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ABSTRACT: Exposure to sustained hypoxia (SH) differentially
modifies the hypoxic ventilatory response (HVR) in adults and
developing rats. We examined the possibility that postnatal intermit-
tent hypoxia (IH), a more prevalent clinical condition than SH, may
lead to significant modifications of ventilatory patterning during
development. Sprague-Dawley rat pups were exposed as of the d 1 of
life to either SH (10% O2) or IH [alternating room air (RA) and 10%
O2 every 90 s] for up to 30 d; controls were exposed to normoxia.
HVR (10% O2 for 20 min) was assessed in unrestrained pups at 5, 10,
15, and 30 d of age using whole-body plethysmography. IH pups
displayed higher normoxic ventilation (VE) at all ages (p � 0.001
versus control; n � 12 per group), which was not observed in SH
animals until 10 d of exposure (p � 0.001 versus control; n � 12 per
group). Furthermore, both SH and IH modified properties of peak
HVR (pHVR), as well as those of the ensuing hypoxic ventilatory
decline (HVD); however, the ventilatory strategies adopted after SH
and IH greatly differed. We conclude that both postnatal IH and SH
modify normal ventilatory patterning and induce altered HVR, but
differ in the ventilatory strategies adopted to mount HVR responses.
(Pediatr Res 60: 680–686, 2006)

The mammalian HVR is characteristically biphasic, con-
sisting of initial ventilatory enhancements, termed pHVR,

followed by subsequent reductions in ventilatory output, i.e.
HVD (1). Ventilatory enhancements during pHVR depend on
afferent input from peripheral chemoreceptors, predominantly
the carotid bodies, and critically rely on intact glutamatergic
signaling in the nucleus of the solitary tract (nTS) (2–5). In
contrast, HVD appears to result from complex interactions
between both excitatory and inhibitory influences on periph-
eral chemoreceptors, central respiratory related neurons, and
metabolic pathways (1).
The effects of SH exposure on HVR have now been exten-

sively characterized in both adult and developing mammals. In
adults, prolonged exposure to SH leads to time-dependent

increases in normoxic ventilation with concomitant enhance-
ments of pHVR, a phenomenon that has been termed ventila-
tory acclimatization to hypoxia (VAH) (6), and mediated
through increases in peripheral chemoreceptor sensitivity and
centrally mediated adaptations (1). In contrast, when equiva-
lent SH exposures are presented during the immediate post-
natal period, progressive blunting of HVR and decreased
hypoxic ventilatory sensitivity emerge (7–10). The mecha-
nisms underlying the adaptations observed in the perinatal
period are still subject to debate; however, some of the
available evidence points to reduced carotid body sensitivity
(11–13) and/or changes in neuromuscular transmission, func-
tion of respiratory muscles, respiratory mechanics, or feed-
back control systems (14).
The modification of HVR during the perinatal period is of

profound clinical interest given that antecedent hypoxia has
been implicated in the pathophysiology of sudden infant death
syndrome (SIDS) (15). However, except for high-altitude
exposure and environmental conditions of burrowing animals,
SH is a relatively unusual occurrence. Indeed, IH is a much
more frequent event in clinical settings and accompanies a
variety of clinical disorders such as apnea of prematurity and
sleep apnea (16).
Prolonged exposure to IH in adult rats elicits progressive

enhancements of normoxic ventilatory output, also termed
ventilatory adaptation to intermittent hypoxia (VAIH). VAIH
is associated with alterations of N-methyl-D-aspartate receptor
subtypes in the dorsocaudal brainstem (17) and progressively
and rapidly abates with return to preexposure ventilatory
levels shortly after termination of the IH exposure. Of note,
VAIH differs from the VAH elicited by comparable exposure
to SH in adult rats (17). In the developing rat, perinatal
exposure to chronic IH leads to VAIH and lifelong modifica-
tions of ventilatory control (18). Furthermore, induction of
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altered normoxic respiration as a result of chronic IH displays
an age-dependent pattern (19). However, the consequences of
long-lasting IH on the maturation of respiratory control during
early postnatal life have not been systematically evaluated.
Therefore, we hypothesized that exposure to prolonged IH (up
to 30 d), beginning in the immediate postnatal period would
lead to modifications of normoxic respiratory characteristics
and altered HVR in the developing rat and that such modifi-
cations would not completely overlap with those elicited by
exposures to SH.

METHODS

Time pregnant Sprague-Dawley rats were purchased from Charles River
(Portage, MI), and their male offspring were used for all experiments. Litters
were routinely culled to eight pups. The experimental protocols were ap-
proved by the Institutional Animal Use and Care Committee and in close
agreement with the National Institutes of Health Guide in the Care and Use of
Animals. All efforts were made to minimize animal suffering and to reduce the
number of animals used.

Experimental protocol. Male rats were exposed to 30 consecutive days of
either SH or IH with their dams starting within the first 12 h of life. As
controls, animals were exposed in identical chambers to normoxic conditions
with RA being flushed in the chambers in a similar periodicity as that used for
IH exposures. At postnatal ages 5, 10, 15, and 30 d, animals were removed
from the environmental chambers and respiratory measures were conducted
using whole-body plethysmographic techniques after 3–4 h in normoxia.

Hypoxia exposures. Environmental hypoxic exposures were conducted as
previously described (20).

Ventilatory and metabolic recordings. Respiratory and metabolic mea-
sures were continuously acquired in the freely behaving animals using
methods previously described (20).

Acute hypoxic ventilatory challenges. Hypoxic ventilatory challenges
were conducted at 5, 10, 15, and 30 d after a normal birth. Animals were
weighed and placed in the barometric recording chamber. After stable base-
line normoxic values were obtained for at least 30 min, rats were switched to
10% O2–balance N2, using a premixed gas mixture. The acute hypoxic
challenge lasted for 20 min followed by 10-min recovery. Ventilatory mea-
sures were averaged in 1-min intervals and plotted.

Arterial blood gases. Arterial blood samples were obtained from im-
planted arterial catheters in four rats from each group at age 30 d. Catheters
(PE-10, Silverwater, B.C., Australia) were placed in the right femoral artery
under general anesthesia (Nembutal, 50 mg/kg i.p.) and tunneled subdermally
to a second incision just rostral to the scapulae. Measurements were made 3 d
later after and consisted in the withdrawal of 75–100 �L of arterial blood after
discarding the dead space of the catheter. Samples were immediately analyzed
with a blood gas analyzer (ABL 510, Copenhagen, Denmark). Measurements
were performed before the hypoxic gas switch and during the hypoxic
challenge.

Data analysis. All values are shown as mean � standard error (SE) unless
indicated otherwise. Baseline ventilatory measures represent the average of at
least 10 min of stable normoxic ventilation and were obtained at similar
periods of the circadian cycle for all animals. One-way analyses of variance
procedures were used to compare differences among outcome variables
between the groups at specific time points (i.e. normoxia, pHVR, and HVD)
as well as across responses for each experimental group. Significant compar-
isons were followed by Fisher least significant difference post hoc tests as
appropriate. A p value �0.05 was considered to achieve statistical signifi-
cance for all analyses.

RESULTS

In each group, 12 randomly selected male rats derived from
multiple litters were assessed at each time point during the
experimental protocol.
Somatic growth. All litters were weighed shortly after birth

(before exposures were initiated) and had similar average
weights. Rats exposed to both SH and IH protocols experi-
enced significant growth attenuation in the first 5 d of the

exposure compared with RA controls (Fig. 1, p � 0.05);
however, SH animals experienced significantly greater growth
attenuation than IH animals after 10 and 15 d of exposure
compared with controls (Fig. 1, d 10, p � 0.05 versus IH, p �
0.01 versus RA; d 15 p � 0.05 versus IH, p � 0.01 versus
RA). However, by d 30 of the protocol, SH showed consid-
erable catch-up growth such that there were no statistical
differences between SH and control animals; such growth
recovery did not occur in IH-exposed animals, such that at d
30, they weighed significantly less than both SH- and RA-
exposed animals (p � 0.01 versus SH and RA). Thus, all
measurements of minute ventilation (VE) and tidal volume (VT),
which are dependent on body size, were normalized to body
weight in grams.
Normoxic VE. Normoxic VE was significantly increased in

IH-exposed rats for all ages (Figs. 2 and 3, p � 0.01 versus
RA), whereas normoxic VE in SH-exposed animals only
became significantly elevated after 10 d of exposure (p � 0.01
versus RA). Ventilatory measurements were not significantly
different between SH and IH rats at d 15; however, SH-
exposed animals failed to reach the same level of ventilatory
output demonstrated by animals exposed to IH after 30 d.
Closer examination of the respiratory components revealed no
differences in respiratory frequency among the groups after
5 d of exposure (Fig. 3B); however, after 10 d of exposure, SH
animals displayed increased frequency that was significantly
greater than in both RA- and IH-exposed animals (p � 0.01
versus both). Enhanced frequency occurred in IH animals only
after 15 d of exposure and was not significantly different from
SH animals (p � 0.01 IH versus RA; p � 0.01 SH versus RA).
After 30 d of exposure, SH animals demonstrated enhanced
respiratory frequency that was significantly greater than both RA-
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Figure 1. Somatic growth. Average [mean � standard error of the mean
(SEM); n � 12 per group] somatic weights measured at each postnatal age.
Rats exposed to both SH (�) and IH (Œ) protocols experienced significant
growth attenuation in the first 5 d of the exposure compared with RA controls
(�) (p � 0.05). SH animals experienced significantly greater growth atten-
uation than IH animals after 10 and 15 d compared with controls (d 10: p �
0.05 vs IH, p � 0.01 vs RA; d 15: p � 0.05 vs IH, p � 0.01 vs RA). At d 30,
SH experienced considerable catch-up growth such that there were no statis-
tical differences between SH and controls.
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and IH-exposed animals (p � 0.001 versusRA; p � 0.001 versus
IH). Furthermore, IH-exposed animals displayed increased fre-
quency compared with RA animals (p � 0.01). Closer inspection
of the development of normoxic VT (Fig. 3C) revealed that

IH-exposed animals displayed enhanced VT compared with RA
animals at all time points (p � 0.05), whereas SH-exposed
animals demonstrated diminished VT compared with RA after
5 d (p � 0.01) and 30 d (p � 0.01); however, VT was increased
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Figure 2. Hypoxic ventilatory responses. Ventilatory measurements (mean � SEM; n � 12 per group) conducted during acute hypoxic challenges in developing
rats exposed to RA (�), IH (Œ), or SH (�). Data are shown as both absolute minute ventilation (VE) (A, B, C, and D, respectively) and the percentage of change
from baseline VE (E, F, G, and H, respectively). For further details, please refer to the text.

Figure 3. Normoxic ventilation. Ventilatory measurements (mean � SEM; n � 12 per group) acquired after up to 30 d of exposures to RA (�), IH (Œ), or SH
(�) in postnatal rats. For further details, please refer to the text.
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after 10 d (p � 0.01) and 15 d (p � 0.01). Mean inspiratory flow
(VT/TI, Fig. 3D) was increased at all time points after IH (p �
0.01); however, VT/TI was increased in SH animals only after
10 d of exposure (p � 0.01) and was significantly less elevated
than IH animals at d 15. Inspiratory duty cycle (Ti/Ttot, Fig. 3E)
was not different from controls in IH animals; however,
Ti/Ttot was decreased in SH animals after both 5 and 30 d
of exposure (p � 0.01).
pHVR. Assessment of VE during pHVR revealed that IH-

exposed animals exhibited significantly greater ventilatory
enhancements than SH-exposed animals at all ages (p � 0.05;
Figs. 2 and 4A) and greater enhancements than RA-exposed
animals beyond 10 d of exposure (p � 0.01; Figs. 2 and 4A).
SH-exposed animals demonstrated significantly increased ab-
solute VE at d 10 (p � 0.01 versus RA) and d 15 (p � 0.01
versus RA) only. However, when presented as the percentage
of change from baseline, SH-exposed initially displayed sim-

ilar pHVR at 5 d (p � 0.05 versus RA; Fig. 4B), which
gradually decreased overtime such that after 15 d (p � 0.01
versus RA) and 30 d (p � 0.01 versus RA), relative pHVR
was decreased compared with RA-exposed animals. IH-
exposed animals exhibited significantly decreased pHVR at
only 15 and 30 d (p � 0.01 versus RA) when compared with
RA controls. Further examination of ventilatory data revealed
no significant differences in respiratory frequency between
animals exposed to either SH or IH and RA controls during
pHVR after 5 and 10 d of exposure. However, after 15 d,
IH-exposed animals exhibited moderately, albeit significantly
(p � 0.05 versus RA), enhanced respiratory frequency,
whereas after 30 d of exposure, only SH animals demonstrated
increased frequency (p � 0.01 versus RA). Relative changes
in frequency compared with corresponding antecedent base-
lines showed that respiratory frequency was greatly increased
in RA-exposed pups compared with either IH or SH (p �
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Figure 5. HVD. Ventilatory measurements (mean � SEM; n � 12 per
group) acquired after up to 30 d of exposure of developing rats to RA (�), IH
(Œ), or SH (�). For further details, please refer to the text.
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Figure 4. pHVR. Ventilatory measurements (mean � SEM; n � 12 per
group) acquired after up to 30 d exposures of postnatal rats to RA (�), IH (Œ),
or SH (�). For further details, please refer to the text.
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0.05; Fig. 4D). Analysis of VT during pHVR revealed a
pattern that closely resembled the observations reported above
for normoxic VT, whereas relative changes compared with
baseline failed to show any significant differences among all
three groups (Fig. 4F). Mean inspiratory flow (VT/TI; Fig. 4G)
was increased only after 15 and 30 d of IH (p � 0.001);
however, VT/TI was increased in SH animals only after 10 and
15 d of exposure (p � 0.01) and was significantly less elevated
than IH animals at d 15. Inspiratory duty cycle (Ti/Ttot,
Fig. 4H was not different from controls in IH animals; how-
ever, Ti/Ttot was decreased in SH animals after both 5 and 30 d
of exposure (p � 0.01).
HVD. Evaluation of HVD revealed attenuation of ventila-

tory reductions at all ages in IH-exposed animals as expressed
in absolute VE (p � 0.01 versus RA; Fig. 5A). By d 10,
SH-exposed also revealed significantly attenuated HVD
through d 15 (p � 0.01 versus RA). Differences in VE during
HVD were brought about increased frequency (Fig. 5C) as
well as increased VT (Fig. 5, E and F) in both IH- and
SH-exposed animals; however, on d 30, differences in VE

were mediated through only enhanced frequency in SH-
exposed animals (Fig. 5, C and D). Conversely, when ex-
pressed as relative change from baseline VE, HVD was only
significantly diminished in SH on d 10 (Fig. 5B) relative to
controls, with enhancements in HVD at d 30 for both SH and
IH (p � 0.01; Fig. 5B). Mean inspiratory flow (VT/TI, E) was
increased at all time points after IH and SH (p � 0.01);
however, VT/TI was increased to a greater extent in SH
animals after 10 d of exposure (p � 0.01; Fig. 5G). Inspiratory
duty cycle (Ti/Ttot, Fig. 5H) was increased in IH animals
beginning at d 10 (p � 0.01; Fig. 5H); however, Ti/Ttot was
decreased in SH animals after 5 d (p � 0.01) and increased after
15 d of exposure (p � 0.01).
Effect on metabolism. Metabolic measurements were ac-

quired after 30-d continuous exposure of rats to RA, IH, or
SH. No differences emerged among the groups with respect to
VCO2 measured during normoxia, pHVR, and HVD (Fig. 6A).
However, examination of ventilatory equivalents (VE/VCO2,
Fig. 6B) revealed significant enhancements in rats exposed to
30 d of postnatal IH (p � 0.01 versus all other groups;

Fig. 6B). No significant differences were found between RA
and SH with respect to VE/VCO2.

Arterial blood gases. Despite significantly altered ventilatory
patterns, no significant differences in arterial blood gases
emerged among the groups during normoxic conditions or during
hypoxic challenges (Table 1). These findings along with the
changes in VE/VCO2 described above would suggest substantial
alterations in respiratory mechanics in hypoxia-exposed rats.

DISCUSSION

In this study, we found that early postnatal IH and SH
induce fundamentally distinct alterations in both normoxic
ventilation and ventilatory responses to an acute poikilocapnic
hypoxic challenge in the developing rat. Furthermore, early
postnatal IH and SH elicit different adaptive respiratory strat-
egies, suggesting the possibility that unique mechanisms may
be induced by each respective stimulus.
The effect of SH on respiratory control is certainly one of

the most extensively investigated areas in the field. It has been
recognized for quite some time that exposure to environmental
hypoxia, such as occurs with exposure to high altitude, will
lead to time-dependent alterations in control of breathing. In
adults, such exposures enhance the response to subsequent
acute hypoxic challenges (6,17,21). This enhancement of
HVR is associated with increased sensitivity of the peripheral
chemoreceptors in combination with centrally mediated adap-
tations within the excitatory networks underlying HVR (22–
24); however, these effects will gradually abate after removal
of the hypoxic stimulus. In contrast, perinatal SH exposure
will elicit a progressive decreases in hypoxic ventilatory sen-
sitivity and a relative blunting of HVR (7,8,25). Such reduc-
tions in HVR may be accounted for in part by reduced O2

sensitivity of the carotid bodies (11–13). Unlike the transient
effects observed in adults, the blunted sensitivity to hypoxia
associated with perinatal exposure persists into adulthood,
suggesting SH-induced developmental changes. In a recent
study, hypoxic phrenic responses were intact after perinatal
hypoxia, suggesting that the ventilatory plasticity associated
with perinatal SH resides downstream to the phrenic motor
neuron pool and therefore could be related to neuromuscular
transmission, function of respiratory muscles, respiratory me-
chanics, feedback control, or a combination thereof (14).
Although the current findings are similar to those of other

studies of SH in the literature, we should point out that we
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Figure 6. Metabolic measurements (mean � SEM; n � 12 per group)
acquired after 30 d of exposures of developing rats to RA (�), IH (Œ), or SH
(�). No significant differences emerged among the groups with respect to
VCO2 measured during normoxia, pHVR, and HVD (A, p � ns). Further
examination of ventilatory equivalents (VE/VCO2, B) revealed significant
enhancements in rats exposed at to 30 d of postnatal IH (p � 0.01). No
significant differences were found between RA and SH with respect to
VE/VCO2.

Table 1. Arterial blood gases

pH � pCO2 � pO2 �

BL
RA 7.435 0.01 38.60 0.70 98.30 0.40
IH 7.449 0.00 38.83 0.46 97.23 1.41
SH 7.429 0.01 37.90 0.90 96.70 1.70

10%
RA 7.521 0.02 19.12 0.71 39.77 1.89
IH 7.527 0.01 20.41 1.40 41.96 3.09
SH 7.528 0.01 20.70 1.70 40.96 1.30

Average (mean � SEM; n � 4 per group) arterial blood gas measurements
during normoxic conditions or during the first 2 min of hypoxic challenge. No
significant differences in arterial blood gases emerged between the groups
during either normoxia or during pHVR.
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extended our exposures to 30 d, well beyond the 2 wk
previously examined (1). As in such studies, 2 wk of SH led
to the anticipated pattern of a relatively blunted pHVR (per-
centage of change from baseline) and prominent VAH with
increased normoxic ventilation attributable to both elevated
respiratory rate and enhanced VT. However, after 30 d of
postnatal SH, an unexpected and previously unreported
catch-up growth and relatively reduced VT were observed.
Although VAH was still present after 30 d of postnatal SH, it
was primarily ascribable to enhanced respiratory frequency,
which is further reflected in a shortened inspiratory duty cycle.
Of note is that, despite similarly affected VT and respiratory
frequency, a relatively reduced pHVR was still present at this
time point. These results may support the conclusions of Bavis
et al. (14) in that prolonged SH during development may alter
the development of pulmonary mechanics as reflected by the
augmentation of VT, although this issue was not specifically
addressed in the current study.
The effects of IH on ventilatory control have not been as

extensively characterized as those associated with SH. How-
ever, incremental evidence is emerging to suggest that IH and
SH are indeed very different stimuli that result in unique and
differential modifications of respiration. Indeed, studies com-
paring IH and SH in adult rats revealed markedly different
ventilatory adaptations that result in altered normoxic venti-
lation and HVR (17). Both IH and SH in adult rats were
associated with time-dependent ventilatory enhancements and
different responses to an acute hypoxic challenge consisting of
10% O2 for 20 min. SH rats demonstrated robust increases in
VE during pHVR and a characteristic HVD returning to near
baseline normoxic levels; however, IH-exposed animals dis-
played relative blunting of pHVR compared with control
animals and a significantly attenuated HVD. Notably, similar
to exposures to SH in the adult rat, the alterations in ventila-
tory control found in IH animals were completely reversed
after 1-mo recovery in normoxia.
Although the effects of IH in the developing mammal to this

point had not been systematically characterized, the conse-
quences of relatively shorter exposures (i.e. acute IH) have
been reported. Studies conducted in the immediate postnatal
period using two different IH protocols in both rabbits [e.g. 10
min 10% O2 followed by 10 min 21% O2, for five cycles; (26)]
and in rats [e.g. 21% O2 alternating with 5% O2, nine cycles
over 16 h, initiated 6 h after birth (27)] showed significant
IH-induced enhancement of normoxic ventilation. Addition-
ally, Peng and colleagues (27) have also shown that IH
induces enhancement of HVR, which is correlated with in-
creased sensory output from ex vivo carotid bodies harvested
from similarly exposed rat pups. In contrast to these findings,
an IH profile consisting of 30 min/d for 6 d attenuated HVR,
as demonstrated by diaphragmatic electromyography or as
ventilatory output measured using a pneumotachograph ex-
pressed as a function of normoxic baseline activity in devel-
oping piglets (28,29). Moreover, these findings were associ-
ated with increased levels of substance P within the nTS. The
latter finding may be of considerable interest given that the
receptor for substance P, NK1, has recently been implicated as
a critical mediator of HVR (30). Possible explanations for the

discrepancies between the findings presented in Peng et al.
and Waters et al. may be related to interspecies variability or
substantial differences in IH protocols. Indeed, several recent
studies have examined the effects of varying durations and
severity of IH profiles (31–34). The overwhelming consensus
reached by these studies is that the presentation and profile of
the IH exposure is directly related to physiologic responses
elicited. Therefore, it is necessary to consider inherent differ-
ences between IH profiles when trying to draw comparisons
between studies.
The findings of the present study demonstrate that devel-

opmental IH elicits ventilatory adaptations that are remarkably
different from those observed after SH. Indeed, IH uniquely
modified both normoxic ventilation and HVR in developing
rat pups through specific alterations in respiratory frequency
and VT. Furthermore, these variations do not appear to be
related to alterations in metabolic rate and metabolic re-
sponses to hypoxia as reflected by VCO2 measurements (Fig.
5). In addition, ventilatory disparities between the groups
could not be accounted for by variations in arterial blood gases
despite the substantial differences in minute ventilation ob-
served during normoxia and during hypoxic challenges (Table
1). Taken together, this evidence could suggest modification
of both peripheral (13) and central pathways underlying ven-
tilatory rhythmogenesis (35); however, at this point, based on
the discrepancies in ventilatory measurements associated with
SH and particularly with IH, we tend to favor the possibility
that altered respiratory mechanics associated with hypoxic
exposure and leading to increased dead space constitute the
major contributors to altered respiratory output. Indeed, fur-
ther studies will be required to identify the mechanism(s)
underlying chronic IH-induced ventilatory plasticity and po-
tentially the structural remodeling changes in lung paren-
chyma that may be associated with this hypoxic paradigm at
an early postnatal age.
In summary, prolonged exposure to either postnatal SH and

IH will elicit remarkable, albeit unique, consequences on
respiratory development. Furthermore, the consequences of
early postnatal exposure to IH are of profound clinical impor-
tance given the high prevalence of sleep-disordered breathing
in infants and the association of antecedent hypoxia with SIDS
(15). Therefore, future investigations will be critical to delin-
eate the molecular and cellular changes underlying the unique
adaptive phenomena associated with IH during development.
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