased secondary septal
crests compared with air-exposed controls. In lungs from
hyperoxic animals, septal thickness was reduced significantly
(40%) compared with control lungs. Furthermore, quantitative
analysis of alveolar number demonstrated a significant reduc-
tion (50%) in average radial alveolar counts in hyperoxic
animals compared with controls. Pretreatment with RGZ vir-
tually prevented the hyperoxia-induced changes in lung mor-
phology, including the effects on septal thickness and radial
alveolar counts. The hyperoxia-induced morphologic, molec-
ular, and immunohistochemical changes were virtually pre-
vented by RGZ. This is the first evidence of in vivo lipo-to-
myofibroblast transdifferentiation and its virtual prevention by
RGZ, prompting us to conclude that administration of PPAR�
agonists may be a novel, effective strategy to prevent the
hyperoxia-induced lung molecular injury that has been impli-
cated in the pathogenesis of BPD.

THE EFFECT OF LIPOPOLYSACCHARIDE ON
PTHrP SIGNALING

Because lung inflammation is a key factor that predisposes
preterm infants to BPD, in a series of studies (45) we deter-
mined the effects of lipopolysaccharide (LPS) on PTHrP-
driven pulmonary epithelial-mesenchymal interactions that
have been shown by us to be essential in the maintenance of
lung homeostasis (refer to Fig. 1). Lung explants derived from
e19.5 Sprague-Dawley rat pups were treated with LPS (0–50

ng/mL) with or without a PTHrP pathway agonist, PGJ2, for
up to 72 h. LPS treatment affected the expression of the key
markers of the epithelial-mesenchymal paracrine loop in a
dose- and time-dependent manner. There were acute (24 h),
significant increases in the expression of PTHrP, PPAR�,
ADRP, and surfactant protein-B (SP-B), without any signifi-
cant effects on the expression of �SMA. This was followed
(72 h) by significant decreases in the expression of PTHrP,
PPAR�, ADRP, and SP-B, accompanied by a significant
increase in the expression of �SMA, the key functional
marker for BPD.
As in our in vivo hyperoxia model, treatment with a specific

agonist of epithelial-mesenchymal interactions prevented the
inflammation-induced molecular lung injury that is known to
result in BPD. Although these data suggest a possible mech-
anism for the acute stimulation of lung maturation, accompa-
nied paradoxically by BPD following intrauterine inflamma-
tion, whether this actually occurs in human BPD following
intrauterine inflammation remains to be determined.

PTHrP SIGNALING IN BPD

Because PTHrP secreted by pulmonary alveolar type II
cells is a key physiologic paracrine factor in maintaining
alveolar homeostasis (see Fig. 1, steps 1–8), we hypothe-
sized that its levels in the tracheal aspirates (TA) of ven-
tilated VLBWI would predict the development of BPD (9).
We examined whether TA PTHrP content during the first
week of life correlated with the later development of BPD.
Forty VLBWI [birth weight 943 � 302 g (mean � SD);
gestational age 27 � 2 wk; 21 males and 19 females], who
were ventilated for respiratory distress syndrome, were
studied. The TA were collected once daily until the infants
were extubated, and were assayed for PTHrP. The levels of
TA PTHrP were compared with the later development of
BPD. PTHrP in the TA during the first week of life was
significantly lower in those infants who developed BPD
(12/40) than among those who did not (28/40). The PTHrP
levels also correlated with the duration of mechanical
ventilation needed in these infants. A PTHrP level of �1.32
pg/mg protein predicts the later development of BPD max-
imally [84.6% correct classifications (true positives � true
negatives)], with a sensitivity of 76.9% and specificity of
88.5%. Using a TA PTHrP level of 1.32 pg/mg protein as
the cutoff, we constructed Kaplan-Meier curves to compare
the duration of ventilation needed between the two groups,
i.e. � and � than 1.32 pg/mg protein TA PTHrP level.
Infants with TA PTHrP levels greater than 1.32 pg/mg
protein were off ventilatory support significantly earlier. To
determine how PTHrP levels compared with the other
known predictors of BPD, such as birth weight (�1000 g),
GA (�28 wk), and male gender, we performed multivariate
logistic regression analysis for these 4 variables in predict-
ing the development of BPD. Of these variables, a PTHrP
level of �1.32 pg/mg protein was the strongest predictor of
BPD, and remained so after adjusting for the other three
variables, i.e. birth weight of �1000 g, GA of �28 wk, and
male gender. From these data, we concluded that lower TA
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PTHrP content during the first week of life in ventilated
VLBWI inversely correlates with prolonged ventilation and
the later development of BPD.

PREVENTION OF MOLECULAR LUNG INJURIES
LEADING TO BPD WITH PPAR� AGONISTS

It is clear from the work outlined above that we have
systematically demonstrated the central role of epithelial-
mesenchymal interactions in maintaining alveolar homeosta-
sis in volutrauma, oxotrauma, and infection-mediated lung
injury. The lipofibroblast expresses both ADRP and leptin in
response to PTHrP signaling from the alveolar type II cell,
resulting in direct protection of the mesoderm against oxidant
injury (46), and protection against atelectasis by augmenting
surfactant phospholipid (26) and protein (32) synthesis. Mo-
lecular injury to either the alveolar type II cell or the lipofi-
broblast down-regulates this molecular signaling pathway,
causing myofibroblast transdifferentiation (see Schematic,
step 8). Unlike lipofibroblasts, myofibroblasts cannot promote
alveolar type II cell growth and differentiation (36), leading to
the failed alveolarization characteristic of BPD (47). PPAR�
is the key nuclear transcription factor that determines the
lipofibroblastic phenotype, which supports alveolar type II cell
growth and differentiation under the influence of factors im-
plicated in the pathogenesis of BPD (36). We have shown that
a wide variety of factors associated with failed alveolariza-
tion- volutrauma, oxotrauma, and infection- all cause myofi-
broblast transdifferentiation in vitro (36,42,43,45) and in vivo
(44). More importantly, we have shown that PPAR� agonists
such as PGJ2 and RGZ can prevent or rescue myofibroblast
transdifferentiation (see Fig. 1, step 9), potentially preventing
the inhibition of alveolarization in the developing lung
(36,42,44,45).

CONCLUSIONS

We have taken a basic biologic approach to elucidate the
pathophysiology of BPD based on cell physiologic principles.
We have determined the paracrine cell/molecular mechanism
by which stretch coordinates PTHrP signaling between the
alveolar type II cell and the mesoderm to up-regulate key
genes for the homeostatic fibroblast phenotype, including
PPAR�, ADRP, and leptin, and the retrograde stimulation of
alveolar type II cell surfactant phospholipid and protein syn-
thesis by leptin. Each of these paracrine interactions requires
cell-specific receptors on adjacent cells derived from the
endoderm or mesoderm, respectively, i.e. PTHrP receptors on
the mesoderm, and leptin receptors on the endoderm, to
mediate the signaling pathways within each cell-type. It is this
functional compartmentalization that is the key to understand-
ing how specific agonists and antagonists predictably affect
this mechanism of alveolar homeostasis. More importantly, it
is the cell-specific molecular nature of this mechanism that we
have exploited to effectively prevent and treat lung injuries
that affect this signaling pathway.
This work clearly demonstrates that it is critically im-

portant to judiciously select physiologically and develop-

mentally relevant interventions when treating the develop-
ing neonate.
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