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As the president of the American Pediatric Society (APS) in
its 118th year,1 it is at least understandable, perhaps even

forgivable, if I am relatively brief, to wax historical for part of
my presidential remarks. I began my academic career at Stan-
ford University. I had a good start in a good place. Now, nearly
three decades later, I am the third holder of the Harold K. Faber
Professorship in Pediatrics at Stanford, after Norman Kretch-
mer and Philip Sunshine. Both of the previous holders of this
chair were my teachers and I honor their legacy at Stanford.
Norman served as APS president in 1978 to 1979 and Phil,
who served as Chief of Neonatology at Stanford for almost
20 y, received the Apgar Award from the American Academy
of Pediatrics (AAP) in 2001.
However, I knew little of Harold K. Faber, whom many of

my older colleagues had known personally (Fig. 1A). He came
to Stanford in 1915 as head of Pediatrics, a discipline that was
a subdivision of the Department of Medicine. In 1927, Pedi-
atrics became a separate department at Stanford, and he was
the first chair. He was the president of this society in 1946 to
1947 and the recipient of the Howland Award in 1956. At the
75th anniversary of the APS in May of 1963, he again ad-
dressed his colleagues. He recounted the society’s genesis and
adjusted history slightly, to recognize an individual whom he
characterized as a “forgotten pioneer” (1), Job Lewis Smith,
the second president of the APS in 1889 (Fig. 1B). As the story
goes, Job Lewis Smith, who was chairman of the Pediatric
Section of the 9th International Medical Congress, proposed
the creation of a new, independent society on September 9,
1887. A small group of his colleagues elected Smith as the
temporary chairman and selected the name “American Pediat-
ric Society” for the new organization. One individual proposed
that the new society become a section of the American Medical

Association (AMA). Fortunately, Smith insisted that a new
organization “be organized on the highest possible literary and
scientific basis and that it must not enter into entangling
alliances.” And as a result, in 1888, the APS was founded. A
year later, Smith became the second president of the APS, after
Abraham Jacobi, whom Smith had recommended as the first
holder of the post. In Harold K. Faber’s address, published in
the Journal of Pediatrics in October 1963 (1), he made a strong
case that, while taking nothing away from the contributions of
Abraham Jacobi, “Smith was one of the two chief pioneers of
American Pediatrics.” Moreover, Faber left little doubt that, in
his opinion, “Job Lewis Smith was the father of the APS.” But,
what was Faber suggesting when he pointed out Smith’s
admonition that the Society must not enter into “entangling
alliances”? As a previous PAS program chair and now as this
year’s APS president, I have vigorously encouraged quite the
contrary and witnessed an increasing number of partnerships
and affiliations that have enriched our annual scientific meet-
ing.

PEDIATRIC ACADEMIC SOCIETIES’ ALLIANCES

Certainly, Smith must have been referring to the importance
of establishing pediatrics as a specialty—separate and distinct
from adult medicine. From what I know of Faber and the
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Figure 1. (A) Harold K. Faber. From Nagel GW, A Stanford Heritage.
Reprinted with permission from the Stanford Alumni Medical Association. (B)
Job Lewis Smith. Reprinted from J Pediatr 63, Faber HK, “Job Lewis Smith,
forgotten pioneer”, pp 794–802, 1963, with permission from Elsevier.
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institution that was his academic home (Stanford), he could
hardly have wanted to discourage the collaboration of scien-
tists from different disciplines, not only among the life sci-
ences, but also among the physical and chemical sciences, to
address the complex problems in pediatric medicine. That is
certainly Stanford’s legacy and its future. In fact, as the 117th
president (1), I am confident of the independence of pediatrics
as a specialty; nonetheless, I am challenged to ensure that
more scientific alliances, not fewer, are created, not only
within the academic disciplines of pediatrics (Table 1), but
across the artificial boundaries of science that, at a superficial
level, have distinguished our various disciplines, as well as the
adult and pediatric science communities. I am challenged to
ensure the assembly of scientists, whatever their ilk, with all
the variety of new tools necessary to solve the “big problems”
in biology, and also the translation of our scientific break-
throughs to improve the health of children, not only in our
own practices, but regionally and globally.

WHAT IS PHYSIOLOGY?

As a physician and scientist, I have always been interested
in physiology, which I consider to be a basic science. This
notion that the study of function in living things is a basic
science is held as well by many others among you. Yet, how
is it that, at Stanford, we do not even have a Department of
Physiology? Instead, we describe the kind of biologic function
which is our particular interest; for example, cellular and
molecular. Such designations are artificial, but probably have
some usefulness.
George N. Somero at Stanford’s Hopkins Marine Station in

Monterey, and the late Peter W. Hochachka suggest in their
text, Biochemical Adaptation (2), that there are other adjec-
tives, which inform us about several kinds of physiology that,
in my opinion, have special relevance for the physician. The
adjectives they use to describe these conceptual approaches
to physiology include: “mechanistic,” “comparative,” “envi-
ronmental,” “ecological,” “evolutionary,” “adaptational,” and
“integrative”. I would like to comment briefly about several of
these “physiologies,” but not all of them, as their scope goes

beyond my purpose in this talk. In particular, I will comment
on mechanistic physiology, comparative physiology, and in-
tegrative physiology, without any intent to demote the other
physiologies in importance or relevance to the human condi-
tion and our understanding of biochemical adaptation.
“Mechanistic physiology” is focused on discovering how

living things do what they do. Since the 17th century, scien-
tists have contributed to what has become a largely experi-
mental tradition, underpinning and informing 20th century
Western medicine. Now in the 21st century, the borrowing of
concepts and tools from other fields of science continues to
fuel mechanistic physiology. The new imaging technologies
serve as modern examples of such synergies.
“Comparative physiology” often complements mechanistic

physiology. In fact, many mechanistic physiologists are also
comparative physiologists. Moreover, a variety of organisms
provide unique experimental opportunities. In particular, or-
ganisms adapted to extreme environmental niches often allow
fundamental principles to be deduced through comparative
studies, the conservation of certain essential processes imply-
ing that discoverable structural modifications must inform
such preserved function.
However, it is “integrative physiology” that seems to be

most demanding for the expansion of scientific alliances. The
goal of such physiology is to study function “across all levels
of biologic organization, from the molecular to the ecological
to the biogeographical.” Indeed, after mapping the human
genome, our intensive focus is now on function. As scientists,
we appreciate well that knowing all the letters of the genetic
code does not give us all the texts that inform biologic func-
tionality. Thus, the emphasis is not so much on the genetic
map (certainly a fundamental structure), but on gene function
and control as a way to understand normal development and
health as well as abnormal development and disease. The
theme is clear—structure and function go hand and hand.
Their relationship is not static, but dauntingly dynamic. One
cannot be fully investigated without considering the other, and
the context of our interrogation is relevant to our discoveries.
Our biochemical structures—our enzymes and structural pro-
teins, nucleic acids, and lipoprotein structures—are always
being tested by nature, that is, by natural stressors, such as, for
example, temperature. One only has to consider life near the
deep sea vents or fish in the arctic, living in slush, to appre-
ciate that structural or physico-chemical modifications must
occur to preserve function and conserve physiology at such
extremes. Or just consider the fetus that must transition from
the womb to extrauterine life.
As a part of my general commentary on physiologic inves-

tigations and scientific alliances, a few remarks on my own
career might help to personalize the perspective on science
that I am sharing with you.

SCIENTIFIC INVESTIGATIONS

My first serious investigative efforts began simply enough,
under the supervision of John Johnson, a generous mentor and
role model, at Stanford. Although I did some research in the
beginning of my career on the ontogeny of the disacchari-

Table 1. Pediatric Academic Societies’ alliances

Pediatric Academic Societies
American Pediatric Society
Society for Pediatric Research
Ambulatory Pediatric Association of Program Directors
American Academy of Pediatrics
Alliance Organizations
American Society of Pediatric Hematology/Oncology
American Society of Pediatric Nephrology
Asian Society for Pediatric Research
Association of Pediatric Program Directors
International Pediatric Hypertension Association
Japanese Pediatric Society
Lawson Wilkins Pediatric Endocrine Society
North American Society for Pediatric Gastroenterology, Hepatology &
Nutrition

Programme for Global Paediatric Research
Reach Out and Read Program
Society for Adolescent Medicine
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dases, as many others had done before me, under the direction
of Norman Kretchmer and Philip Sunshine, I was guided by
John in a direction slightly off the main gastrointestinal tract
toward the liver and the study of heme oxygenase (HO),
another enzyme, which for me, at that point in time, was
simply the first and rate limiting step in the production of
bilirubin, the bile pigment causing neonatal jaundice, one of
the most common problems in pediatrics.

Heme oxygenase. Only later in my career did I begin to
fully appreciate that the heme catabolic pathway (Fig. 2) is a
phylogenetically ancient and highly conserved system in the
biology of plants and animals with many different roles in
different tissues at different points in time—an essential com-
plex of reactions supporting life on a planet rich with iron,
oxygen, and light—one of innumerable biologic fulcrums or
balancing points in life’s biochemistry. Indeed, HO is the rate
limiting enzyme that degrades heme to produce equimolar
quantities of carbon monoxide (CO), iron, and biliverdin,
which is immediately reduced by cytosolic biliverdin reduc-
tase to form bilirubin (3). Two primary isoforms of HO, the
products of single and distinct genes, have been the most
studied: the inducible (HO-1) and the constitutive (HO-2)
(4,5). A third isoform, HO-3, has also been identified and
reported to be a processed pseudogene derived from HO-2
transcripts and appears to have little activity (6).
Interestingly, HO-1 is a heat shock protein (HSP32) or,

more broadly, a stress responsive protein, which can be in-
duced by many stressors, such as heavy metals, oxidants, UV
radiation, lipopolysaccharides (LPS), and thermal stress, etc.
(Fig. 3) (4,7). Besides its role in maintaining homeostasis
through the regulation of cellular heme and hemoprotein
levels, HO-1 also has antioxidant, anti-inflammatory, and
anti-apoptotic roles, mediated mostly through the bioactive
metabolites of heme degradation. In fact, it is known that
biliverdin and bilirubin are strong antioxidants (8–10); in
higher plants, biliverdin is the precursor of phytochrome,
which is involved in light-induced morphogenesis; free iron is

used for cell growth and hemoglobin formation; and CO, a
diffusible gas molecule similar to nitric oxide (NO) (11), has
the ability to relax vascular smooth muscle through activation
of soluble guanylyl cyclase, to serve perhaps as a signaling
molecule in the CNS, and possibly to modulate the activity of
other heme-containing enzymes, of which there are plenty.
Notably, there is individual variation in HO-1 gene expres-

sion in the human population, the consequences for which
have not been explored fully, coming mainly from two genetic
phenotypes: (1) polymorphism of (GT)n dinucleotide (micro-
satellite) repeats found in the human HO-1 regulatory region
and (2) HO-1 mutant alleles (12,13). Length of these repeats
is associated with variability in basal HO-1 gene expression
levels and disease states (12,14). One example of a human
HO-1 deficiency has been reported from Japan (15). The child
suffered growth retardation, anemia, and developmental delay
and eventually died. Thus, the biology related to HO is broad
in its relevance to human well-being and ill-being is extremely
complex. It is a developmentally regulated system, which is
environmentally sensitive. Now older and a little wiser, with
my curiosity even more piqued, I am challenged and humbled
by the biology that I had embraced so naively about three
decades ago. The field of HO biology has been rekindled;
many secrets remain to be discovered. For me, the reaction is
still fundamentally a beautiful and mysterious one, involving
a variety of molecules that clearly have stood the test of time
and have their unique roles to play in the lives of many
different living things, including us. The physiologic process
of the enzymatic degradation of heme has been conserved
throughout much of nature, and I am still on a quest to
understand why. And, of course, there are many “whys” that
could be asked. For example, why do HO-1-deficient embryos
have poorly developed placentas and rarely survive past the
intrauterine stage (16,17)? Why is reduced HO-1 expression
associated with pregnancy disorders, such as recurrent mis-
carriage, spontaneous abortions, and pre-eclampsia (14,18)?
Only mechanistic and comparative physiologic experimenta-
tion is likely to provide answers to such questions.

SCIENTIFIC ALLIANCES

In the physiologic tradition, I have always been interested in
studying what I have referred to as “situated biochemistry” orFigure 2. Heme oxygenase pathway. Carbon monoxide (CO).

Figure 3. HO-1 promoter and its response to stimuli. Distal enhancer-2
(DE-2); distal enhancer-1 (DE-1); proximal enhancer (PE); and promoter (P).
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in vivo metabolism, to better understand “how things work.”
In collaboration with chemists, engineers, and applied physi-
cists, I have encouraged others and helped when I could to
develop some of the tools that I needed for this purpose.
Hendrik J. Vreman, my long-time research associate, “right

hand” in the laboratory and friend, and Ronald J. Wong, my
other “right hand” in the laboratory and also a friend, have
been scientific partners in these ventures, along with many
others. For example, we had to invent better breath collection
systems for babies and more sensitive gas detectors. These
technologies allowed us to study CO production (19), as an
index of bilirubin formation (20–23), in cells (24–27), tissues
(24,28–31), and small and large animals (32–40), including
human neonates (41–56).
With David A. Benaron, a past trainee of the National

Institute of Child Health and Development (NICHD) Devel-
opmental and Neonatal Biology Training Program at Stanford,
we reported the first optical time-of-flight absorbance (TOFA)
imaging of biologic media in 1993 with subsequent applica-
tions to the imaging of brain function of critically ill neonates
(57). Our first images were satisfying enough for our Applied
Physics colleagues, as we visualized a screw inside an olive,
hidden in a tube of blood (Fig. 4), but we were most excited
by our images of structures inside a living mammal, using the
absorption and scattering of light as our way of probing the
organism (58–61). David’s light-based TOFA device (Fig. 5)
could be used at the bedside for assessing structure and
function simultaneously, and was applied to human neonates
for this purpose (60). Such technology has been developed
further by David and others, and an instrument that can
provide pulseless tissue oximetry is now available commer-
cially to noninvasively detect hypoxia, ischemia, and tumors
in human and animal subjects (62–64).
With David Benaron, Christopher H. and Pamela R. Con-

tag, the latter also having been National Institutes of Health–
funded postdoctoral trainees at Stanford, and others, we were
also the first to image gene expression in living mammals

using a luciferase (luc) reporter gene system (65), and created
the HO-1-luc transgenic mouse (66), validating its use for
studying the transcriptional regulation of HO-1 in develop-
ment (38) and under a variety of conditions relevant to the
newborn infant, such as HO inhibition to modulate bilirubin
production (67,68). These same in vivo imaging tools now
have been applied to study infection (69), including host–
pathogen interactions in living mammals (70,71), immuno-
modulation (72), oncogenesis (73,74), vascular and neuronal
function (75), injury and repair (76), as well as stem cell
trafficking and engraftment (77). But have my physiologic
approaches been integrative? Should I be looking for yet other
scientific alliances?
My daughter, Charlotte, has given me reason to ponder such

questions. She is a marine biologist, who has been working on
the eco-toxicological effects of perfluorochemicals on p-
glycoprotein or (p-gp), the cellular multidrug transporter,
using the marine mussel, Mytilus californianus, as a model
system (78). I am familiar with p-gp because of its relevance
to understanding the accumulation of bilirubin in the CNS of
rodents (79,80). What Charlotte and her colleagues point out
is that these perfluorochemicals are persistent, globally perva-
sive chemical pollutants that have been detected in water,
wildlife, and humans. They are used in a variety of industrial
household products, such as firefighting foams, textile and
paper coatings, and insecticides. Their uncontrolled impact on
p-gp in real life settings, including inhibition and induction,
has not been considered by most of us in medicine, as we have
studied only uncontaminated model systems, or worse yet we
are still ignorant of such contamination, even in our models.
What else of consequence could I be missing because my view
has been too narrow or my scale too small?
I am now alerted by my daughter and other colleagues that

I must pay attention not only to the microenvironments of the
cell or of a tissue or organ of interest, but also to the
macroenvironment in which we live to appreciate functional-
ity. The earth is changing. As pediatricians, we must pay
attention to the full range of potential influences that impact
the systems that we study, remembering that we live in a

Figure 4. Optical time-of flight and absorbance imaging. (A) Visualization
of a screw inside an olive, hidden in a tube of blood. (B) Scan of a rat with
the use of TOFA imaging. Reprinted from Science 259, Benaron DA and
Stevenson DK, “Optical time-of-flight and absorbance imaging of biologic
media,” pp 1463–1466, 1993, with permission from Science.

Figure 5. Optical imaging headband. Reprinted from Photochem Photobiol
68, Hintz SR et al., “Stationary headband for clinical time-of-flight optical
imaging at the bedside,” pp 361–369, 1998, with permission from the
American Society of Photobiology.
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world that constantly presents us with a variety of challenges,
chemically and physically, even culturally and politically. The
changing climate of man and our contribution to such changes
cannot be ignored. Our “marginal stability” (81), the ability of
our most fundamental structures to perform the functions we
need in the contexts in which we reside, is at stake. And the
impact of such global changes on what is more personal and
intimate is likely to be profound. We need to work not only on
basic problems and be narrowly focused, but also on a global
scale with an expansive view. We must work together and we
must embrace scientific alliances and not shun them, so that
scientists from different disciplines with different tools can
approach the “big problems” in biology and human health and
solve them together. This is what we are doing at Stanford.
This is what we all should be doing. This is not a time to
ignore or dismiss science. Science should be on the edge – not
the edge of funding, but the cutting edge of inquiry and the
creation of new knowledge; life hangs literally in the balance.
And, as my other daughter, Terrell—a premedical student

and historian studying the impact of the language, used to
describe individuals with trisomy 21, on the behavior of
physicians and the public over the decades—has instructed
me: “Do not get trapped by the words that set the limits of the
current paradigm; see beyond your words and invent the
language of your future.” Science can help us see beyond our
words and invent the new limits of our world.
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