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ABSTRACT: Bacillus Calmette-Guerin (BCG) vaccination can pro-
tect animals from asthma, but the effect of BCG on childhood asthma
prevention is controversial in humans. To verify the hypothesis that
the BCG anti-asthma effect in childhood might be reversed by a
respiratory virus infection, newborn BALB/c mice were divided into
five groups. Control and ovalbumin (OVA) groups were mock
vaccinated and mock infected. The BCG/OVA group was BCG
vaccinated and mock infected. The respiratory syncytial virus (RSV)/
OVA group was mock vaccinated and RSV infected. The BCG/RSV/
OVA group was BCG vaccinated and RSV infected. Except for the
control group, all groups underwent OVA sensitization and chal-
lenge. Airway hyperresponsiveness (AHR) was measured after chal-
lenge and cells in bronchoalveolar lavage fluid (BALF) were
counted. Cytokines in BALF and serum OVA-specific IgE were
detected by ELISA and inflammatory characteristics of lung sections
were scored. Mice with neonatal BCG vaccination (BCG/OVA
group) were significantly protected from BALF eosinophilia, AHR to
methacholine, peribronchiolitis, alveolitis, and peribronchial eosino-
philia in comparison with the OVA, RSV/OVA, and BCG/RSV/
OVA groups. AHR in the OVA group was greater than in the
BCG/OVA group but lower than in the RSV/OVA and BCG/RSV/
OVA groups. No significant differences in BALF eosinophilia, AHR,
and lung inflammation were found between the RSV/OVA and
BCG/RSV/OVA groups. The impact of BCG vaccination on anti-
asthma in mice was not dependent on interferon-�, IL-4, and IL-10
levels. The results suggested that RSV infection can reverse the
anti-asthma effect of neonatal BCG vaccination in BALB/c mice.
(Pediatr Res 59: 210–215, 2006)

Asthma is a common chronic allergic disease in children.
The prevalence of asthma has increased dramatically in

recent decades, affecting more than 30% of the population,
especially in developed countries (1). The reason for this
increasing prevalence of asthma has not been elucidated. The
“hygiene hypothesis” suggests that the improved hygiene in
industrialized countries and the use of vaccines and antibiotics
has caused the decline of many infectious diseases that would

normally stimulate the immune system in some way that
mitigates against asthma (2,3).
According to the hygiene hypothesis, infections with some

pathogens, for example Mycobacteria tuberculosis, in early
childhood may be important for protection from asthma. In a
survey among 867 Japanese children, all immunized with
BCG, skin test reactivity to tuberculin was shown to inversely
correlate with the likelihood of having asthma (4). Multiple
studies in animal models have demonstrated that treatments
with either live or dead mycobacteria are capable of inhibiting
allergen-induced lung inflammatory responses (5–10). It has
been shown that BCG can reduce the formation of specific
IgE, eosinophilia, and bronchial hyper-responsiveness in-
duced by allergen with an increase in interferon (IFN)-�
production (5–7). Similarly, heat-killed BCG, Mycobacterium
vaccae, and purified protein derivative from M. tuberculosis
have all been shown to suppress allergic and asthma-like
responses in mice (8–10). However, it is controversial
whether BCG vaccination decreases asthma prevalence in
humans. Some studies support the role of BCG in inhibiting
asthma and allergy development (4,11,12), whereas other
studies do not (13,14). Why the anti-asthma of BCG is
different between animals and humans has not been eluci-
dated.
A positive association between infection with some respi-

ratory viruses and asthma has been recognized for decades.
Respiratory virus infection inhibits induction of tolerance and
increases sensitization to inhaled allergens resulting in in-
creased airway inflammation and airway hyper-responsive-
ness (15). Severe infantile RSV infection appears to increase
the risk of recurrent wheezing and developing asthma (16),
although this may disappear by the age of 13 y (17).
BCG is given to every neonate in mainland China. How-

ever, during the first or second year of life, almost all children
are infected with RSV (18). We proposed a hypothesis that the
role of BCG vaccination as protection from asthma in humans
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might be reversed by respiratory virus infection. In this study,
we investigated the combined effect of neonatal Bacillus
Calmette-Guerin vaccination and RSV infection on asthma
development in BALB/c mice.

MATERIALS AND METHODS

Mice. BALB/c mice, free of specific pathogens, housed in individual
filtered cages, were maintained on OVA-free diets. Cages, bedding, food, and
water were sterilized before use. Room temperature was maintained at 27°C,
and a 12-h on, 12-h off light cycle was provided. Pregnant mice went into
labor at d 20 of pregnancy and newborn mice were raised and maintained in
the same conditions. This study was approved by the Institutional Animal
Care and Research Advisory Committee at the Chongqing University of
Medical Sciences. All experimental animals were used in accordance with the
guidelines issued by the Chinese Council on Animal Care.

Cell and virus. HEp-2 cells were maintained in Eagle’s minimal essential
media (EMEM) supplemented with glutamine, fungiazone, gentamicin, pen-
icillin G, and 10% fetal bovine serum (10% EMEM). Human RSV A2 strain
was grown in HEp-2 cells and titrated by plaque assay. Master stock and
working stock of RSV were prepared as described previously (19).

Study groups. Newborn mice were divided into five groups. Every group
contained 14 mice, 8 for BAL and 6 for pulmonary resistance and histopa-
thology. Control and OVA groups were mock vaccinated and mock infected.
The BCG/OVA group was BCG vaccinated and mock infected. The RSV/
OVA group was mock vaccinated and RSV infected, and the BCG/RSV/OVA
group was BCG vaccinated and RSV infected. The study protocol is outlined
in Figure 1.

BCG vaccination and RSV infection. Newborn mice were immunized
subcutaneously on the back with a 30-gauge needle from a tuberculin syringe
with 20 �L of BCG [1 � 105 colony-forming units (CFU)]. Mock-vaccinated
mice were injected with the same amount of BCG diluent in the same area. At
3 wk of age, mice were infected with RSV intranasally. Briefly, the mice were
lightly anesthetized intraperitoneally with 0.3% pentobarbital sodium. When
held upright with the neck fully extended, the mice readily inhaled a 50-�L
inoculum of stock virus (106 plaque-forming units of RSV) placed into their
nostrils with a micropipette. Infection was confirmed in a subset of mice by
immunofluorescence detection of RSV antigen in cells from BALF 3 d
postinfection. Mock-infected mice were inoculated intranasally with the same
amount of HEp-2 cell culture supernatant at the same time point.

OVA sensitization and challenge. Except for the control group, mice from
all groups were sensitized twice at 4 and 6 wk of age as described by Oh et
al. (20). Briefly, OVA (grade V, 500 �g/mL) in PBS was mixed with equal
volumes of 10% (wt/vol) aluminum potassium sulfate (alum; Sigma Chemical
Co., St. Louis, MO) in distilled water and incubated for 60 min at room
temperature after adjustment to pH 6.5 using 10 N NaOH. After centrifugation
at 750 � g for 5 min, the OVA/alum pellet was resuspended to the original
volume in distilled water. Mice received an intraperitoneal injection of 100 �g
OVA (0.2 mL of 500 �g/mL in normal saline) complexed with alum. At 7 wk
of age, all OVA-sensitized mice were challenged with aerosols of 5% OVA
(grade II) diluted in PBS for 30 min each day on 10 consecutive days. Mice
from control group received a mock sensitization with intraperitoneal alum
alone and a mock challenge with aerosol PBS at the corresponding time.

BAL and cell counting. Mice were anesthetized with urethane (15 mg/10
g body weight intraperitoneally) 24 h after the last OVA challenge, and the
abdominal cavity was opened. Blood samples for serum were collected from
the vena cava. The tracheas were cannulated, and BAL was performed by two
lavages with 0.5 mL ice-cold PBS. The total cell number in BALF was
determined. The BAL was centrifuged and supernatant used to test for
cytokine production and the cell pellet used to prepare slides for differential
cell counting. Cytospin slides were fixed and stained with DiffQuik (Baxter

Healthcare Corp, Deerfield, Miami, FL) for leucocyte differential analysis,
and the number of monocytes, lymphocytes, neutrophils, and eosinophils in a
total of 200 cells were counted in each slide.

Cytokines analysis. Concentrations of cytokines in BALF were measured
with commercial ELISA kits according to the manufacturer’s instructions.
Murine IFN-� and IL-10 ELISA kits were purchased from Tepnel Diaclone
(Besancon Cedex, France) and IL-4 from Bender MedSystems (Vienna,
Austria).

Anti-OVA-specific IgE levels in serum. Anti-OVA-specific IgE in the sera
were measured by ELISA as done previously (21). Briefly, the microplate was
coated with 100 �L of OVA (20 �g/mL), mouse sera were incubated in the
antigen-coated wells, and bound IgE was detected with a biotinylated anti-
mouse IgE. Diluted avidin-alkaline phosphatase was added, the bound en-
zyme was detected with 3,3=5,5=-tetramethylbenzidine substrate, and the
absorbance read at 450 nm.

Methacholine challenge. Lung resistance of mice was measured with
AniRes 2000 animal lung function analysis systems (Aerospace New Concept
Software Co., Ltd., Beijing, China). Mice were anesthetized with intraperi-
toneal injection of 20% urethane 0.2 mL 24 h after the last OVA challenge,
and the tracheostomy tube was placed. The mice were then placed in a
whole-body plethysmography chamber and ventilated mechanically at a rate
of 120 breaths per minute with a tidal volume of 10 mL/kg. Acetyl-�-
methacholine (Sigma Chemical Co.) was dissolved into 0.2, 0.4, 0.8, 1.6, and
3.2 g/L in PBS and an aerosol challenge at each dose was administered via a
nebulizer. After each dose of challenge, airway pressure and lung volume
changes were recorded, and pulmonary resistance was calculated using pro-
vided software program.

Histopathology. Formalin-fixed lungs were embedded in paraffin, sec-
tioned in 6-�m thick slices, and stained with hematoxylin and eosin for
routine histology. In a blinded fashion, an experienced histologist examined
the slides for peribronchiolitis, perivasculitis, alveolitis, and eosinophilia.
Lung lesions were scored semi-quantitatively as described by other research-
ers (22,23). Severity of inflammation was evaluated by assigning a value of 0
for no inflammation, 1 for mild inflammation, 2 for moderate inflammation,
and 3 for severe inflammation (Fig. 2). Eosinophilia was determined by
counting the number of eosinophils within the inflamed peribronchial region
and expressing this as a percentage.

Statistical analysis. Results were shown as mean � SD. Statistical analysis
was performed with the statistical software package SigmaStat (SPSS Inc.,
Chicago, IL). All assays were compared using ANOVA followed by least
squares difference–t analysis. Differences were considered statistically signif-
icant when the p value was �0.05.

RESULTS

Cellular composition of the lung inflammatory responses.
In comparison with epithelial cells, which constituted the
majority of BAL cells in the control group, lymphocytes were
the major inflammatory cells found in BALF from other
groups that underwent OVA sensitization and challenge. The
number of total cells (Fig. 3A), lymphocytes (Fig. 3B), mono-
cytes, neutrophils, and eosinophils (Fig. 3C) in the BALF of
OVA, BCG/OVA, RSV/OVA, and BCG/RSV/OVA groups
were all significantly greater than in control group (p � 0.01).
The number of total cells and eosinophils in the BCG/OVA
group was significantly lower than in the OVA, RSV/OVA,
and BCG/RSV/OVA groups, with the lymphocyte number
significantly lower than in the OVA and BCG/RSV/OVA
groups. However, there was no difference in the number of
monocytes and neutrophils between the four groups (data not
shown).
Cytokine production in BALF. The levels of IFN-�, IL-4,

and IL-10 in BALF were assayed by ELISA, which represent
Th1, Th2, and regulatory T cell response, respectively. As
showed in Figure 4, all OVA-sensitized/challenged groups
(OVA, BCG/OVA, RSV/OVA, and BCG/RSV/OVA groups)
had significantly lower IFN-� and higher IL-4 level than the
control, but there was no significant difference among these
four groups. The ratio of IFN-�/IL-4 in all OVA-sensitized/

Figure 1. Time points of experimental protocol. Lung resistance of mice was
measured and BAL performed 24 h after the last OVA challenge.
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challenged groups was significantly lower than in control.
There was no significant difference in IL-10 level among
groups.
Serum OVA-specific IgE. As shown in Figure 5, OVA-

sensitized/challenged mice (OVA, BCG/OVA, RSV/OVA,
and BCG/RSV/OVA groups) showed significantly higher se-
rum OVA-specific IgE titers than control mice. However,
there were not significant differences among all of the OVA-
sensitized or -challenged groups. The results showed that
BCG vaccination, RSV infection, or their combination had no
influence upon serum OVA-specific IgE titers caused by OVA
immunization.
Airway reactivity to methacholine. Mice were challenged

with aerosolized methacholine to measure AHR. There were
no significant differences in baseline airway resistance among
the five groups (Fig. 6). The airway resistance in the OVA,
BCG/OVA, RSV/OVA, and BCG/RSV/OVA groups was ob-
viously increased in a concentration-dependent manner by
methacholine inhalation whereas only a slight increase could
be detected in the control group. RSV/OVA and BCG/RSV/
OVA groups had significantly greater airway resistance than
other groups, which were, in order of increasing severity, as
follows: OVA group, BCG/OVA group, and control group,
but there was no difference between the RSV/OVA and BCG/
RSV/OVA groups. Interestingly, RSV infection reversed the
effect of BCG because BCG/RSV/OVA group showed signif-
icantly greater AHR than the OVA and BCG/OVA groups.
Histologic changes. The inflammatory characteristics

caused by OVA sensitization/challenge are shown in Figure 7.

Histologic scores of peribronchiolitis, perivasculitis, alveoli-
tis, and peribronchial eosinophilia in all groups with OVA
sensitization/challenge (OVA, BCG/OVA, RSV/OVA, and
BCG/RSV/OVA groups) were significantly higher than that in
the control group. Comparison among all groups with OVA
sensitization/challenge showed that the BCG/OVA group had
significantly milder peribronchiolitis, alveolitis, and peribron-
chial eosinophilia than other groups. However, there was no
difference among these groups in terms of perivasculitis.

DISCUSSION

The increased prevalence of asthma over the past decades
has become a major public health issue for the developed

Figure 3. Composition of cell counts from BALF. Eight mice in control (1),
OVA (2), BCG/OVA (3), RSV/OVA (4), and BCG/RSV/OVA (5) groups
were killed for BALF. **p � 0.01 as compared with control group; †p � 0.05
as compared with BCG/OVA group. The number of (A) total cells and (C)
eosinophils in the BCG/OVA group was significantly lower than in the OVA,
RSV/OVA, and BCG/RSV/OVA groups, with the (B) lymphocyte number
significantly lower than in the OVA and BCG/RSV/OVA groups. Results
showed as mean � SD.

Figure 2. Representative hematoxylin and eosin–stained murine lung sections. Shown are representative sections for peribronchial inflammation for grade 0 (no
inflammation) (A); grade 1 (mild inflammation) (B); grade 2 (moderate inflammation) (C); grade 3 (severe inflammation) (D); and peribronchial eosinophils
(arrow) (E). Magnification is � 100 and scale bar � 200 �m for A–D; magnification is � 1000 and scale bar � 0.5 �m for E.

Figure 4. The absolute concentration of IFN-�, IL-4, and IL-10 and the ratio
of IFN�/IL-4 in BALF. Eight mice in control (1), OVA (2), BCG/OVA (4),
RSV/OVA (4), and BCG/RSV/OVA (5) groups were killed for BALF. *p �
0.05; **p � 0.01 as compared with control group. Results showed as mean �
SD.
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countries. The “hygiene hypothesis” suggests that the increase
in allergic diseases is caused by a cleaner environment and
fewer childhood infections (24–28). Because a survey from
Japan reported that skin test reactivity to tuberculin was
shown to inversely correlate with the likelihood of having
asthma (4), BCG has been studied as an anti-asthma vaccine
in an attempt to verify the “hygiene hypothesis” in animals
and in humans. Most of the animal studies focused on the
impact of BCG on adult mice, whereas several studies used
neonatal mice as a model to study heat-killed BCG by direct
intranasal BCG administration (29,30). In this study, we dem-
onstrated that live BCG inoculated in neonatal mice by sub-
cutaneous administration was capable of suppressing the de-
velopment of OVA-induced airway eosinophilia, AHR, and
histologic inflammation. However, neither inhibition of OVA-
specific IgE nor the augmentation of Th1 response with

suppressed Th2 response was found in neonatal mice. The
results suggested that the anti-asthma effect of neonatal BCG
vaccination is not through the Th1/Th2 paradigm, but that
other Th1/Th2-independent immunologic regulatory mecha-
nisms might be more important.
It has been reported that Mycobacterium vaccae induces

CD4 regulatory T cells inhibiting OVA-induced airway in-
flammation through IL-10 and transforming growth factor
beta (TGF-�) production (31). Our previous study showed that
BCG promoted cord blood monocyte-derived dendritic cells’
maturation and induced higher levels of IL-10 and medium
levels of IFN-� but little IL-4 production by cord-naı̈ve CD4�

T cells (32), and intraperitoneal BCG vaccination of neonatal
mice could induce more IL-10�CD3� cells in spleen, which
might represent some regulatory T cells producing IL-10 (data
not shown). Here we showed that IL-10 production in BALF
from asthmatic mice (OVA group) was significantly lower
than that from controls. Moreover, average IL-10 production
in BALF from the BCG/OVA group was higher than that from
the OVA group, but the difference did not reach statistical
significance. Further studies are needed to focus on whether it
is possible that the anti-asthma effect of BCG is mediated by
IL-10 produced by regulatory T cells.
RSV infection results in AHR and enhanced airway sensi-

tization to allergens in the murine model (22,33,34). Our
results proved that mice infected with RSV before sensitiza-
tion to OVA had higher AHR than non-RSV-infected mice,
but other asthmatic parameters and the level of IFN-�, IL-4,
and IL-10 in BALF were not significantly different. In our

Figure 5. Serum OVA-specific IgE titers. Sera of eight mice in each group
were measured by ELISA. *p � 0.05 as compared with control group. Results
showed as mean � SD.

Figure 6. Result of methacholine challenge. n � 6 for Control (�), BCG/
OVA (�) BCG/RSV/OVA (�), OVA (Œ), and RSV/OVA (‚) groups. *p �
0.05 RSV/OVA and BCG/RSV/OVA group compared with other groups. †p
� 0.05 OVA group compared with BCG/OVA group. RSV/OVA and BCG/
RSV/OVA groups had significant greater airway resistance than other groups,
which were, in order, as follows: OVA group, BCG/OVA group, and control
group in severity of AHR, but there was no difference between the RSV/OVA
and BCG/RSV/OVA groups.

Figure 7. Histologic scores of pulmonary (A) peribronchiolitis, (B) alveolitis,
(C) perivasculitis, and (D) percentage of peribronchial eosinophilia. n � 6 for
control (1), OVA (2), BCG/OVA (3), RSV/OVA (4), and BCG/RSV/OVA (5)
groups. **p � 0.01 as compared with control group; †p � 0.05 as compared
with BCG/OVA group. Results showed as mean � SD.
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previous study, we found that the concentration of IFN-� but
not IL-4 and IL-10 increased in BALF on d 7 postinfection
from mice infected with RSV as compared with noninfected
controls (data not shown), which was consistent with other
findings (33,35) and could be explained as acute RSV infec-
tion resulting in a Th1-type cytokine response. However, in
our present experimental system, augmentation of allergen-
induced AHR after RSV infection could not be explained by
a Th1/Th2 mechanism. Similar to our results, one report
recently demonstrated that increased pulmonary expression of
IL-4, IL-5, and IL-13 mRNA and aggravated alveolitis and
hypertrophy of mucus-producing cells were observed only
when OVA-sensitized mice were inoculated with RSV shortly
before or during challenge with OVA (36). In this report,
when RSV inoculation was performed before sensitization to
OVA, Th2 cytokines mentioned above and Th1 cytokine
IFN-� mRNA expression was similar to the ones without RSV
inoculation. The time-dependent effect of RSV infection on
OVA allergy may be determined by the OVA-induced cyto-
kine milieu. So far, the precise role of RSV in the develop-
ment of allergic asthma is not clear and might involve other
mechanisms such as impairment in the inactivation of tachy-
kinins, virus-induced nitric oxide production, and changes in
neural control of the airways (37).
Despite decreased OVA-induced airway eosinophilia,

AHR, and histologic inflammation after BCG vaccination in
neonatal mice, the effects of BCG appeared to be reversed by
subsequent RSV infection. This supports the hypothesis we
proposed. It may also help explain why there are consistent
results in animal models and controversial conclusions in
humans from BCG anti-asthma research. Due to the sterile
environment or lack of susceptibility to the pathogens they are
exposed to, the experimental animals do not suffer from RSV
infection or other virus infections closely linked to the devel-
opment of asthma. In contrast to experimental animals, the
situation is completely different in humans. Almost all chil-
dren become infected with RSV during the first or second year
of life, so that BCG’s anti-asthma effect might not be obvious
because of the intervening RSV infection. Certainly, some
researchers argue that severe RSV lower respiratory tract
infection in infancy is an independent risk factor for childhood
asthma (38–40).
Serum OVA-specific IgE and cytokines of BALF in OVA-

sensitized/challenged mice were unaffected by BCG vaccina-
tion or/and RSV infection. These results are in agreement with
the results from other studies (30,33,36) and indicated that
OVA-specific IgE, IFN-�, IL-4, and IL-10 might not be
responsible for changes of asthmatic inflammation and AHR
caused by BCG and RSV interference in our mouse model.
Although our results imply that BCG vaccination in human

neonates might not play a role of preventing childhood asthma
because of inevitable RSV infection in infancy, the situation in
human might be different from mice because of more complex
life environment and a more diverse genetic background. The
BALB/c mice strain used in this study maybe more prone to
abnormally pronounced inflammation due to RSV than other
mouse strains. Further study is needed to determine whether
the same results would be observed in other strains of mice.

In summary, neonatal BCG vaccination decreased asth-
matic inflammation and AHR in OVA-sensitized/challenged
mouse model whereas RSV infection before sensitization to
OVA aggravated AHR. Hence, the anti-asthma effect of BCG
could be reversed by RSV infection. The mechanism respon-
sible for the impact of BCG and RSV on asthmatic inflam-
mation and AHR in the mouse model will be studied further.
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