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ABSTRACT: Following Barker’s observations of an association
between birth size and later adult diseases, considerable efforts have
been made to define the characteristics of low birth weight groups in
childhood. In this review, the phenotypic and biochemical character-
istics during childhood of three low birth weight groups are summa-
rized: children born following inviter fertilization (IVF), small for
gestational age (SGA), or very premature. Each of these groups is
likely to have been exposed to an adverse environment at different
developmental stages. The triggers and mechanisms leading to pro-
grammed changes in growth, development, and metabolism of these
groups of children have yet to be identified. Epigenetics has been
proposed as a potential mechanism for these programmed changes
through environmentally induced changes in gene expression. Data
from animal models in which environmental, particularly nutritional,
manipulation leads to changes in DNA methylation are presented.
The relevance of these animal studies to IVF, SGA, and very
premature children are discussed as are potential candidate genes that
may have undergone epigenetic modification to alter growth and
metabolism. (Pediatr Res 61: 68R–75R, 2007)

Over the past 30 y, pediatricians have focused on cognitive
function, growth failure, and short stature as the prin-

cipal health care issues facing children born SGA. In the early
1990s, Barker proposed the fetal origins hypothesis of adult
disease, a simple but fundamental hypothesis in which the
origins of diseases in adults begin in utero (1). Barker and
colleagues’ observations extended to the range of diseases
associated with low birth weight: atherosclerosis, coronary
heart disease, type 2 diabetes mellitus, syndrome X, stroke,
and chronic bronchitis ( 2–4). These observations have been
corroborated by other epidemiologic studies, including those
performed in Europe and the United States ( 5–7).

The interest in this field has grown rapidly over the past
decade. There have been in excess of 1000 publications in the
field of the developmental origins of adult disease and an
incorporated international society was established that exclu-
sively focuses on this field of research—the Society for the
Developmental Origins of Health and Disease. However, the
most critical questions in this field remain unanswered. Firstly,

which of the children who have biochemical markers of meta-
bolic disease will go on and develop overt metabolic disease in
adult life? Secondly, what are the initiating events that trigger
persistent metabolic programming. Thirdly, what are the mech-
anisms that lead to adverse programmed metabolic changes? It is
this latter question that is the focus of this review.

The low birth weight group includes those born SGA,
premature, or following IVF, which is often associated with
both SGA and prematurity. These three common childhood
groups are likely to have been exposed to an adverse environ-
ment during different phases of early development: peri-
conception for IVF, the last trimester of pregnancy for SGA,
and the neonatal period for those born prematurely. This
review will first characterize the auxological and metabolic
differences of these three groups compared with normal chil-
dren, then describe the epigenetic mechanisms by which these
characteristics may have occurred, and finally outline gene
candidates potentially involved in these phenotypic alterations.
Although there is currently no published evidence linking epige-
netic modification to programmed change in growth and metab-
olism in humans, the data from animal models and their potential
relevance to these three groups will be discussed.

CHILDHOOD CLINICAL CHARACTERISTICS

SGA children. SGA children have an increased risk of short
stature. Although approximately 80% of SGA children
achieve a height within the normal range by 6 mo of age (8,9),
short adult stature occurs in 5.2% of those with low birth
weight and 7.1% of those with low birth length (8,10). As a
group, SGA children fall about 4 cm short of their genetic
height potential (11). Conflicting reports of abnormalities in
the growth hormone–IGF-I axis of short SGA children have
been published. Although reduced spontaneous growth hor-
mone secretion has been found, this effect is likely to be
minimal if corrected for age (12). Low serum IGF-I and
IGFBP-3 levels have been observed but when SGA children
are matched for height and body mass, these values are
slightly elevated and correlated with fasting insulin levels
(13). Diminished IGF-I response to growth hormone (14)
suggests a partial defect in the GH receptor or postreceptor
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pathways. Collectively, these changes are likely to be subtle
and do not adequately explain the poor growth many of these
children suffer during childhood.

The endocrine and metabolic changes with SGA include
reduced insulin sensitivity, lipid alterations, premature adren-
arche, and polycystic ovarian syndrome. Almost all other
metabolic abnormalities can be attributed to reduced insulin
sensitivity and the development of insulin resistance with
increasing age and obesity. The long-term consequences of
insulin resistance include type 2 diabetes mellitus, coronary
heart disease, cerebrovascular accident, and cancer (15). Re-
duced insulin sensitivity (i.e. insulin resistance) is present in
mid-childhood and has been indirectly demonstrated in late
infancy in SGA children ( 16–18). These observations add
support to the notion that events in fetal life have led to
programmed insulin resistance. Inconsistency in the site(s) of
insulin resistance in SGA have been reported but they appear
to include both peripheral and hepatic insulin resistance (19–22).

The reduction in insulin sensitivity is magnified by fat mass
accumulation, and several studies have demonstrated that
greater catch-up growth is associated with disease attributable
to insulin resistance. In lower birth weight individuals, early
childhood acceleration in weight gain that is sustained through-
out adolescence characterizes those that go on to develop type
2 diabetes mellitus (23). A similar pattern was observed with
reduced birth weight in adults who developed coronary heart
disease (24). Interestingly, by 4 y of age, SGA children already
have a noticeable reduction in muscle mass with a smaller
increase in fat mass compared with normal birth weight children
(25). Even when adjusting for fat mass and sex, SGA children
have reduced leptin levels (26).

Although fasting lipids are higher in SGA children, they
remain in the normal range ( 25,27–29). It is not until early
adult life that overt dyslipidemia is evident with the metabolic
syndrome seen in 2.3% of SGA compared with 0.4% of
normal birth weight young adults (30).

Most, but not all studies have found that premature
pubarche occurred more frequently in SGA girls characterized
by elevated dehydroepiandrosterone levels and a higher risk of
both ovarian hyperandrogenism and polycystic ovarian syn-
drome (PCOS) ( 31–34). As insulin resistance is a recognized
association with both SGA and PCOS it is not surprising the
two have been linked. Indeed insulin resistance is believed to
be a prime early factor in the pathogenesis of PCOS (35).

Prematurely born children. Conceptually, there are simi-
larities between SGA and premature children. SGA infants
suffer from an adverse fetal environment during the last
trimester of pregnancy whereas very premature infants (de-
fined as birth weight �1500 g) suffer from an adverse neonatal
environment in a neonatal intensive care unit during the first 3
mo of life, a time biologically equivalent to the third trimester.
Therefore it is not surprising that there are similarities in the
linear growth, body composition and metabolic changes dur-
ing childhood observed in term SGA and very prematurely
born children. Approximately 80% of children in both groups
exhibit acceleration in growth to achieve a normal height by 6
mo of age. Those born very premature are approximately 0.7
SD shorter than their parents right across the height range,

indicating that prematurely born children are short for their
genetic height potential (36,37). Final height data from recent
studies reveal conflicting results that collectively indicate that
very premature children reach a height that falls short of
genetic height potential by 6–8 cm (0.5–0.7 SD shorter)
(38–40). Remarkably few studies have attempted to define
which prenatal or neonatal events have a long-term influence
on growth in those born prematurely. Very premature infants
who received early neonatal dexamethasone therapy to pre-
vent chronic lung disease were shorter than untreated children
at 7–10 y of age (41). However, the mechanism in which
neonatal dexamethasone therapy led to long-term poor growth
is unclear.

During childhood, children born very premature exhibited
low plasma IGF-I and IGFBP-3 levels compared with height
and weight matched control children (42). This is in contrast
with term SGA children who demonstrated elevated IGF-I
levels (13). Both SGA and premature groups have unex-
plained elevated plasma IGF-II values (36,43). Serum IGF-II
levels have been shown to be associated with fat mass in
normal children, with higher levels seen in obese children
(44,45). It has been proposed that the elevated plasma IGF-II
levels observed in premature children play a role in the
development of later obesity during adult life (44).

While detailed metabolic changes have yet to be fully
characterized in very premature children, reduced insulin sen-
sitivity has been demonstrated and is of a similar magnitude to
term SGA children (46). Low protein intake in the first 3 mo
of life occurred in the premature group, which was proposed
as the trigger to epigenetic modification of genes involved in
glucose regulation (47). Other factors such as prenatal or
neonatal glucocorticoid exposure and illness in the neonatal
period were not associated with insulin sensitivity (46).

The paucity of childhood or adolescent body composition
data of those born very prematurely suggest similarities with
SGA children and adolescents with increased fat mass, par-
ticularly abdominal fat by 19 y of age (48,49). However,
similar to SGA cohorts, more rapid catch-up growth was
associated with greater reduction in insulin sensitivity (47).
Consistent with reduced insulin sensitivity, limited data also
suggests that those born prematurely are at increased of
premature pubarche accounting for 24% of cases presenting
for specialist evaluation (33).

IVF children. Low birth weight occurs more commonly in
singleton IVF infants (50,51). There is a 2.6-fold increased
risk of low birth weight in term IVF infants, with a greater risk
of prematurity such that 0.4% of all very low birth weight
infants are conceived by IVF. There are limited conflicting
data regarding the auxological and hormonal characteristics of
children born following IVF. Kai et al. (52) found that IVF
children were the same height with the same serum IGF-I
levels as control children. However, the study was limited by
a low participation rate, with over half the IVF children being
premature, SGA, or twin, which are all conditions that con-
strain growth. We have found that IVF children are approxi-
mately 4 cm taller (0.5 SD) when corrected for parents’
heights compared with normally conceived children (submit-
ted for publication). IVF children had higher IGF-I to IGFBP3
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ratios, higher plasma IGF-II and more favorable lipid profile
than matched control children. Further studies are needed to
determine whether differences in IVF practice lead to differ-
ences in phenotype or biochemical indices.

EPIGENETICS CONCEPTS

The lack of a clear mechanism that leads to sustained
programmed changes in growth and metabolism following an
adverse fetal or early neonatal environment led Waterland and
Garza (53) to coin the term “metabolic imprinting” to focus
research in the field on identifying underlying mechanisms
that include nutritional regulation of gene expression. It has
long been known that the phenotype of an individual is not
exclusively determined by genotype. Waddington (54) intro-
duced the term epigenetics in the late 1950s that today is
interpreted as changes in gene function that occur without a
changes in gene sequence. Inherent in this concept is that
conformational change in chromatin can repress transcription
activation of gene expression. Chromatin conformation is
closely linked to methylation, which occurs on cytosine resi-
dues at CpG dinucleotides. Although about 80% of CpG in the
genome are methylated, there are “islands” of CpG, usually
within gene promoters, that remain unmethylated. However,
during development some of these CpG islands can become
methylated with consequent silencing of the associated gene
(55–57). The state of CpG methylation probably regulates ac-
cessibility of the transcription machinery to regions of DNA, with
methylated CpGs restricting transcription and unmethylated
CpG allowing the gene to be expressed (58). The effects of
cytosine methylation are mediated through numerous histone
modifications such as acetylation and methylation, which
cause chromatin remodeling and subsequent gene silencing as
summarized in Figure 1. Possible roles for DNA methylation
include maintenance of chromosomal stability and the silenc-
ing of imprinted genes, the inactive X chromosome and also of
transposons.

In mammalian development, there are two main periods of
epigenetic modification. During gametogenesis, genome-wide
demethylation occurs followed by remethylation before fertil-
ization. Early embryogenesis is then characterized by a second
genome-wide demethylation event (59). Methylation is re-
established early in embryonic life following implantation.
These postfertilization demethylation and remethylation
phases are likely to play a role in the removal of acquired
epigenetic modifications, particularly those acquired during
gametogenesis (60,61). Importantly, a subgroup of genes that
carry parental methylation imprints appear to escape the sec-
ond wave of demethylation.

Imprinted genes that undergo genomic or parental imprint-
ing are among the most well-understood examples of epige-
netic transcriptional modification. A subset of approximately
80 genes in humans display mono-allelic expression, i.e.
expression only occurs from a single parental allele (62).
Genomic imprinting-induced silencing of one parental allele
results in mono-allelic expression from either the paternal or
maternal copy of a gene. The imprint control regions for
genomic imprinting usually contain a differentially methylated

CpG island in which one parental allele is methylated and the
other unmethylated. A list of the phenotypes of known and
likely imprinted genes are listed in Table 1. A regularly
updated website of all known imprinted genes in humans and
animals is available at www.otago.ac.nz/igc.

Figure 1. Epigenetic modifications in gene silencing. A series of epigenetic
modifications transforms transcriptionally active regions of DNA (top) into
inactive compact chromatin (bottom). DNA methylation, executed by meth-
yltransferases, allows recruitment of methyl-binding domain proteins (MBD),
which then recruit histone deacetylases (HDAC, transcriptional co-repressors
and other chromatin modifying enzymes). Transcriptionally active chromatin
is associated with acetylated histones, whereas inactive chromatin has meth-
ylated DNA and de-acetylated histones, as well as other histone modifications
that are not shown.

Table 1. Human phenotypes associated with imprinted genes or
parent-of-origin effects

Phenotype Location

Syndromes involving imprinted genes
Beckwith-Wiedemann syndrome 11p15
Prader-Willi syndrome 15q11-q12
Angelman syndrome 15q11-q12
Silver-Russell syndrome 7p11-p13, 7q31-qter,11p15
Transient neonatal diabetes mellitus 6q24
PHP1b, Albright hereditary osteodystrophy,

McCune-Albright syndrome
20q13

Syndromes that probably involve imprinted genes
Familial nonchromaffin paraganglioma 11q13
Maternal UPD 14 syndrome 14
Paternal UPD 14 syndrome 14
Maternal UPD 2 syndrome 2
Maternal UPD 16 syndrome 16
Turner syndrome phenotypes X
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EPIGENETICS AND EARLY LIFE PERIODS

The peri-conceptual period. The concept that early nutri-
tion or disruptive environmental influences might alter im-
printing regulation is supported by extensive experimental
data in rodents and observational studies in humans. Early
nutrition can influence DNA methylation because mammalian
one carbon metabolism, which is the source of all methyl
groups for all biologic methylation reactions, is very depen-
dent upon dietary methyl donors and cofactors (63). Several
studies have begun to test the hypothesis that altered nutrition,
as reflected in various culture medium during IVF, can alter
methylation and expression of imprinted genes ( 64–66).
Mouse embryos cultured in Whitten’s media showed loss in
methylation of the H19 differentially methylated region
(DMR) that was not seen in embryos culture in KSOM with
amino acids (66). In addition, mouse embryos cultured in
the presence of FCS had reduced viability, reduced body
weight, decreased expression of H19 and IGF2, and in-
creased methylation of the H19 imprinting control region
when compared with controls (67). Collectively, these stud-
ies show that epigenetic alterations in the early embryo can
be maintained to later stages of development.

Similarly, recent studies have shown that the process of IVF
with in vitro manipulation in humans can produce imprinting
changes like those seen in mice. An increased incidence of
BWS, an overgrowth disorder associated with altered imprint-
ing of genes including IGF2, has been reported in IVF off-
spring ( 68–70). In the only case control study performed, a
9-fold increased risk of BWS after IVF was found (71).
Similarly, AS, a neurocognitive disorder, can be associated
with loss of methylation in imprinted gene clusters and has
been reported following IVF ( 72, 73). These epidemiologic
associations between IVF and BWS or AS are strengthened by
additional observations linking IVF to epigenetic changes. In
15 of 21 cases of BWS or AS following IVF, an epigenetic
defect due to loss of methylation of the maternal allele was
found ( 68–70,72,73). In a meta-analysis, 23 of the 24 cases of
BWS following IVF were found to be due to hypomethylation
of KvDMR1 (74). In AS cases, hypomethylation of SNRPN
was found to be the cause of the disorder (72). BWS or AS due
to imprinting defects are the result of dramatic changes in
DNA methylation. It is conceivable that less marked changes
in DNA methylation will result in a far more subtle phenotype
that could initially manifest as differences in growth patterns.

Recently epigenetic mutations have been identified that are
common causes of Silver Russell Syndrome, a disorder char-
acterized by very low birth weight, limb asymmetry and poor
early childhood growth ( 75–77). Epigenetic modification of
H19DMR and KvDMR1 occur in approximately 35% of
children with clinical features of Silver Russell syndrome
(75–77). Hypomethylation of H19 DMR1 that will lead to
reduced IGF2 expression accounts for 20% of Silver Russell
syndrome cases (77). Interestingly, Silver Russell syndrome
and BWS may be regarded as two disorders caused by oppo-
site (epi)genetic disturbances of the same chromosomal region
displaying opposite clinical pictures.

Late gestation and early neonatal periods. Data from
animal models have indicated that the epigenetic lability of
imprinted genes is not limited to the early embryonic period.
There are a growing number of studies that have examined the
impact of late fetal and early postnatal nutrition or adverse
environmental factors on methylation of both imprinted and
nonimprinted genes, which has led to altered gene expression.
The strongest evidence in humans linking altered fetal nutri-
tion with programmed changes in metabolism comes from the
Dutch famine study, which found that young adult subjects
conceived during the famine demonstrated higher 2-h plasma
glucose values following an oral glucose load than controls
born before or conceived after the famine (78).

Late gestation uteroplacental artery ligation leads to intra-
uterine growth restriction (IUGR) and reduction in renal mass
in rats. At 21 d of age, increased p53 expression and promoter
hypomethylation in the kidney was found (79). Hypomethy-
lation of the gene for p53, an apoptosis regulator in the kidney,
is the proposed mechanism for late fetal renal apoptosis and
loss of glomeruli in animals with IUGR (79). MacLennan et
al. (80) have more intricately explored the relationship be-
tween one carbon metabolism and DNA methylation in the
rodent late gestation uteroplacental artery ligation model. An
abnormality in one carbon metabolism was found in the liver,
suggesting that increased hepatic levels of s-adenosyl-
homocysteine reduced availability of methyl donors that led to
genome wide DNA hypomethylation (80).

Treatment of mice with a global inhibitor of DNA methyl-
ation at postnatal d 11 and 14 led to dramatic alteration in
allelic expression of IGF2 (81). The effect of more subtle
changes in postnatal nutrition on imprinted gene expression
were examined by Waterland and Garza (82). Rats were
suckled in divergent litter sizes. Smaller litter sizes led to
overnutrition, whereas large litter size led to undernutrition.
Immediately after weaning and in adulthood, pancreatic beta
cells from the smaller litter animals displayed impaired glu-
cose stimulated insulin secretion. DNA microarray analysis
revealed altered expression of two imprinted genes (insulin2
and neuronatin) and eight methylated genes found within
pancreatic islet cells. These findings suggest that early post-
natal diet has led to altered gene methylation and expression,
reflecting enhanced epigenetic lability to early nutritional
influences.

EPIGENETICS AND THE PLACENTA

The placenta contains all known imprinted genes and it has
been suggested that they play roles in total placental growth as
well as differential growth of specific cell types and activities
of certain transporters ( 83–85). Overall, therefore, they may
play a significant part in determining placental nutrient deliv-
ery. It has been deduced from studies with knockout mice that
the maternally expressed genes appear to abrogate placental
growth whereas the paternally expressed genes enhance pla-
cental growth. There is evidence that imprinted genes may
also regulate an organic cation transporter and components of
the system A amino acid transporter ( 83–87). In particular,
the placental labyrinth-specific PO transcript of the paternally
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imprinted Igf2 gene in mice has been suggested as a powerful
regulator of placental growth that can alter placental efficiency
and placental nutrient permeability (88).

It has now been demonstrated also that nonimprinted genes
key to placental growth and function as well as mechanisms of
pregnancy maintenance and parturition are under epigenetic
control. For instance the activity of a gene for a critical
enzyme in prostaglandin biosynthesis (prostaglandin H syn-
thase-2) can be modified by alteration of histone acetylation
status and DNA methylation status in human placental ex-
plants (89). This effect was tissue-specific with effects on
amnion but not adjacent chorio-decidua. Moreover, similar
alterations result in massive changes in IL-1� output by
human placental explants (90). These inflammatory mediator
substances have substantial effects on uteroplacental hemody-
namics and are critical in mechanisms of labour both at term
and preterm. The regulatory mechanisms extend back in preg-
nancy to at least the time of implantation since recent studies
have demonstrated clearly that the implantation process is
regulated epigenetically (91).

Presently, there are no direct data linking placental epige-
netic changes to changes in and regulation of fetal phenotype
at birth or later in life. We believe that such linkages are not
only possible but highly likely. It is known that knockouts of
key genes in mice can result in abnormal placentation and
subsequently altered growth and development (e.g. growth
restricted fetuses) that can also be fatal. We hypothesize that
similar effects occur with abnormal epigenetic regulation of
critical genes in the placenta. Testing of this hypothesis will
require initially experiments in which key genes (e.g. DNA
methyltransferases) are modified in a uterine-specific (prefer-
ably placental-specific) and gestational age–specific manner.
Thereafter, similar experiments with epigenetically altered
critical genes can determine specific regulatory pathways.

DIETARY FOLATE AND DNA METHYLATION

Folate and/or methyl group dietary studies provide the most
compelling data for the interaction of nutrients with DNA
methylation, because these dietary elements are directly in-
volved in one carbon metabolism. The sole metabolic function
of all co-enzymatic forms of folate is to transfer one carbon
units for reaction such as methylation. Folate deficiency af-
fects DNA stability through two principal pathways: DNA
hypomethylation and DNA synthesis and repair (92). In hu-
mans, the major source of methyl groups in humans comes
from methionine and to a lesser extent choline. Pregnancy,
fetal, and early neonatal life are periods in which there is a
high demand for folate and supplementation is usually given
to preterm infants once full oral feeding is established. Serial
plasma folate measurements in 140 preterm infants fell pro-
gressively to very low levels by the second to third week of
life, at which time full oral feeding was achieved and folate
supplementation was introduced (93). Those not supple-
mented continued to have low serum folate levels. Therefore,
premature infants are at risk of a period of up to several weeks
of folate deficiency that could conceivably lead to DNA
hypomethylation.

Effects of dietary methyl donors (methionine and choline)
and folate on DNA methylation have been reported in rodent
and human studies. For example, rats fed a diet deficient in
methionine and choline exhibited a change from normal DNA
methylation to global DNA hypomethylation that included
specific gene hypomethylation (94,95). A folate-deficient diet
introduced to healthy rats led to DNA hypomethylation in the
brain (96). Further support for the important role of methyl
donor sufficiency in changing DNA methylation long term
was identified in a study of methyl supplementation in two
strains of pregnant mice. Supplementation led to enhanced
DNA methylation of an LTR element with a mutant agouti
gene creating a leaner phenotype of the offspring (97).

The strongest argument linking folate deficiency with met-
abolic gene hypomethylation was established in rat offspring
whose mothers were fed a low-protein diet during pregnancy
(98). DNA methylation of the glucocorticoid receptor was
lower and gene expression higher than offspring from control-
fed animals (98). Interestingly, the addition of folic acid to the
low protein diet prevented this change in methylation and
expression from occurring. This observation may have rele-
vance to the insulin resistance seen in children born SGA or
prematurely. Activation of the glucocorticoid receptor leads to
glucocorticoid induced insulin resistance in liver and in skel-
etal muscle (99,100).

Data from animal studies indicate that folate or methyl
group deficiency during late fetal life or early postnatal life
produces stable long-term total DNA and specific gene hy-
pomethylation. Conversely, studies in adult rats and humans
suggest that folate- or methyl group–deficient diets lead to
DNA hypomethylation that reverses with resumption of a
normal diet (94,95,101). Collectively these observations sug-
gest that there is an unexplained ontogenic window in which
nutritional deficiency leads to persistent DNA hypomethyla-
tion during fetal and early neonatal life that does not exist in
adults.

CANDIDATE GENES

There are a number of epigenetically modifiable gene can-
didates that could play a role in programmed changes in
growth and insulin sensitivity in IVF, SGA, and prematurely
born children. These include imprinted genes, since imprint-
ing is known to be disrupted in some IVF children, but also
nonimprinted genes involved in growth and metabolism.

Candidate genes that might explain the taller stature and
elevated IGF-II levels seen in our IVF children include the
growth genes IGF2 and CDKN1C (p57KIP2), which are
controlled by methylation at H19 DMR and KvDMR1, re-
spectively. Conversely, changes in methylation at the puta-
tively polymorphically imprinted IGF2 receptor gene locus
could lead to decreased IGF-II activity and small size at birth
due to increased numbers of the sink IGF-II receptor
(102,103). Similarly overexpression of RASGRF1, which regu-
lates postnatal growth and is known to be imprinted in rodents,
could explain the taller stature and higher IGF-I levels in IVF
children. Conversely, underexpression of RASGRF1, which is
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known to be imprinted in rodents, could explain poor childhood
growth in SGA and prematurely born children (104).

Other candidates include leptin, in which reduced levels
play a critical role in the development of the metabolic
syndrome in rats (insulin resistance, hypertension and dyslip-
idemia) (105). Newborn SGA rats treated with a short course
of leptin displayed a normal adult phenotype without any
biochemical evidence of metabolic syndrome (105). There-
fore, there appears to be a critical window in early life in
which under nutrition causing aberrant methylation of LEP
could lead to persistent insulin resistance and development of
adult obesity and hypertension. This is yet another plausible
mechanism whereby children born prematurely could develop
insulin resistance.

GRB10 is an imprinted gene that acts to inhibit insulin and
IGF-I receptor signalling (106). It has been established that
GRB10 is not the cause of Russell Silver syndrome, a discrete
syndromal cause of SGA children (107). GRB10 hypomethy-
lation during the fetal or early neonatal periods could cause
insulin resistance, poor growth, and abnormalities in the GH/
IGF-I axis as observed in SGA and premature children.

SUMMARY

There are persistent alterations in growth and metabolism in
SGA, very premature, and IVF children. These changes,
which appear to be programmed from early life environmental
exposure, must involve altered cellular function and probably
altered gene expression. However, the trigger(s) and mecha-
nism(s) that lead to these programmed changes have yet to be
elucidated in humans. There is compelling evidence from
animal studies that environmental factors such as altered
nutrition lead to epigenetic changes and altered gene expres-
sion, however, it is unclear whether these changes lead to
metabolic disease. Future studies in animal models will better
define the long-term disease risks of epigenetic changes fol-
lowing specific nutritional or environmental manipulation.
Although animal models of SGA or IVF cannot be easily
extrapolated to humans and animal models of prematurity do
not yet exist, using the available data we hypothesize that an
adverse embryonic, fetal, or neonatal environment is responsible
for epigenetic modification leading to the growth and metabolic
changes observed in later childhood. Further studies are needed
to examine candidate genes for methylation changes and in
particular establish methylation patterns in different tissues. Ac-
cessing target tissues remains one of the major limitations in
human studies. Limited current data support epigenetic change as
a mechanism behind the observed phenotypic changes in IVF,
SGA, and prematurely born cohorts. Epigenetics is likely to
become a major focus of attention for developmental biologists in
establishing mechanisms that link adverse early life events with
later adult disease.
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