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ABSTRACT: Obstructive sleep apnea (OSA) is a major public
health problem affecting approximately 2% to 3% of children. How-
ever, snoring, the cardinal symptom of OSA, affects at least 5-fold
more children, such that evaluation by overnight polysomnography
(ONP) is required for the diagnosis. ONP is laborious, expensive, and
relatively unavailable to children. Proteomic mass spectrometry cou-
pled with bioinformatic tools provide valuable means for discovery
of new biomarkers in serum for a variety of human disorders. The
possibility exists that snoring children with and without OSA may
exhibit different protein expression profiles in serum that could be
useful in the development of novel diagnostic tools for this condition.
The proteomic patterns of 20 children with OSA and of 20 children
with habitual primary snoring but no evidence of OSA (HS) were
evaluated using surface-enhanced laser desorption/ionization time-
of-flight mass spectrometry (SELDI-TOF MS). Linear discriminative
analysis identified three differentially regulated proteins with molec-
ular masses of 5896, 3306, 6068 Da that were capable of diagnosing
OSA with 93% sensitivity and 90% specificity. Thus, the proteomic
signatures of sera from children with OSA differ from those of HS
who do not fulfill the current criteria for treatment. Identification and
sequencing of those differentially expressed proteins discovered
through proteomic strategies may lead to future development of
serum-based diagnostic tests for OSA in snoring children. (Pediatr
Res 59: 466–470, 2006)

OSA is a frequent condition affecting up to 2% to 3% of all
children and is associated with substantial neurobehav-

ioral and cardiovascular morbidities (1–3). In the United
States alone, it is estimated that two million children suffer
from OSA. However, many more children (8%–27%) habit-
ually snore during their sleep and are at risk of OSA (1,2,4–
8). Clinical history and physical examination are remarkably
unpredictive in the differentiation between OSA and HS (9)
such that current diagnostic approaches require implementa-
tion of ONP. However, ONP is laborious, expensive, and
relatively unavailable to children. Furthermore, ONP imposes
a substantial burden to both child and family.
Proteomic mass spectrometry coupled with advanced bioin-

formatic techniques has recently been introduced as a novel
approach for developing new diagnostic and prognostic tools

for various diseases (10,11). SELDI-TOF MS, which is based
on the capture of proteins/peptides on chemically modified
surfaces, has emerged as a specifically powerful tool allowing
analysis of complex biologic samples (12,13). For example,
SELDI-TOF MS has been successfully used in the analysis of
serum proteins to reveal disease-specific “fingerprints” or
“patterns” that have proven useful in the early-stage detection
of particular diseases due to its high specificity and sensitivity
in segregating diseased patients from those without disease
(14–16). Furthermore, the feasibility of high sample through-
put and low volume sample requirements make this approach
particularly valuable for discovery of new disease-specific
biomarkers in children.
In this study, we used SELDI-TOF MS strategies and

examined sera of 20 snoring children with OSA and of 20
snoring children who did not fulfill the polysomnographic
criteria for OSA (i.e. HS).

MATERIALS AND METHODS

Study participants. The study was approved by the University of Louis-
ville Human Research Committee. Parental informed consent and child
assent, in the presence of a parent, were obtained. Children were excluded if
they had any chronic medical condition, psychiatric diagnoses, or any genetic
or craniofacial syndromes.

Morning serum samples were obtained from 20 consecutive snoring
children fulfilling the criteria for OSA (see below), and from 20 consecutive
children fulfilling the criteria for habitual snoring (HS). Their ages ranged
between 3 and 12 y, and all were referred for evaluation of snoring as their
primary complaint and therefore underwent an overnight sleep study at the
Kosair Childen’s Hospital Sleep Medicine and Apnea Center. Based on their
polysomnographic findings, children were assigned to one of two categorical
groups: group OSA, 20 children with an obstructive apnea/hypopnea index
(AHI) �5 events/h of sleep, combined with oxyhemoglobin desaturation
episodes (�92%) and/or hypercapnia (�50 mm Hg), and/or respiratory
arousal index �2/hour of sleep and group HS, 20 children with AHI �1/h of
sleep without oxyhemoglobin desaturation and/or hypercapnia, and with a
respiratory arousal index �2/h of sleep.

Overnight polysomnography. A standard overnight multichannel poly-
somnographic evaluation was performed in the sleep laboratory at Kosair
Children’s Hospital. Children were studied for up to 12 h in a quiet, darkened
room with an ambient temperature of 24°C in the company of one of their
parents. No drugs were used to induce sleep. The following parameters were
measured: chest and abdominal wall movement by respiratory impedance or
inductance plethysmography and heart rate by electrocardiography; air flow
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was monitored with a sidestream end-tidal capnograph that also provided
breath-by-breath assessment of end-tidal carbon dioxide levels (PETCO2; BCI
SC-300, Menomonee Falls, WI), a nasal pressure transducer, and a thermistor.
Arterial oxygen saturation (SpO2) was assessed by pulse oximetry (Nellcor N
100; Nellcor Inc., Hayward, CA), with simultaneous recording of the pulse
waveform. The bilateral electro-oculography, eight-channel electroencepha-
lography, chin and anterior tibial electromyography, and analog output from
a body position sensor (Braebon Medical Corporation, NY) were also mon-
itored. All measures were digitized using a commercially available polysom-
nography system (Rembrandt, MedCare Diagnostics, Amsterdam, The Neth-
erlands). Tracheal sound was monitored with a microphone sensor
(Sleepmate, VA) and a digital time-synchronized video recording was per-
formed. Sleep architecture was assessed by standard techniques (17). The
proportion of time spent in rapid eye movement (REM) sleep was expressed
as the percentage of total sleep time (TST). The obstructive apnea index (AI)
was defined as the number of apneas episodes per hour of TST. Obstructive
apnea was defined as the absence of airflow with continued chest wall and
abdominal movement for duration of at least two breaths (18,19). Hypopnea
was defined as a decrease in nasal flow of �50% with a corresponding
decrease in SpO2 of �4% and/or arousal (19). The apnea/hypopnea index
(AHI) was defined as the number of apnea and hypopnea episodes per hour of
TST. Children with an AHI �1/h TST were considered to have habitual
snoring (HS), while children with AHI �5/h TST were considered to have
OSA. The mean oxygen saturation, as measured by pulse oximetry (SpO2) in
the presence of a pulse waveform signal void of motion artifact, and the SpO2

nadir were recorded. Since criteria for arousals have not yet been developed
for children, arousals were defined as recommended by the American Sleep
Disorders Association Task Force report (20) using the 3-s rule and/or the
presence of movement arousal (21). Arousals were divided into two subtypes:
spontaneous arousals and respiratory arousals. The arousal indices were
calculated per hour of sleep time.

SELDI protein profiling of serum. Four chip types including weak cation
exchange (WCX4) with low stringency (pH 4), metal binding (IMAC-Cu2�),
immobilized metal affinity capture, strong cation exchange (SAX2) and
hydrophobic (H4) chips were used to profile the serum samples collected from
the OSA and HS children. We used a modified analytical protocol provided by
the manufacturer (Ciphergen Biosystems, Fremont, CA) for chip activation,
equilibration, binding, washing, and reading.

Chip activation. IMAC chips were activated by addition of CuSO4. This
was done by adding 50 �L of 100 mmol/L CuSO4 in a 96-well formatted
Bioprocessor (Ciphergen Biosystems) for 5 min at room temperature. The
unbound Cu2� was then removed; chips were rinsed by dH2O and 100
mmol/L Na acetate (pH 4.0). Other chip types did not require activation.

Chip equilibration. All chip types were equilibrated with their perspective
binding/washing buffers according to manufacturer’s instructions. Appropri-
ate buffers for a given chip type (150 �L) was added to each chip type
(IMAC-Cu 2�; 100 mmol/L Na phosphate, pH 7.0 � 500 mmol/L NaCl,
WCX4; 100 mmol/L Na acetate, pH 4.0, SAX2; 10 mmol/L Tris, pH 8.0, H4;
50 mmol/L HEPES, pH 7.0) in a 96-well Bioprocessor and incubated for 5
min. Then, the buffer was removed by dumping in collection trays.

Protein binding. After thawing, the serum samples were mixed and
centrifuged at 1000 rpm at 4°C for 10 min. Twenty microliters of serum was
added into the 96-well plate containing mixture of 30 �L of 8 mol/L urea, 1%
CHAPS/PBS (pH 7.4), sealed and subjected to shake at 4°C for 15–30 min.

Chip binding. In an assembled 96-well Bioprocessor containing the ap-
propriate chips, 5 �L of fractionated serum samples were added to 195 �L of
binding/washing buffer.

Chip washing. All chip arrays were first incubated in their respective
binding/washing buffers for 5 min and buffers removed, which was repeated
three times. Finally, chips were washed twice by adding 200 �L of dH2O,
followed by dissembling the bioprocessor and chip drying with the help of
Kim wipes. Spots on chips were circled with a PAP pen and 1 �L of SPA as
EAMs (electron absorbing molecules) was added twice.

Chip reading.We used two protocols developed in our laboratory for low-
and high-mass focusing to read each chip. The low focusing has a mass range
from 1000 to 50,000 Da with optimization at 3000 to 30,000 Da. The laser
intensity will be set at 285 and the instrument sensitivity at 9. For the
high-mass focusing, we set the high threshold at 200,000 Da with an
optimization range of 10,000 to 60,000 Da and a laser intensity of 290 with
a sensitivity setting of 9.

Peak detection/normalization. All spectra were initially visually in-
spected. If the matrix peaks were missing or depressed below a 30% log
normalized value, the spectra were eliminated from final data analysis. All
spectra were calibrated and normalized according to the manufacturer’s
instructions using the Biomarker Wizard Software (Ciphergen Biosystems).
The peaks were detected using the same software and a “.csv” output was
generated for each experiment using this software. The unsupervised quali-

tative inspection of peaks and data clustering were performed at this stage.
Then, the “.csv” files were imported into Biomarker Pattern Software (BPS)
software for data mining analysis.

Decision tree and cross-validation.We used linear discriminative analysis
using BPS (Ciphergen Biosystems), which allows for supervised classification
analysis capable of varying splitting rules, cost values, and creation of
decision trees. BPS is designed to analyze large data sets and discover protein
patterns that can be related to treatment and/or to pathology due to treatment.
In this study, we considered a biomarker pattern as potentially useful if HS
and OSA patients were distinguished with a sensitivity and specificity �90%.
Decision tree classifies a spectrum pattern through a sequence of questions, in
which the next question asked depends on the answer to the previous question.
The sequence of questions forms a node connected by successive links or
branches downward to other nodes.

Protein identification. Preliminary identification of the discovered pro-
teins using the isoelectric point (pI) and molecular mass information was
performed using the Swiss-Prot database.

RESULTS

Subject characteristics. Table 1 shows the demographic
and polysomnographic characteristics of 20 children with
sleep disordered breathing (OSA), and 20 HS children. Both
groups were comparable for age, gender, and body mass
index. The OSA group had higher mean AHI and arousal
index, with lower SaO2 nadir, and similar mean end-tidal CO2

tension (Table 1).
Decision tree/data analysis. The mass range of 0–2000 Da

was eliminated from data analysis because of interference by
matrix peaks. To identify serum biomarkers capable of distin-
guishing the children with OSA from HS but no evidence of
OSA, we constructed a decision-tree classification algorithm
using over 100 peaks within the 2000- to 40,000-Da range.
The classification algorithm was developed using the cross-
validation technique included in the BPS software and in-
volved three nodes with distinct masses (5896, 3306, 6068
Da) as shown in Figure 1A and B. The discriminatory peaks
were able to efficiently distinguish 17 of 18 (94%) children
with OSA and 20 of 20 (100%) HS without OSA (Table 2). In
the test group of the cross-validation, 15 of 18 (83%) OSA
children and 18 of 20 (90%) non-OSA snorers were identified
(Table 2). Figure 2A and B represent the spectra and gel view
of OSA and HS set of samples, respectively. A peak at 5896
Da is clearly observed in the OSA set of samples. On the other
hand, the same peak was either absent or clearly attenuated in
the HS group. The biomarker protein at the putative mass of
5896 Da with stringency wash at pH.4 was subjected to the

Table 1. Demographic and polysomnographic characteristics in
children with habitual snoring and children with OSA syndrome

OSAS HS

Age (y) 8.5 � 3.7 (3–16) 8.7 � 3.8 (5–17)
Sex (male %) 45 60
BMI (kg/m2) 24.7 � 8.8 (14.5–47.7) 24.9 � 11.9 (15.6–66)
OAHI (/hr TST) 23.5 � 19.5 (7.3–83) 1.9 � 1.3 (0.39–4.76)
SpO2 nadir (%) 75.4 � 13.4 (47–91) 89.9 � 4.0* (81–96)
Mean PEtCO2 (mm Hg) 49.3 � 7.4 (37–64) 47 � 6.4* (35–66)
Total arousal index
(/h TST)

22.0 � 13.1 (6–52) 10.5 � 4.2* (5–21)

* p � 0.005. Comparisons of variables according to group assignment were
made with independent t tests or �2 analyses with Fisher’s exact test (dichot-
omous outcomes). Ranges are provided in parentheses. BMI, body mass
index; OAHI, obstructive apnea-hypopnea index; PEtCO2, end-tidal carbon
dioxide.
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Swiss-prot database search with the ranges: molecular mass �
5896, pI � 4, delta pI � 1.00, delta molecular mass � 2%,
organism species (OS) or organism classification (OC) human.
We found eight proteins in the database in the specified
pI/molecular mass ranges. Of the eight candidate proteins,
seven were from the family of Gag polyproteins belonging to
the human immunodeficiency virus (HIV). The chance of the
identity of this protein being a HIV protein present in serum
samples from almost all OSA children and being absent in all
non-OSA subjects is highly unlikely. The most likely candi-
date is osteocalcin precursor (gamma-carboxyglutamic acid
containing protein) with a molecular mass of 5799.49 and a pI
4.40. This protein constitutes 1% to 2% of the total bone
protein. It binds strongly to apatite and calcium. The calcium
binding requires gamma-carboxyglutamate residues that are
formed by vitamin K–dependent carboxylation (22).

DISCUSSION

The major findings of the present study indicate that among
snoring children, those with clearly defined sleep-disordered
breathing and who require referral for treatment can be accu-
rately differentiated using the differential expression of a
selected number of proteins in their morning serum samples
from snoring children who are not currently considered as
candidates for therapy (23).
Before we discuss the potential significance of our findings,

some technical issues deserve comment. First, serum samples
have been previously used in the discovery process of novel
biomarkers using protein mass spectrometry techniques (24–
27). Indeed, SELDI approaches offer a sensitive alternative to
two-dimensional polyacrylamide gel electrophoresis for dis-
covering of disease-associated proteins. The process of SELDI
involves purified or partially purified proteins mixed with

EAMs, a crystal-forming matrix, placed on an inert metal
target, and subjected to a pulsed laser beam to produce gas
phase ions that traverse a field-free flight tube and then are
separated according to their mass-dependent velocities (28).
Particular precautions were taken to standardize the timing of
serum collection and the demographic characteristics of the
study groups. Indeed, the two groups did not differ in age,
gender, or body mass index. Furthermore, we specifically
selected snoring children who fulfilled the currently accepted
criteria for surgical removal of tonsils and adenoids and
compared them with children who, despite having habitual
snoring and being referred for evaluation by their primary care
physicians, would not be viewed as requiring any therapeutic
intervention based on their polysomnographic findings. We
believe that this approach is more realistic and appropriate in
the usual clinical contextual setting than using asymptomatic,
nonsnoring controls. Therefore, the current findings should be
highly relevant to the identification of snoring children who
have sleep-disordered breathing and who require more exten-
sive evaluation and treatment. Finally, the software-driven
approach taken for tentative identification of the proteins
corresponding to the peaks associated with predictive value in
OSA is clearly only an initial step in such efforts and will
require more extensive affinity-based column purification of
large sample volumes of pooled serum samples followed by
tandem mass spectrometry (29).
The analytical algorithms used to detect selective patterns

of serum protein expression were capable of reliably differ-
entiating between OSA and HS while using a restricted num-
ber of spectral peaks. Obviously, verification of the validity of
such approach will require prospective and unbiased testing of
a large cohort of snoring children with and without the
diagnosis of sleep-disordered breathing in several pediatric
sleep centers. Such study is clearly beyond the scope of the
current work. However, our current findings confirm the initial
hypothesis that OSA, possibly via altered gas exchange and
sleep fragmentation, leads to alteration of a selective group of
proteins in the morning serum and that such proteins can then
be potentially used as a diagnostic biomarker for the disease.
We have previously shown that serum levels of vascular
endothelial growth factor are increased in pediatric patients
with sleep apnea and that the magnitude of such increase
correlates with disease severity (30). However, use of this
single protein as a biomarker was ineffective, with no im-
provement in the likelihood ratios of diagnosing OSA com-
pared with history and physical examination alone (30).

Table 2. Decision tree analysis of proteomic spectral patterns
during the learning and test phases

n % correct OSA HS

Learn
OSA 18 94.444 17 1
HS 20 100.000 0 20

Test
OSA 18 93.333 15 3
HS 20 90.000 2 18

Figure 1. (A) Diagram of a single best decision tree showing
the molecular mass of the biomarker proteins and total number
of samples. (B) Graph showing the sensitivity and specificity of
the discovered biomarker protein with 0.996 receiver operating
characteristic (ROC) integral level.
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Of the three proteins identified in our analysis, we further
analyzed the putative and clearly visible biomarker discovered
at m/z 5896 using the Swiss-Prot database. This approach,
which constitutes a preliminary and tentative biodiscovery
exercise, suggested that a likely identity of this OSA-regulated
spectrum may correspond to osteocalcin. Osteocalcin is a
precursor of gamma-carboxyglutamic acid–containing protein
and is also known as bone Gla protein. This protein is an
important marker of bone turnover in physiologic and patho-
logic conditions (31) and has been widely studied as a biomar-
ker for bone loss, growth retardation (32), osteosarcoma (33),
and renal osteodystrophy (34). Previous studies have shown
increased serum osteocalcin in diseases with increased bone
turnover, e.g. renal osteodystrophy, hyperparathyroidism, hy-
perthyroidism, and Paget’s disease (35,36) and decreased
concentrations with low bone turnover, e.g. hypoparathyroid-
ism, hypercalcemia resulting from bone metastases, and long-
term corticosteroid therapy, the latter reflecting a decrease in
the osteoblastic activity (37). While the role of osteocalcin
changes in children with sleep-disordered breathing remains
to be established, Colle and colleagues (38) identified in-
creased nocturnal osteocalcin levels among children with
growth retardation, possibly as a compensatory response.
There is now a substantial body of evidence supporting a
causal relationship between stunted somatic growth and OSA
in children. Indeed, growth retardation is a frequent observa-
tion in children with OSA, even when they are obese (39) and
has been attributed to increased energy expenditure during
sleep (40,41) as well as to alterations in the regulation of
insulin growth factor and its binding proteins (42). In the
present study, we also observed that osteocalcin was consis-
tently increased in serum of OSA patients, and this increase
could reflect a compensatory phenomenon to the growth de-
celeration imposed by the episodic asphyxic events associated
with recurrent upper airway obstruction. Of note, use of
alternative search strategies for the three putative candidate
biomarker peaks yielded several potential proteins whose
function or expression appears to be regulated by stress.
Examples of such candidates include corticotropin, lipotropin,
and melanotropin. Obviously, extensive alternative techniques
such as LC-MS-MS approaches and greatly expanded number

of subjects will be needed to definitively identify these pro-
teins as disease-related biomarkers and their roles in OSA.
In conclusion, proteomic profiling of serum samples in

children with OSA revealed differential expression of circu-
lating proteins that may provide useful future diagnostic ap-
proaches. Indeed, while prospective, large-scale studies will
be required to confirm whether the currently discovered pro-
teomic pattern can dependably differentiate between HS and
OSA, such an approach coupled with definitive identification
of the differentially expressed proteins will provide the oppor-
tunity for developing clinically applicable antibody-based di-
agnostic assays in pediatric OSA.
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