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The Genetic Basis of Complex Strabismus
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ABSTRACT: Members of my research laboratory combine clinical,
genetic, and molecular biologic approaches to the study of congenital
strabismus. Strabismus, which is misalignment of the eyes, affects
2–4% of the population and causes loss of binocular vision and
amblyopia (vision loss in a structurally normal eye). The cause of
strabismus when it occurs in the absence of structural brain abnor-
malities is generally unknown. In the last decade, we have focused
our research studies on understanding the genetic etiology of a series
of complex strabismus syndromes in which eye movement in at least
one direction is limited or paralyzed. We are discovering that these
disorders result from mutations in genes necessary for the normal
development and connectivity of brainstem ocular motoneurons,
including PHOX2A, SALL4, KIF21A, ROBO3, and HOXA1, and we
now refer to these syndromes as the “congenital cranial dysinnerva-
tion disorders,” or CCDD. (Pediatr Res 59: 343–348, 2006)

My interest in complex strabismus arose from a clinical
encounter I had with a toddler in 1992, during my

senior residency year on the Neurology Service at Children’s
Hospital Boston. This 1-y-old and many of his relatives were
born with bilateral ptosis and with both eyes “fixed” in a
downward position, requiring them to assume a chin-up head
position (1). During the toddler’s evaluation, our ophthalmol-
ogy consultants diagnosed him with a rare Mendelian form of
strabismus referred to as “congenital fibrosis of the extraocu-
lar muscles” (CFEOM). Having not heard of CFEOM, I
searched the literature and learned that this syndrome was one
of several complex strabismus syndromes that presented as
congenital, nonprogressive ophthalmoplegia (2). Ophthalmol-
ogists noted that patients with these syndromes had globes
(eyeballs) that were restricted in their movement both when
the patient tried to actively move their eyes as well as when a
physician tried to passively pull the globe in the direction the
patient could not look (positive forced duction testing). These
findings, together with the “tight” feel to the extraocular
muscles at surgery and presence of connective tissue on

extraocular muscle biopsy, led ophthalmologists to propose
that these disorders resulted from primary fibrosis of the
extraocular muscles.

In 1992, CFEOM and the related syndromes were clinical
diagnoses and their underlying molecular genetic defects were
unknown. I wished to learn molecular neurogenetics and I was
fortunate that, simultaneous with my clinical introduction to
CFEOM and the end of my residency training, short tandem
repeat polymorphisms within the genome were discovered.
These advances revolutionized genetics and made linkage
analysis techniques accessible to clinical fellows such as myself.
The congenital and nonprogressive nature of CFEOM, coupled
with the large number of affected individuals in my patient’s
family, made them an ideal pedigree for such analysis.

Over time, my laboratory’s focus has expanded from stud-
ies of this family’s disorder, later named CFEOM1, to encom-
pass the genetics of other complex strabismus syndromes,
including other forms of CFEOM, Duane syndrome, horizon-
tal gaze palsy, Möbius syndrome, Brown syndrome, congen-
ital ptosis, and Marcus Gunn syndrome. The neuropathologic
findings reported by others in Duane syndrome (3,4) and later
by us in CFEOM1 (5) led us to hypothesize that these disor-
ders resulted not from primary extraocular fibrosis but instead
from errors in the development of cranial motoneurons.
CFEOM1 and several other complex strabismus syndromes
are often inherited, and we have taken advantage of continuing
advances in positional cloning techniques to explore this
hypothesis.

Our approach to defining the genetic defects in complex
strabismus typically begins with the ascertainment and clinical
characterization of complex strabismus families. This ongoing
process benefits from collaborations with clinicians world-
wide. After enrollment of study participants, we categorize
each participant’s and potentially his/her family’s phenotype
based on the pattern of abnormal eye movements, dividing
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them into those with gaze abnormalities consistent with dys-
function of extraocular muscles innervated by axons from the
oculomotor, trochlear, and/or abducens nuclei (Fig. 1 and Fig.
2a). If appropriate, we then determine whether the family’s
phenotype maps to candidate genetic loci and/or if the affected
individuals harbor mutations in one of the complex strabismus
genes we have identified (and describe below). If the pedigree
does not map to a known locus and the family is large enough,
we may perform a genome-wide linkage screen to define a
new complex strabismus locus, followed by positional cloning
techniques to identify the mutated gene. Thus far, we have
defined multiple complex strabismus genetic loci and identi-
fied the five disease genes known to date. Supporting our
hypothesis, each of these genes appears to be essential to a
specific step in the development of the ocular cranial nuclei
and their axonal connectivity. The growing evidence that
complex strabismus can, indeed, primarily result from aber-
rant signaling to the extraocular muscles by neurons in the
CNS has led us to name these syndromes “congenital cranial
dysinnervation disorders,” or CCDD (Fig. 1) (6). In the fol-
lowing paragraphs I will review CCDD syndromes that result
from mutations in genes essential for correct axonal targeting
of the motor neurons (ROBO3), motor neuron development
(HOXA1, PHOX2A, and likely SALL4), and correct axonal
targeting of the extraocular muscles (KIF21A).

HGPPS

Errors in the development of axons targeting abducens
neurons. HGPPS (MIM 607313) is a rare autosomal recessive
disorder first described in 1970 in consanguineous Greek
pedigrees (7; Fig. 2b) and subsequently reported in consan-
guineous pedigrees of many different ethnicities, as well as in
offspring of unrelated parents (8). Affected individuals are
born with absent horizontal eye movements and, in addition,
develop severe progressive scoliosis starting in infancy or
childhood. In 2002, members of Dr. Joanna Jen’s laboratory at
UCLA mapped a gene for HGPPS to a 30-cM region of
chromosome 11 in two pedigrees (9). We had enrolled fami-
lies with this disorder and found that they, too, mapped to the

chromosome 11 locus and, in addition, harbored key recom-
bination events that reduced the HGPPS critical region to 2
cM. We collaborated with Dr. Jen to study the HGPPS
phenotype and to identify the HGPPS gene.

Similar to previous reports of HGPPS patients (10), mag-
netic resonance imaging (MRI) of affected individuals from
pedigrees linked to the chromosome 11 locus identified hyp-
oplasia of the pons and medulla, with an unusual midline cleft
in the medulla. Unexpectedly, electrophysiological studies
revealed that the corticospinal and dorsal somatosensory
tracts, the major descending and ascending tracts whose axons
normally cross the midline in the medulla to reach their
contralateral targets in the spinal cord and thalamus, respec-
tively, do not cross the midline in HGPPS patients (11).
Absence of these crossing fibers is the likely cause of the
midline medullary cleft found by MRI. It is remarkable that
HGPPS patients have so few symptoms attributable to the lack
of corticospinal and dorsal column-medial lemniscus tract
crossing, and it seems likely that these uncrossed axons
succeed in finding and innervating their correct targets, albeit
on the incorrect side of the body.

Mutation analysis of HGPPS candidate genes in 10 unre-
lated probands from consanguineous pedigrees revealed ho-
mozygous nonsense, frame shift, splice-site, and missense
mutations in ROBO3. ROBO3 is a large gene that encodes a
cell adhesion molecule containing five extracellular immuno-
globulin-like motifs, three fibronectin-like motifs, a trans-
membrane domain, and an intracellular tail containing signal-
ing motifs (11). ROBO3 is expressed in the human fetal
hindbrain, and the nature and distribution of these mutations
suggests that HGPPS results from the complete loss of
ROBO3 function (11). Human ROBO3 shares homology with
roundabout genes important in axon guidance in developing
Drosophila, zebrafish, and mouse. When Robo function is lost
in Drosophila or zebrafish, however, axons cross and re-cross
the midline aberrantly, the opposite of the HGPPS phenotype
(12). Human ROBO3 is most homologous to mouse Robo3
(Rig1), and when members of Dr. Tessier-Lavigne’s lab at
UCSF removed Robo3 function in mouse and looked at the
spinal cord, they found complete failure of spinal commissural
axons to cross the midline (13). Subsequently, their collabo-
rators studied the Robo3–/– mouse brainstem and noted com-
plete failure of midline crossing by hindbrain precerebellar axons
and neurons (14), similar to what we predict in HGPPS patients.
In contrast to HGPPS, the Robo3–/– mice die at birth (13). In
general, however, the conservation of ROBO3 structure and
function between humans and mouse should permit use of the
mouse to model at least some aspects of the HGPPS phenotype.

Scoliosis is a relatively common disability, with an esti-
mated incidence of 4–15.7% in the school-aged population
(15), and the finding that ROBO3 mutations result in scoliosis
supports a neurogenic cause for this disorder. Future studies
should determine whether scoliosis occurs secondary to lack
of midline crossing of descending long tracts and how these
long tracts find ipsilateral targets. Our MR imaging revealed
normal bilateral presence of the abducens axons exiting the
brainstem and normal orbital extraocular muscle configuration
and size (11), suggesting that the horizontal gaze palsy results

Figure 1. Overview of the ocular CCDD, showing the three ocular nuclei, a
subset of the syndromes that can result from their maldevelopment, and each
syndrome’s corresponding genetic locus and, when identified, the mutated gene.
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from failure of axons extending from developing neurons in
the medial longitudinal fasciculus and paramedian reticular
formation pathways to cross the midline and appropriately
innervate neurons in the abducens nucleus (Fig. 2b). Future
studies should help determine which of these abducens-related
tracts and/or neurons require ROBO3 function.

THE HUMAN HOXA1-RELATED SYNDROMES:
BOSLEY-SALIH-ALORAINY SYNDROME AND
ATHABASCAN BRAINSTEM DYSGENESIS

SYNDROME

Absent abducens nuclear development secondary to aber-
rant hindbrain segmentation. Recently, our collaborators in
Saudi Arabia recognized a new recessive CCDD syndrome

that we named Bosley-Salih-Alorainy syndrome (BSAS) in
their honor (16; Fig. 2d). The syndrome was recognized in
offspring of consanguineous parents. Affected children have
bilateral Duane syndrome, a congenital horizontal eye move-
ment disorder with limited abduction and narrowing of the
palpebral fissure on attempted adduction. Isolated Duane syn-
drome is the most common CCDD, and autopsy studies of
individuals with Duane syndrome have found absence of the
abducens motoneurons and cranial nerve, with sparing of
the abducens interneurons that send their axons through the
medial longitudinal fasciculus to the oculomotor nucleus (Fig.
2c) (3,4). In contrast to isolated Duane syndrome, most pa-
tients with BSAS also have congenital sensorineural deafness
secondary to bilateral absence of the cochlea, semicircular

Figure 2. Schematic representation of extraocular muscle (EOM) innervation in normal individuals and in the CCDD. In the normal state (a), four recti and two
oblique EOM move the globe and the levator palpebrae superioris (LPS) muscle raises the eyelid. The oculomotor nucleus (depicted in blue) is composed of five
motor subnuclei that send their axons in the oculomotor nerve; the axons in the superior branch of the oculomotor nerve innervate the LPS and superior rectus
(SR) muscles, and the axons in the inferior branch innervate the medial rectus (MR), inferior rectus (IR), and inferior oblique (IO) muscles. The trochlear nucleus
(depicted in brown) sends its axons in the trochlear nerve to innervate the superior oblique (SO) muscle. The abducens nucleus (depicted in green) is composed
of motoneurons and interneurons. The motoneurons send their axons to innervate the lateral rectus (LR) muscle. The interneurons send their axons in the medial
longitudinal fasciculus (MLF), which crosses the midline to innervate neurons in the MR subnucleus of the contralateral oculomotor nucleus. In addition, input
from the parapontine reticular formation (PPRF) onto the abducens nucleus is shown. Panels b–h each represent a CCDD, with the primary defect highlighted
in text and the resulting pathology depicted schematically. If the primary defect is speculative, the text is followed by a question mark. Aberrant or missing nuclei,
nerves, and muscles are dotted. The region of the rhombomere defects in HOXA1-related syndromes is hatched in red. (b) HGPPS, (c) Duane syndrome, (d)
HOXA1-related syndromes, (e) CFEOM2, (f) CFEOM1, (g) CFEOM3, (h) congenital ptosis.

3452005 E. MEAD JOHNSON AWARD



canals, and vestibule (common cavity deformity). Further eval-
uation of these patients revealed variable malformations of the
internal carotid arteries, ranging from unilateral hypoplasia to
bilateral agenesis. Subsets of BSAS patients also have delayed
motor milestones and autism spectrum disorder (ASD). Once
recognized as a syndrome, we reviewed our database and found
that we had previously ascertained a Turkish patient from a
consanguineous family who also had the BSAS phenotype.

As we were working together to characterize these patients,
we noted that this new syndrome actually overlapped with
another recessive syndrome reported in consanguineous ped-
igrees—the Athabascan brainstem dysgenesis syndrome
(ABDS; OMIM #601536) described in Native American chil-
dren (17). Similar to BSAS, ABDS children were reported to
have horizontal gaze restriction, sensorineural deafness, and de-
layed motor development (17), and retrospective review of MR
images revealed previously undiagnosed internal carotid artery
anomalies. In addition, however, ABDS children have central
hypoventilation, mental retardation, and subsets have facial
weakness, vocal cord paralysis, and conotruncal heart defects,
including tetralogy of Fallot and double aortic arch (17).

We conducted a genome-wide linkage screen and mapped
BSAS to the region of chromosome 7 encompassing the
HOXA gene cluster. This was very exciting because the
phenotypes reported in the two Hoxa1–/– mouse models are
remarkably similar to the BSAS and ABDS syndromes. The
mice have grossly abnormal rhombomere segmentation with
errors in neural patterning of the hindbrain and associated
ganglia (18–20), resulting in aberrant abducens and inner ear
development. Hoxa1–/– mice die soon after birth, and a subset
of them die from hypoventilation. We screened HOXA1 for
disease-causing mutations, and affected individuals from each
of the three founder populations (Saudi, Turkish, and Native
American) were found to harbor a unique homozygous trun-
cating HOXA1 mutation that is predicted to result in complete
loss of HOXA1 function (16). Hence, this new CCDD results
from a more diffuse error in hindbrain segmentation (Fig. 2d).

To the best of our knowledge, this is the first description of
viable homozygous mutations in any human HOX gene and
the first syndromes resulting from mutations in a HOX gene
critical for CNS development. The phenotypic variability
between BSAS and ABDS could result from differences in
genetic background or environment between these isolated
founder populations. The vascular patterning defects of the in-
ternal carotid arteries and cardiac outflow tracts have not been
reported in Hoxa1–/– mice, and may represent a new function for
this gene in humans. Finally, it is particularly intriguing that
individuals with loss of HOXA1 function can be autistic or
mentally retarded. Given that forebrain and cerebellar defects
have not been reported in Hoxa1–/– mice and Hoxa1 expression
has not been detected above the brainstem, this suggests that
brainstem dysgenesis may lead to higher cortical dysfunction.

CFEOM2

Failure of oculomotor and trochlear motoneuron devel-
opment. We classify a CCDD phenotype as CFEOM based on
the presence of congenital eye movement disorder that pri-

marily affects function of the extraocular muscles in the
oculomotor nerve distribution (Fig. 2e). We then subclassify
CFEOM cases as CFEOM1, CFEOM2, or CFEOM3 based on
specific phenotypic features. As we learn more about CFEOM
genetics, we are also able to classify an individual or pedigree
by their genetic mutation or family linkage data. We have
defined three CFEOM genetic loci (FEOM1, FEOM2,
FEOM3), and identified KIF21A and PHOX2A as the FEOM1
and FEOM2 genes, respectively. There is a correlation be-
tween CFEOM phenotype and genotype, such that most indi-
viduals with CFEOM1 harbor KIF21A mutations, most indi-
viduals with CFEOM2 harbor PHOX2A mutations, and most
large pedigrees with CFEOM3 map to the FEOM3 locus (a
locus for which the disease gene is not yet identified). We
have, however, found exceptions to these genotype-phenotype
correlations (21–23).

CFEOM2 (MIM 602078) was first recognized in consan-
guineous Saudi Arabian pedigrees. Affected individuals with
this recessive phenotype are born with bilateral ptosis with
their eyes primarily fixed in an exotropic position, with or
without secondary hypertropia or hypotropia (24–26). This
eye position suggests that the only normally functioning ex-
traocular muscle is the abducens-innervated lateral rectus,
which succeeds in pulling each eye outward (Fig. 2e). To
determine the genetic cause of this CCDD, we conducted a
genome-wide linkage screen and mapped CFEOM2 to chro-
mosome 11q13, referred to as the FEOM2 locus (26). We
constructed a physical map across the FEOM2 region and
screened candidate genes within it (27). Nine genes were
analyzed before mapping and identifying mutations in ARIX,
renamed PHOX2A to parallel published work in other species.
PHOX2A is composed of three exons and encodes a home-
odomain transcription factor protein. We initially identified
three distinct mutations, two predicted to disrupt splicing and
one that alters an amino acid within the conserved brachyury-
like domain (27). Subsequently, collaborative work led to the
identification of a homozygous nonsense mutation in the
coding region of PHOX2A in an Iranian pedigree with
CFEOM2 (28). This nonsense mutation provided strong evi-
dence that the human CFEOM2 phenotype results from a
complete loss of function of PHOX2A.
Phox2a and its close relative, Phox2b, are paired-like tran-

scription factor genes with identical homeodomains and ex-
pression patterns restricted to several classes of differentiating
neurons in the central and peripheral nervous system (29,30).
Mouse Phox2a–/– null mutants (31) and homozygous soulless
zebrafish with point mutations in the Phox2a homeodomain
(32) die soon after birth. These animals also have absence of
the locus coeruleus (LC), atrophy of cranial sensory ganglia,
and, in the mouse, absence of parasympathetic ganglia of the
head (31), phenotypes that we do not detect in CFEOM2
patients. In both mutants, the oculomotor and trochlear nuclei
are also absent (32,33), consistent with Phox2a expression at
E9 in the proliferating oculomotor and trochlear motoneuron
precursors (30). These findings support our hypothesis that
CFEOM2 results from the abnormal development of the oc-
ulomotor and trochlear nuclei (Fig. 2e).
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CFEOM1

Aberrant axonal targeting of the extraocular muscles by a
branch of the oculomotor nerve. The CFEOM1 phenotype
(MIM135700) was described in the medical literature as early
as 1840 (34) and, unlike the three syndromes described above,
CFEOM1 segregates as an autosomal dominant trait and
new cases seem to arise with steady frequency worldwide
(Fig. 2f). An individual with CFEOM1 is born with congenital
nonprogressive bilateral external ophthalmoplegia and con-
genital bilateral ptosis (note, the pupils are spared and thus
there is not an “internal ophthalmoplegia”). The primary
position of both eyes must be downward (infraducted) and
s/he must be unable to raise either eye above the horizontal
midline. We refer to a family as a “CFEOM1 pedigree” when
CFEOM1 is transmitted in the family as a fully penetrant,
autosomal dominant trait, and all affected individuals in the
family meet the CFEOM1 diagnostic criteria.

CFEOM1 is the diagnosis given to the toddler I cared for on
the Neurology Service in 1992. Using radioactive linkage, we
mapped the CFEOM1 phenotype in his family to the centro-
meric region of chromosome 12 (1), which is now referred to
as the FEOM1 locus. Over time, we enrolled many additional
families with CFEOM1 and refined the FEOM1 critical region
to 3 cM, still spanning the centromere of chromosome 12
(21,35). Before identifying the FEOM1 gene, we were able to
conduct a postmortem neuropathologic examination of an
elderly affected member of the original CFEOM1 pedigree,
who died of unrelated causes. The primary abnormality we
found was absence of the superior division of the oculomotor
nerve (cnIII) and the corresponding motoneurons in the mid-
brain oculomotor nucleus, and marked abnormalities of the
levator palpebrae superioris and superior rectus muscles,
which are normally innervated by this branch and elevate the
eyelid and the globe, respectively (5) (Fig. 2f). These patho-
logic findings have now been confirmed by high-resolution
MR images of the brainstem and orbit of individuals with
CFEOM1 (36) and suggest that the FEOM1 gene was essen-
tial to the development of this branch of the oculomotor nerve,
and is likely important to axonal targeting of the extraocular
muscles.

In 2000, the release of human genomic sequence by the
Genome Project combined with increasing public availability
of powerful computer programs for mining genomic sequence
made it feasible for us to begin mutation analysis of candidate
genes within the FEOM1 region, which had been technically
more difficult given its location adjacent to the centromere.
After screening a series of normal genes, we found that
individuals with CFEOM1 harbor heterozygous mutations in a
developmental kinesin, KIF21A (37). Kinesins are molecular
motors that interact with and transport cargo along microtu-
bules. There are at least 45 human kinesins, each transporting
specific cargos such as mitochondria, vesicles, and protein
complexes. Although human KIF21A had not been previously
recognized, mouse Kif21a had been shown to be a develop-
mental kinesin expressed primarily in the CNS, and to be
engaged in anterograde axonal transport (38).

KIF21A is predicted to be similar in structure to classical
kinesin and to contain three domains—motor, stalk, and tail
(38). The motor domain interacts with the microtubule track,
and two motor domains from interacting kinesins may “walk”
together down the microtubule. The tail domain typically
carries the cargo. The long flexible stalk domain links the
motor and tail domains, and contains coiled-coil regions
where two kinesins may interact, resulting in homo- or het-
erodimerization. KIF21A’s cargo and potential interacting
proteins are not yet known.

We have identified KIF21A mutations in the vast majority
of CFEOM1 patients we have screened (37). Interestingly,
despite the large size of KIF21A—the gene contains 38 exons
and encodes a 1674 amino acid protein—we have identified
only seven different pathogenic mutations (37,39). All seven
are missense mutations and several alter the same or adjacent
nucleotides, resulting in only four amino acid residue substi-
tutions. Three of the altered amino acid residues are located
within a single coiled-coil region of the KIF21A stalk, and the
fourth is at the end of the motor domain adjacent to the stalk.
We hypothesize that these recurrent, specific KIF21A muta-
tions may interfere with dimerization of KIF21A to itself or
another binding partner, or possibly interfere with the ability
of KIF21A to move into and out of an active state. Disruption
of either of these processes could render KIF21A unable to
deliver its unidentified cargo from the oculomotor motoneu-
rons to the synapse of the developing neuromuscular junction
of the extraocular muscle.

CONCLUSION

The identification and genetic analysis of rare disorders of
complex strabismus has led to the identification of a series of
disparate genes, each of which plays an essential role in the
normal development and/or connectivity of cranial motoneu-
rons. Some effect development of the midbrain oculomotor
and/or trochlear nuclei and result in primary abnormalities of
vertical gaze, whereas others effect development of the pon-
tine abducens nucleus and result in primary abnormality of
horizontal gaze. The underlying gene defects lead to errors at
various locations along the developing neuro-axis, including
errors in axonal targeting onto the motoneurons, errors in
motoneuron development, and errors in axonal targeting onto
the extraocular muscles. We anticipate that continued studies
of each gene’s role in neurodevelopment would provide ad-
ditional knowledge about the pathogenesis of oculomotor
disease and the development of the human brainstem.
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