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ABSTRACT: The insulin-like growth factors (IGFs) are postulated
to be altered in association with the development of intrauterine
growth restriction (IUGR). The present studies examined placental
and fetal hepatic mRNA concentration of components of the IGF
system at two time points (55 and 90 d gestational age, dGA; Term
147 dGA) in a hyperthermia (HT)-induced sheep model of placental
insufficiency-IUGR. Maternal plasma insulin and IGF-I were con-
stant at 55 and 90 dGA and were unaffected by treatment. Umbilical
vein insulin concentrations tended to be reduced at 90 dGA following
HT exposure. Caruncle IGF-I mRNA was increased at 90 dGA in HT
placentae (p � 0.05), while cotyledon concentrations were constant
over gestation and unaltered by treatment. In control cotyledons,
IGF-II mRNA concentration increased (p � 0.01) and IGFBP-3
decreased between 55 and 90 dGA (p � 0.01). Cotyledon IGF-II and
caruncle IGFBP-4 mRNA were elevated at 55 dGA in HT placentae
compared with control (p � 0.01 and p � 0.05 respectively). Fetal
hepatic IGF-I, IGFBP-2, -3 and -4 concentrations rose over gestation
(p � 0.05), but there were no treatment effects. These data suggest
that changes in placental IGF expression in early and mid gestation
may predispose the pregnancy to placental insufficiency, resulting in
inadequate substrate supply to the developing fetus later in gestation.
(Pediatr Res 60: 507–512, 2006)

The insulin-like growth factors, IGF-I and –II, are mito-
genic polypeptides that play essential roles in conceptus

cell proliferation, differentiation and metabolism. The IGF-
binding proteins (IGFBP-1–IGFBP-6) regulate IGF bioavail-
ability, modulating the biologic effects of the IGFs, in addition
to acting as growth factors independent of the IGFs (1). The
importance of these growth factors and their associated bind-
ing proteins in the etiology of fetal growth restriction (IUGR)
has been highlighted through gene deletion models in mice
(2).

The fetal liver is the primary source of IGFs and IGFBPs in
fetal circulation (3). IGF-I concentrations in fetal circulation
have been found to be reduced in several animal models of
IUGR, suggesting that alterations in IGF-I production and/or
availability may contribute to disorders of fetal growth (4). In
humans, fetal plasma IGF-I concentration is positively corre-
lated with birth weight (5) and is reduced in IUGR (6).
Significant increases in fetal hepatic IGFBP-1 and -2 have
been observed in animal models of IUGR, late in pregnancy,
and these increases are postulated to exert an inhibitory
effect on the growth promoting action of IGF-I during fetal
life (7). Additionally, several studies report increases in
IGFBP-4, and decreases in IGFBP-3 in IUGR fetal circu-
lation (8,9).
A rapid phase of placental growth precedes fetal growth,

and in the sheep, maximal placental growth occurs between 40
and 80 d gestational age (dGA), peaking at approximately 55
dGA (term 147 dGA), with the majority of fetal growth
occurring after 100 dGA (10). The IGF/IGFBP axis has been
described for the sheep placenta (11) and fetus (12), although
placental studies have concentrated on localization rather than
quantification during early pregnancy (11). Additionally, stud-
ies concerning nutritional restriction-induced sheep IUGR
have reported changes in the IGF axis in mid- to late gestation
(13,14). Pregnant sheep subjected to elevated environmental
temperatures (hyperthermia, HT) for the period of early and
mid-gestation (40–120 dGA), produce a fetus whose placen-
tal, body and liver weights are significantly reduced at term,
45%, 50%, and 45%, respectively (15,16). This asymmetri-
cally restricted IUGR fetus is the result of placental insuffi-
ciency and shares many characteristics with the severe human
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IUGR fetus, including hypoglycemia, hypoxia and an in-
creased brain-liver ratio (17).
While IGFs and their binding proteins have been exten-

sively studied in fetal and placental growth, studies investi-
gating interactions of IGFs in disorders of fetal growth have
concentrated on late gestation IUGR. Considering the chronic
developmental nature of this condition, and the role the IGFs
and the binding proteins play in placental and fetal develop-
ment, it is important to understand the ontogenic changes that
may occur in the IGFs and IGFBPs throughout the develop-
ment of IUGR. The present studies examine the ontogeny of
the IGFs, and their alterations during the development of
placental insufficiency induced IUGR.

MATERIALS AND METHODS

Biologic preparation. Twenty-one time-mated 2- to 3-y-old Columbia-
Rambouillet ewes pregnant with a single fetus were used. Animal care was in
strict compliance with National Institutes of Health guidelines within an
American Association for Accreditation of Laboratory Animal Care certified
facility, and the University of Colorado Health Sciences Center Animal Care
and Use Committee approved the study. Surgery was performed at 32–37
dGA to insert core body temperature (CBT) transmitters (18). Approximately
2–4 d after surgery, once core body temperature was 39.2°C, ewes were
allocated to either the control (thermoneutral; TN) or HT treatment. A total of
10 ewes were maintained in the TN regime, and a further 11 ewes were moved
to individual pens in a HT chamber (Bainbridge, Marcellus, MI). The relevant
temperature, lighting and feeding regimes used in this treatment are as
previously described (18).

Experimental design and tissue preparation. Ewes were killed following
one of the designated time points; at 55 dGA (early gestation, n � 5; TN and
n � 6; HT) or at 90 dGA (mid gestation, n � 5; TN and n � 5; HT). Maternal
arterial blood samples were collected approximately 2 d before autopsy,
pre-feeding. At autopsy of the 90 dGA animals, 2 mL of blood was drawn
from the fetal umbilical vein, immediately after opening the uterus. The
gravid uterus was removed and dissected into placental and fetal components,
as previously described (19). With selected B type placentomes (20), we
carefully separated the caruncle and cotyledon by squeezing the caruncle with
gentle traction on the cotyledon (21). Fetal liver and brain was collected,
weighed and the liver was snap frozen. Approximately 6–10 g of the frozen
cotyledon, caruncle, and liver tissue was later ground under liquid nitrogen
and stored at –80°C until total cellular (tc) RNA extraction.

Plasma insulin and IGF-I concentrations. Insulin concentrations were
determined using a Mercodia sheep insulin ELISA (Alpco, Windham, NH)
(22). The interassay coefficients of variation were 2.1% and 9.7% for high-
and low-quality control samples, respectively, while the intra-assay coeffi-
cients of variation were 2.7% and 8.5%, respectively. Plasma IGF-I was
measured by immunoradiometric assay after extraction (Diagnostics Systems
Laboratories, Inc, Webster, TX) as previously described (23). The interassay
coefficients of variation were 8.3% and 7.2% for a high and low quality
control sample respectively, while the intra-assay coefficients of variation
were 1.5% and 1.3%, respectively.

Construction and preparation of sheep cDNAs. Sheep IGF-I, -II and
IGFBP-1, -2, -3 and -4 cDNAs were amplified by RT-PCR that corresponded
to IGF-I; basepair (bp) 508 to 698 of Genbank Accession number M30653),
IGF-II; (bp 342-839 of MN_001009311), IGFBP-1; (bp 556-735 of �54979),
IGFBP-2 (bp 645-413 of S44612), IGFBP-3 (bp 1029-693 of M76478),
IGFBP-4 (bp 855-1083 of S77394). Reverse Transcriptase reactions were
conducted using 1 �g of 135 dGA fetal hepatic tcRNA, 1 �L (0.5 �g) of oligo
(dT)12-18 and Superscript II reverse transcriptase (Invitrogen Life Technolo-
gies, Carlsbad, CA). Thirty-five cycles of amplification were performed in the
associated PCR, 1 min at 94°C, 1 min at 55°C (IGF-I), 58°C (IGF-II), 53°C
(IGFBP-1), 60°C (IGFBP-2), 55°C (IGFBP-3) and 54°C (IGFBP-4), 1 min at
72°C, and finally 10 min at 72°C. Taq polymerase amplified PCR products
were ligated into pCR II and transformed into Inv�F’ E.coli cells (Invitrogen
Corporation, Carlsbad, CA). Plasmids were purified as described and the
insert was sequenced (Davis Sequencing, University of California, Davis,
CA) in both directions to verify authenticity. All cDNA sequence verification
was performed using basic local alignment search tool (BLAST NCBI, M.D.).
�-actin cDNA (bp 637-1135 of U39357) was generated as previously de-
scribed (19).

RNA extraction, RNA probe synthesis and RNase protection assay. Fetal
liver, caruncular and cotyledonary tcRNA was isolated using Tri-Reagent®
(Molecular Research Center Inc) (19). The plasmid containing the cDNA
fragment of interest was linearized with the appropriate restriction endonucle-
ases (BamH1 or EcoRV). IGF-II, IGFBP-4 and �-actin were restricted with
internal restriction endonucleases to yield shorter and more stable probes for
RPA. The IGF-II cDNA was restricted with Fsp-1 (New England BioLabs,
Beverly, MA), which when used in RPAs, displayed a protected fragment of
177 bp. IGFBP-4 was restricted with StyI (New England BioLabs) to yield a
protected fragment of 179 bp, whilst �-actin was restricted with AvaII (New
England BioLabs) to yield a protected fragment of 141 bp. Antisense
[�-32P]CTP radiolabeled cRNAs (2 � 105 cpm) were synthesized by in vitro
transcription using T3, Sp6 or T7 RNA polymerases (Ambion, Austin, TX) in
the presence of unlabeled dNTPs. RNase protection assays were performed as
previously described (19).

Statistical analysis. Maternal CBT analysis has been previously reported
(18). Placental and fetal data were analyzed using Student’s t-test. Tissue
IGF-I, -II, IGFBP-1, -2, -3, and -4 mRNA levels were normalized to �-actin
mRNA, and analyzed using two-way ANOVA and Tukey’s means-separation
test.

RESULTS

Control TN ewes had a mean CBT throughout the study of
39.2 � 0.1°C and 55 dGA HT ewes had elevated CBTs
similar to those previously published for 90 dGA HT ewes
(Mean CBT 39.9°C) (18). Placental weights were not signif-
icantly different at 55 dGA between treatments, though at 90
dGA, placental weights were approximately 70% of normal
(Table 1). Fetal weights were similar at 55 dGA, but were
significantly reduced at 90 dGA (Table 1). Fetuses at both
gestational ages displayed signs of hepatic growth restriction,
resulting in a significant increase in brain/liver ratio at 55 dGA
(Table 1), and tending to be increased at 90 dGA. While fetal
weight was unaltered at 55 dGA, placental weight was re-
duced to 74% of control, resulting in a significantly increased
fetal/placental ratio at 55 dGA (Table 1). There were however
no significant differences in placental weight or fetal/placental
ratio at 90 dGA.

Table 1. Placental and fetal weights, fetal CRL and associated
ratios of TN and HT fetuses at 55 and 90 dGA, following 15 and

55 days in treatment, respectively

TN HT p-value

55 dGA n � 5 n � 6
Gestational age (d) 55.60 � 0.40 55.33 � 0.49 ns
Placental weight (g) 177.31 � 17.28 131.76 � 19.30 ns
Fetal weight (g) 29.92 � 1.59 30.15 � 2.55 ns
Fetal/placental ratio 0.17 � 0.01 0.24 � 0.01 � 0.01
Brain weight (g) 1.30 � 0.07 1.33 � 0.13 ns
Liver weight (g) 2.27 � 0.17 1.96 � 0.20 ns
Brain/liver ratio 0.58 � 0.03 0.68 � 0.03 � 0.05
CRL (cm) 9.66 � 0.51 9.48 � 0.47 ns
Ponderal index (g/cm3) 3.54 � 0.59 3.61 � 0.34 ns

90 dGA n � 5 n � 5
Gestational age (d) 93.67 � 0.92 92.50 � 1.03 ns
Placental weight (g) 531.94 � 87.58 354.90 � 52.63 ns
Fetal weight (g) 676.23 � 45.58 514.22 � 39.72 � 0.05
Fetal/placental ratio 1.42 � 0.21 1.63 � 0.26 ns
Brain weight (g) 15.92 � 0.91 13.18 � 1.10 ns
Liver weight (g) 42.43 � 5.42 27.28 � 3.86 � 0.05
Brain/liver ratio 0.39 � 0.03 0.52 � 0.08 ns
CRL (cm) 27.17 � 0.53 25.75 � 0.67 ns
Ponderal index (g/cm3) 3.38 � 0.22 2.99 � 0.11 ns

Values are means � SEM.
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Maternal arterial plasma concentrations for insulin and
IGF-I concentrations remained unaltered across early and mid
gestation and there were no significant treatment effects (Fig.
1). Although umbilical venous concentrations of insulin in the
90 dGA HT group were reduced to 43% of control (Fig. 1),
due to large variance in the data, statistical significance was
not obtained (p � 0.15).
Figure 2 displays the relative mRNA concentrations of

IGF-I, IGF-II, IGFBP-3 and IGFBP-4, in caruncle and coty-
ledon tissue. Caruncular IGF-I mRNA expression did not
display an effect of gestational age; however, due to increased
IGF-I mRNA expression in HT placentae at 90 dGA there was
a significant day by treatment interaction for caruncular IGF-I
mRNA expression (Fig. 2A). No effect of gestational age or
treatment was observed in cotyledon tissue. IGF-II expression
in TN cotyledonary tissue increased significantly with gesta-
tional age (Fig. 2B). As a result of increased IGF-II mRNA in
HT placentae at 55 dGA (Fig. 2B), there was a significant day
by treatment interaction (p � 0.01) for cotyledonary IGF-II
mRNA concentration. In caruncular tissue, no effect of gesta-
tional age or treatment was observed.
IGFBP-1 was not detected in caruncle or cotyledon using

50 �g of tcRNA. IGFBP-2 was detected in both caruncle and
cotyledon tissue, however, due to inconsistent banding pat-
terns, results were not suitable for analysis. Caruncular
IGFBP-3 concentrations were consistent across gestation and
were unaffected by treatment. However, cotyledonary
IGFBP-3 declined with advancing gestation (Fig. 2C), though
there were no treatment effects. IGFBP-4 mRNA concentra-
tion did not display gestational age effects in caruncular or
cotyledon tissue. IGFBP-4 mRNA concentration was signifi-
cantly elevated in HT caruncle tissue at 55 dGA, compared
with control (Fig. 2 D).

TN fetal hepatic IGF-I mRNA concentrations increased
with gestational age (Fig. 3A). There were no treatment effects
on IGF-I mRNA concentration at either 55 or 90 dGA. IGF-II

mRNA concentrations did not differ across early pregnancy,
were not affected by treatment and were considerably greater
than IGF-I mRNA concentrations (Fig. 3B). The concentration
of IGFBP-2 (Fig. 3D), IGFBP-3 (Fig. 3E) and IGFBP–4
(Fig. 3F) mRNA increased significantly with gestational age,
while IGFBP-1 remained unaltered (Fig. 3C). The IGFBPs
studied were unaffected by treatment, though IGFBP-1 exhib-
ited a trend toward increased levels at 90 dGA (Fig. 3C).

DISCUSSION

This study demonstrates that in a situation of early-onset
placental and fetal growth restriction, circulating fetal and
maternal plasma insulin and IGF-I levels remain unaltered,
though fetal insulin concentrations tend to be reduced by mid
gestation. Alterations do occur in placental tissue mRNA

Figure 1. Maternal arterial (A) and fetal venous umbilical (B) concentrations
of insulin and IGF-I in TN (e) and HT (�). Maternal plasma was obtained at
55 and 90 dGA, while fetal umbilical blood was sampled only in the 90 dGA
groups.

Figure 2. Concentration at 55 and 90 dGA of ovine IGF-I (A), IGF-II (B),
IGFBP-3 (C) and IGFBP-4 (D) mRNA (IGF(BP)/actin densitometry units) in
TN (e) and HT (�) maternal caruncle and fetal cotyledon tissue.
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concentration for certain members of the IGF axis in early and
mid gestation, though no evidence is found of changes in fetal
hepatic expression of IGFs and IGFBPs. These changes occur
concurrently with an increased fetal/placental ratio and brain/
liver ratio at 55 dGA in HT pregnancies, and significant
reductions in fetal and liver weights by 90 dGA.
Placental IGFs. During early and mid gestation, the pla-

cental expression of IGF-I mRNA is greater than in late
pregnancy (24,25), suggesting that IGF-I plays an important
role in early placental development as a placental growth
factor (25). Placental IGF-I expression is mainly localized to
the maternal stroma (12), and although statistical comparison
between the two tissue types is not possible, our data support
previous localization observations. Aberrant placental IGF-I
production has been implicated in IUGR (6,26), where re-
duced fetal growth may have resulted from an inability of the
placenta to increase placental nutrient transfer capacity (27).
In the studies presented here, we observed a significant in-
crease in caruncle IGF-I mRNA concentration of the HT
placenta during mid gestation, while cotyledonary IGF-I
mRNA was unaltered. Studies reporting the placental expres-
sion of IGF-I have focused on near term collection points and
have reported conflicting data, with reports of no differences
in placental IGF-I mRNA concentrations using PCR (28),
while other reports document significant increases in placental

IGF-I mRNA through ISH and RNA dot blot techniques (24).
Up-regulation of IGF-I mRNA in the HT caruncle at 90 dGA
may be an attempt to increase trophoblast differentiation,
placental angiogenesis and nutrient transport, at a stage of
pregnancy when fetal demands on the transport capacity of the
placenta are normally increasing.
Placental vascular development is a particularly important

aspect of placental development, setting the stage for later
nutrient and gaseous exchange. The IGFs and IGFBPs play a
role in implantation, early pregnancy and throughout gestation
promoting vascular development (11,29). The increased cot-
yledon IGF-II mRNA at 55 dGA in the current study could
play a role in altered placental angiogenesis. IGF-II mRNA is
observed from 50 dGA onwards in the sheep placenta, pre-
dominantly in the fetal mesenchyme tissues with lower con-
centrations in the caruncular stroma (11,30). Coinciding with
the increased IGF-II mRNA concentration, we have previ-
ously reported increased VEGF, Ang-1, Ang-2 and Tie-2
mRNA concentration in 55 dGA HT cotyledon (19,31). IGF-II
has a direct stimulatory effect on migration and proliferation
of endothelial cells through binding to the IGF-II/Mannose-
6-phosphate receptor (32). Specifically, IGF-II appears to
stimulate VEGF mRNA expression in monkey granulosa and
keratinocyte cells (33,34), through the MAP kinase pathway,
by increasing HIF-1�, a potent inducer of VEGF mRNA
transcription (33). Therefore, both growth factors, IGF-II and
VEGF, may act together to stimulate tissue-specific cotyle-
donary angiogenesis during exposure to hyperthermic condi-
tions, an effect that is most likely acute in nature, as by 90
dGA, both cotyledon VEGF (19) and IGF-II mRNA concen-
trations are no longer elevated. It is important to remember
that while growth factor concentrations may be similar at the
later stages of pregnancy, alterations in vascular development
occurring earlier in pregnancy have potentially set the stage
for later placental functional impairment through possible
reductions in the total nutrient exchange surface area.
Placental IGFBPs. IGF binding protein 1 is the most

prevalent IGFBP in the human uterus during implantation and
facilitates trophoblast penetration at the maternal interface
(29). However, in the less invasive sheep placenta, where a
syncytialtrophoblast forms, expression of IGFBP-1 mRNA is
localized to the luminal epithelium at 13 dGA, before attach-
ment of the embryo, and becomes undetectable by 21 dGA
(35). The failure to detect IGFBP-1 in cotyledon or caruncle in
the present study is in agreement with this previous report and
may reflect differences in trophoblast invasion mechanisms
between different species (35). Additionally, there may be a
redundancy between the various types of IGFBP, and different
species may use different IGFBPs for similar functions (12).
The concentration of IGFBP-3 mRNA decreased in cotyle-
dons with increasing gestational age. These findings are in
concordance with an earlier ontogenetic study in control sheep
placenta, where IGFBP-3 is expressed in high concentrations
in the luminal epithelium in early gestation (13–15 dGA),
suggesting a role in implantation, after which concentrations
remain low (11). In the caruncle, IGFBP-3 levels are report-
edly higher and localized to maternal vessel walls, where it is

Figure 3. Fetal hepatic concentrations of IGF-I (A), IGF-II (B), IGFBP-1 (C),
IGFBP-2 (D), IGFBP-3 (E) and IGFBP-4 (F) mRNA (IGF(BP)/actin densi-
tometry units) at 55 and 90 dGA in TN (e) and HT (�). Representative
RNAse protection assay images are displayed in lower panels.
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postulated to play a role in the transfer of IGFs from circula-
tion to target tissues (11).
Concomitantly with the up-regulation of IGF-II in cotyle-

don, IGFBP-4 mRNA expression is increased in the 55 dGA
HT caruncle. IGFBP-4 has been localized to the caruncular
capsule and stroma in ovine pregnancy and in stroma under-
lying the luminal epithelium. Similarly, IGFBP-4 has been
localized adjacent to implantation sites in murine pregnancy
(11), and has been suggested to play a physiologic role in the
implantation process. IGFBP-4 has been demonstrated to in-
hibit the actions of the IGFs in bone and neuronal cells (1,36),
and the increased co-expression of IGF-II in cotyledon and
IGFBP-4 in caruncle at early gestation suggests that IGFBP-4,
rather than IGFBP-1 may play an important role in regulating
IGF-II effects at the maternal-fetal interface of the sheep
placenta, possibly limiting trophoblast epithelium interaction
and exchange surface area development.
Fetal hepatic IGF and IGFBP concentration. Hepatic

expression of IGF-I and IGFBP-2, -3 and -4 are developmen-
tally regulated and in control TN tissues show a significant
increase with gestational age, similar to changes observed in
other fetal organ studies (3,30,37), while concentrations of
IGFBP-1 tend to be increased. In agreement with other models
of growth restriction, hepatic IGF-II expression is more abun-
dant than that of IGF-I, remains unchanged throughout the
early and mid stages of pregnancy and lacks a significant
relationship with placental restriction (38,39). Furthermore,
this study demonstrates no significant effect of treatment on
fetal hepatic IGF and IGFBP concentration during early or
mid-gestation.
In this report no change in hepatic IGFBP-1 mRNA con-

centration was observed during early fetal development,
though at 90 dGA, before maximal fetal growth, IGFBP-1
mRNA exhibited a trend to be up-regulated, suggestive of
increased expression as seen later in pregnancy in other
models of placental insufficiency (40). IGFBP-1 responds to
chronic changes in nutritional status or oxygenation (7), there-
fore, the failure to demonstrate an increase in fetal hepatic
IGFBP-1 suggests that the HT fetuses are likely not chroni-
cally hypoxic or hypoglycemic at this early stage of gestation.
Studies performed in late gestation human IUGR demonstrate
increases in plasma IGFBP-1 and hepatic IGFBP-1 mRNA
concentrations, and decreases in IGF-I and IGFBP-3 in fetal
plasma and liver (5,6,41). Similar alterations are not apparent
in early and mid-gestation IUGR sheep, suggesting that the
changes in the IGF axis during late gestation may be second-
ary to the near term, hypoxic, hypoglycemic and hypoinsu-
linemic stage of fetal growth restriction.

CONCLUSIONS

This study describes fetal and placental changes in expres-
sion of the IGFs and four of its binding proteins in early and
mid-gestation in a model of IUGR, caused by a placental
insult in early gestation. The observed greater fetal/placenta
ratio at 55 dGA that was attenuated by 90 dGA suggests a
number of developmental processes occur in response to the
insult. Firstly, the increased ratio is supportive of an impaired

IGF-II/IGFBP-4 driven placental development process early
in gestation that later in pregnancy manifests itself through
reduced nutrient delivery to the developing fetus. Secondly,
the maintenance of fetal weight at 55 dGA suggests that an
improved functional placenta actually results, perhaps as an
acute compensatory response to stress. Although by 90 dGA,
while fetal IGFs are unaltered, fetal weight and liver weight
have become significantly decreased, suggesting that compen-
satory effects that occurred early in gestation have now failed.
These reductions in fetal and liver weight support the concept
that by 90 dGA, before maximal fetal growth, placental
nutrient supply is already impaired. This reduced nutrient
supply could be manifested by reductions in trophoblast epi-
thelium development and subsequent nutrient exchange sur-
face area such that fetal growth is now reduced. From other
studies in this model we know that 45 d later, by 135 dGA
(15), fetuses are hypoglycemic and display reduced IGF lev-
els. This implies that at 90 dGA, the impact of the in utero
nutritional environment upon fetal IGF production and subse-
quent growth is just emerging. Combined, these data suggest
that subtle changes in placental IGF expression in early ges-
tation may predispose the developing placenta to functional
insufficiency, resulting in inadequate substrate supply to the
developing fetus.
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