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ABSTRACT: Human embryonic stem cells (HESC) are pluripotent
stem cell lines derived from the inner cell mass (ICM) of human
blastocyst-stage embryos. They are characterized by their unlimited
capacity to self-renew in culture. In addition, they have a broad
developmental potential, as demonstrated by their ability to form
practically any cell type in vivo and in vitro. These two features have
made HESC extremely important in basic and applied research. In
addition, they may serve as a powerful tool for studying human
development. HESC can recapitulate embryogenesis by expressing
developmentally regulated genes and by activating molecular path-
ways as they occur in vivo. Moreover, they can be used to analyze the
effect of specific mutations on particular developmental events and
may enable us to identify critical factors that play a role in the
processes of cell commitment, differentiation, and adult cell repro-
gramming. Thus, modeling human embryogenesis by the use of
HESC may allow new insights into developmental processes, which
would otherwise be inaccessible for research. (Pediatr Res 60:
111-117, 2006)

CURRENTLY AVAILABLE MODELS FOR HUMAN
EMBRYO DEVELOPMENT

Human embryogenesis is one of the most exciting fields in
biology and medicine. However, apart from the very early
stages of preimplantation development, human embryos are
inaccessible for research and are limited to section studies of
diseased aborted fetuses. One approach to overcome this ob-
stacle is to use animal models (Fig. 1), usually mice, taking
advantage of their well-defined genetics and reproductive
characteristics. The use of mice as a model for human devel-
opment has been justified by the observation that there is
strong conservation throughout evolution of developmental
processes and control genes. Moreover, the relative ease by
which their genome can be genetically manipulated and used
for the introduction of specific mutations by homologous
recombination has made them extremely important
for studying specific genes and pathways that are involved in
embryonic development. Yet, despite the similarities between

mouse and human, there are still major differences between
species in size, growth, and anatomy. In addition, critical
developmental events vary between the two, both in time and
morphology. All these are a product of variations in gene
content and expression, leading to differences in biochemical
pathways and phenotypes. These crucial discrepancies empha-
size the need for a more powerful system for studying early
human embryo development. Complementary to the usage of
animal models are human cellular systems, which include
either transformed or primary cultures (Fig. 1). However,
these culture systems have only a limited potential due to the
specific range of tissues from which cells can be obtained, and
due to their transformed nature or their short life span, respec-
tively. In this respect, HESC promise to be extremely useful.
Because they are normal cells with a self-renewing potential,
they have a capacity to differentiate into many different cell
types in vitro, and can recapitulate early embryonic differen-
tiation, as will be discussed in this review.

HUMAN EMBRYONIC STEM CELL
CHARACTERIZATION AND DEVELOPMENTAL
POTENTIAL

HESC are pluripotent cells derived from the ICM of blas-
tocyst stage in vitro fertilized embryos, that have been donated
for research purposes (1,2). These cell lines are unique in their
unlimited life span and their broad developmental potential,
i.e. the ability to differentiate to all cell types. In addition, they
are characterized by the expression of a specific set of cell
surface molecules [stage-specific embryonic antigens (SSEA)],
expression of undifferentiated cell gene markers (OCT4,
Nanog, Rex1), and activity of several enzymes (telomerase
and alkaline phosphatase) [reviewed in (3)]. Not only do these
cells remain undifferentiated and karyotypically stable during
prolonged passages, they also readily differentiate in vivo and
in vitro to cells representing the three germ layers (4). In vivo,
when HESC are injected to nude mice, nonmalignant tumors
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Figure 1. Modeling human embryogenesis. Human embryonic development
can be modeled by the use of different systems. For in vivo developmental
studies, laboratory animals are most commonly used. Direct study in human
is limited to cellular systems: either primary cells, transformed tissue, or stem
cells. In vitro differentiation of normal or genetically altered HESC can
recapitulate embryogenesis. Cells containing a specific genetic mutation can
be established by targeted mutagenesis. Alternatively, HESC containing
naturally occurring mutations can be derived from affected embryos obtained
either following PGD or embryo cloning.

named teratomas are formed. These tumors are composed of
many different cell types including cartilage, squamous epi-
thelium, primitive neuroectoderm, ganglionic structures, mus-
cle, bone, and glandular epithelium (1,2,5). In vitro, they can
be induced to spontaneously differentiate by growing in sus-
pension culture. Under these conditions, HESC tend to aggre-
gate, forming spherical structures termed HEB. HEB are
dynamic structures that undergo extensive morphologic
changes. Initially, the cells grow as densely packed cell ag-
gregates, after which they cavitate and accumulate fluid to
become cystic. While they grow, differentiation takes place
spontaneously, resulting in the production of many different
cell types including nerve, skin, adrenal, blood, endothelial,
kidney, heart, bone, muscle, and liver, as determined by the
expression of tissue-specific gene markers (6). Furthermore, in
some cases it could be shown that the cells are functional, as
in the formation of contracting cardiac muscle cells (6).
Nevertheless, since differentiation in EB is largely disorga-
nized, they are not suitable for the study of pattern formation
in vitro. Moreover, since differentiation by the formation of
EB results in the production of a mixture of many different cell
types, it is impractical to use this system for obtaining large
quantities of a specific cell type without the addition of
inducing factors. Thus, much effort has been made to find
protocols for efficiently directing the differentiation of HESC
into specific cell types in vitro.

DIRECTED DIFFERENTIATION

Growth Factor-Induced Differentiation

Normal embryogenesis is dependent on the precise execu-
tion of a developmental program. Initially, the embryo is
composed of a homogenous cell population. As embryogen-

esis proceeds, cells begin to acquire different fates according
to their respective position and developmental timing. Conse-
quently, cells in the developing embryo should be responsive
to environmental signals. Indeed, HESC express a wide vari-
ety of receptors. Among them are members of protein-tyrosine
phosphatase- (PTP), fibroblast growth factor- (FGF), insulin
growth factor- (IGF), bone morphogenic protein- (BMP),
activin-, and tumor necrosis factor- (TNF) receptor families,
which are expressed at relatively high levels in HESC. These
receptors are known to participate in a range of developmental
pathways such as gastrulation, mesentoderm commitment, and
neural maturation (7). Moreover, administration of growth fac-
tors such as activin A, nerve growth factor (NGF), and hepato-
cyte growth factor (HGF) modulate the expression of differenti-
ated cell markers representing the three embryonic germ layers
mesoderm, ectoderm, and endoderm, respectively (8).

Ectoderm Differentiation

Ectoderm differentiation of HESC can be achieved either by
addition of growth factors that induce differentiation to cells
expressing neuronal, adrenal or skin related genes, or by
allowing spontaneous differentiation (8). Extensive work has
been dedicated to neuronal differentiation, since derivation of
various specialized neuronal cells is relatively easy, compared
with other cell lineages, and could be of great value for the
treatment of neurodegenerative disorders.

Neuronal Differentiation

HESC neuronal differentiation, in vitro or in vivo, seems to
mimic the gradual restriction of cell fates observed in normal
neuronal differentiation (neuronal stem cells, neuronal progen-
itors, and, finally, neurons and glial cells) (9). In vitro, HESC-
derived neurons synthesize neurotransmitters, respond to neu-
rotransmitters and are electrically active (10-13).
Additionally, a neural-tube like structure is formed when
HESC are induced to differentiate into neuronal progenitors in
the presence of FGF2 (13). In vivo, when HESC-derived
progenitor neurons were transplanted into a newborn rodent
brain, they integrated into different locations in the brain
(12,13). Furthermore, HESC acquire appropriate neuronal
fates when transplanted in chick organogenesis-stage embryos
(14). These studies demonstrate that HESC are able to respond
to signals from neighboring cells and differentiate properly in
response to their environment. Lately, HESC were assayed as
a potential source of cells for replacement of degenerated
neurons. It has been demonstrated that Parkinsonian rats that
were transplanted with HESC-derived neuronal progenitors
showed significant improvement in their pathologic state
whereas only minor improvements were observed in rats
transplanted with undifferentiated HESC. Accordingly, HESC
might assist in recapitulating normal dopaminergic neuron
function, although it was demonstrated that a pretransplanta-
tion differentiation process is needed to improve dopaminergic
neurons’ yield (15). In addition to dopaminergic neurons,
differentiation in vivo to retinal cells (16) and in vitro into
motor neurons (17) was also observed.
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Mesoderm Differentiation

HESC differentiation into mesoderm lineage cell deriva-
tives is demonstrated by expression of markers specific to
cardiomyocytes (6,8,18-23), endothelial (24,25), bone (8,26),
kidney (8), urogenital (8), muscle (8), and blood cells (6,8,27).

Cardiomyocyte differentiation. Pulsating HEB are the first
indication of the presence of functional cardiomyocytes de-
rived from HESC (6). Analysis of the contracting areas in the
HEB indicates that they have physiologic characteristics sim-
ilar to early cardiac tissue (18). Additionally, progressive
stages of early cardiomyocyte differentiation are observed
during HEB differentiation (19). It is also possible to obtain a
variety of functional cardiac cells in vitro (nodal-like, embry-
onic atrial-like, and embryonic ventricular—like cardiomyo-
cytes) (20). This is supported by the fact that HEB-derived
cardiomyocytes form a functional electrical syncytium connected
by gap junctions and activated by a focal pacemaker (21).
Moreover, cardiomyocytes derived from HESC can respond to
hormones of the vegetative nervous system (22), integrate in
vivo, and pace the heart of pigs with complete heart block (23).

Endothelial differentiation. Endothelial cells were shown
to appear during the spontaneous differentiation of HESC
(24). The presence of endothelial cells within HEB is demon-
strated not only by the expression of endothelial specific markers,
but also by the successive morphologic progression from endo-
thelial cell clusters to vascular-like structures and to a network-
like organization (25). Additionally, isolation of endothelial cells
from HEB yield vascular tubes both in vitro and in vivo.

Hematopoietic differentiation. Two differentiation methods
were used to achieve hematopoietic differentiation of HESC:
culturing HESC in the presence of stromal cells and the
administration of growth factors such as stem cell factor
(SCF), Fms-like tyrosine kinase 3 ligand (FIt3L), IL-3, IL-6,
granulocyte colony-stimulating factor (G-CSF), and BMP-4
to HEB. These methods give rise to several types of hemato-
poietic lineages, including erythroid, myeloid, and lymphoid
[reviewed in detail in (27)]. In contrast to HESC, hematopoi-
etic stem cells (HSC) demonstrate a limited proliferative
capacity. Thus, the ability to derive hematopoietic cells from
HESC may offer a potential replacement for the currently used
HSC for cell-based therapy.

Osteogenic differentiation. Recently, several protocols for
bone differentiation were published. It was shown that addi-
tion of osteogenic supplements to HEB culture results in the
expression of osteogenic markers (osteocalcin), mineralization
of the culture and the appearance of a principle component of
bone matrix (hydroxyapatite) (26). In another study, HESC
were shown to respond in a similar way to a mouse ES cells
osteogenic differentiation protocol, especially to the addition
of dexamethasone to the culture (28). The resulting differen-
tiated cells were transplanted into severe combined immuno-
deficient (SCID) mice on a scaffold and demonstrated the
capacity to form mineralized tissue in vivo.

Endoderm Differentiation

Isolation and characterization of endoderm derivatives from
HESC is of great interest inasmuch as these cells might serve

as a source of cells for cell therapy in different pancreatic
disorders and liver failure diseases. Recently, differentiation of
HESC to definitive endoderm has been reported (29). More-
over, there are several reports of specific differentiation to
hepatic- and pancreatic-like cells (8,30-32).

Hepatic differentiation. It has been suggested that culturing
HESC with sodium butyrate results in cells with an epithelial
morphology that express hepatic markers and possess meta-
bolic activity similar to primary adult human hepatocytes (32).
Furthermore, gene expression analysis of HESC throughout
differentiation indicates that there are several hepatic-
associated genes such as albumin, fibrinogen, and apolipopro-
tein, which are induced upon differentiation (30). These he-
patic-like cells can be successfully isolated by introduction of
a reporter gene regulated by a hepatic specific promoter (30).
These cells express hepatic specific markers and are observed
adjacent to cardiac mesodermal cells in teratomas, as observed
in normal embryonic development.

Pancreatic differentiation. Pancreatic development is reg-
ulated by several factors such as Foxa2 and Pdx1 (33) and by
epithelial-mesenchymal interactions. Yet, the initial steps in
normal pancreatic development are still unknown. HESC have
been shown to express pancreatic specific markers (8,31).
However, so far, the generation of functional beta-like cells
has been unsuccessful in that the differentiated cells failed to
secrete insulin when stimulated with glucose, as expected
from functional beta cells.

Extraembryonic Differentiation

The first differentiation event in mammalian embryogenesis
is the appearance of the trophectodermal layer surrounding
the blastocyst. This outer cell layer will yield the placenta and
is extremely important for embryo implantation in the uterus.
In contrast to mouse ES cells, which are unable to differentiate
into extraembryonic tissues, HESC can successfully differ-
entiate to trophoblast cells spontaneously (1,2), or in the
presence of BMP-4 (34). BMP-4 treatment can induce tro-
phoblast-expressed markers and placental hormones in HESC
cultures (34). Moreover, when plated at low density, the
BMP-4-treated HESC form syncytia and produce chorionic
gonadotrophin. HESC may therefore serve as the primary
model for extraembryonic tissue development.

Limitations of HESC In Vitro Differentiation

We have described the wide developmental potential of
HESC. However, certain limitations of this system should be
addressed. Firstly, there are still certain cell types that could
not be obtained by in vitro differentiation of HESC. A prom-
inent example for this is the inability to obtain insulin secret-
ing pancreatic 3-cells in culture. Furthermore, some of the
differentiated cell products derived from HESC do not express
the full repertoire of markers that characterize their in vivo
counterparts, as is illustrated in the case of the HES hepatic-
like derived cells, in which adult liver transcripts are unde-
tectable (30). Finally, it is unclear whether all the differenti-
ated derivatives are indeed functional, an issue that could be
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addressed only by in vivo transplantation experiments, which
are limited to animal models for obvious reasons.

MODELING HUMAN EMBRYOGENESIS IN VITRO

There is by now substantial evidence to show that in vitro
differentiation of mouse and HESC can recapitulate, at least to
some extent, early embryonic development. In an attempt to
determine how well differentiation of developing EB corre-
lates with embryogenesis, the expression of several develop-
mentally regulated genes was examined. Genes that are known
to be expressed in vivo, either very early (germ layer forma-
tion) or late (lineage specification) during embryogenesis,
demonstrate that the temporal and spatial expression mode of
these markers is maintained in mouse EB (35). This has been
further supported in human, by profiling growing HEB for
gene expression at different stages of their differentiation
using cDNA microarrays (7). This large-scale cDNA analysis
has allowed the identification of several sets of temporally
expressed genes, which can be associated with sequential
stages of embryonic development. By comparing gene expres-
sion of early, cavitated, and cystic HEB, five transiently
expressed gene clusters were identified. These corresponded
to different stages in embryo development including blasto-
cyst, primitive ectoderm, gastrulation, and early and late
organogenesis. The power of EB formation as an in vitro
model system to study early lineage determination and orga-
nogenesis was further confirmed by examining the temporal
expression of specific gene cascades that are known to be
involved in a given developmentally regulated pathway and
are active in succession. One such example is the expression
of the a- and 3-globin gene cluster, which includes a group of
several highly conserved genes that are expressed in a stage-
specific pattern during development, from embryo to adult-
hood, in the erythroid compartment. By analyzing the tran-
sient expression of globin genes in growing EB, it was shown
that the full complement of mouse embryonic globin genes are
expressed in the correct order (Fig. 2). In addition, upon
further differentiation, the switch in expression from embry-
onic to fetal/adult genes takes place as occurs in vivo (36).

Further support for the use of in vitro differentiated HESC
as a model for human embryogenesis is illustrated by the
study of the Nodal signaling pathway, which plays a major
role in the determination of embryonic axes (right-left, dorsal-
ventral, anteroposterior) as well as in mesoderm induction
during early gastrulation (37). By comparing the expression
level of NODAL and its downstream targets, LEFTY A, LEFTY
B, and PITX2, between early, mid-, and fully matured HEB, a
transient expression pattern is observed. All four genes are
expressed at different time points during differentiation, in
keeping with the conserved pathway as it occurs in the embryo
().

X inactivation is another biologic phenomenon that is de-
velopmentally regulated and is tightly linked with cell differ-
entiation. In this process, a single X chromosome undergoes
transcriptional silencing in every XX cell of the female during
early development in mammals. It occurs randomly, where
either the maternal or the paternal X chromosome is inacti-
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Figure 2. Globin gene switching during mouse ES cell differentiation. a- and
B-globin genes are expressed in a stage-specific pattern during development,
from embryo to adulthood, at different sites of erythropoiesis. ESC-derived
EB express the full complement of mouse embryonic 8- and a-globin genes
(eY, BHI, M{, and Me) in the correct temporal order, as they appear in vivo.
In addition, upon further differentiation, the switch in expression from em-
bryonic to fetal/adult genes (Bmaj and Ma) takes place, as occurs in vivo.

vated, and involves the induction of several epigenetic mod-
ifications that appear in a stepwise and apparently hierarchical
manner (Fig. 3) (38). X inactivation is initiated by the up-
regulation and cis accumulation of a nonprotein-coding RNA
molecule, termed XIST, on the chosen chromosome to be
inactivated. Cis accumulation of XIST recruits silencing com-
plexes that establish a heritably repressed chromatin confor-
mation along the entire chromosome. Analyzing differentiat-
ing XX ES cells in mice and human, has allowed us to define
the developmental time window during which cells have the
capacity to inactivate the chromosome as a response to XIST
RNA expression (39,40). In addition, it was possible to study
the molecular events that are involved and occur in succes-
sion. For instance, examining mouse XX ES cells at different
time points has allowed us to characterize the different steps
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Figure 3. X inactivation in differentiating XX embryonic stem cells. In vitro
differentiation of XX ESC has allowed the dissection of molecular events that
lead to X inactivation and appear in a stepwise fashion. The latter include
up-regulation and cis accumulation of Xist transcript followed by delayed
replication, inactivation of gene transcription, and histone modifications
(hypoacetylation of H3- and H4-tail histones and methylation of H3K9 and
H3K27). Thereafter, histone macro-H2A1.2 incorporates and DNA methyl-
ation of CpG sequences takes place.
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that are required for establishing the inactive state of the X
chromosome in females and to identify developmentally reg-
ulated factors that are necessary to induce the full pathway
that leads to stable inactivation (41-47).

These experimental findings support the notion that HESC
can indeed model, to a certain degree, early embryonic devel-
opment. This has been demonstrated by specific gene expres-
sion and developmentally regulated pathways, activated dur-
ing HESC differentiation, as they would be in vivo.

STUDY OF DEVELOPMENTALLY REGULATED
PROCESSES AND DISEASES BY ANALYZING THE
EFFECT OF SPECIFIC MUTATIONS

HESC promise to be invaluable in the study of human
genetic disorders, especially in cases where animal models fail
to fully reproduce the human phenotype. In particular, they
can be used for investigating developmentally regulated dis-
orders, which have no rodent counterparts. One such example
is the group of unstable triplet repeat expansion disorders (e.g.
fragile X syndrome). Thus, having a HESC-based cellular
system that complements other available models would be
extremely useful.

HESC can be used for modeling human disorders either by
targeted mutagenesis or by the use of cell lines, which already
carry naturally occurring mutations (Fig. 1). Indeed, it has
been previously demonstrated that genetic manipulation of
HESC is feasible (48) and that specific genes can be targeted
by homologous recombination (49,50). The use of targeted
mutagenesis has allowed us to model disorders for which
animal and other cellular models have been proved to be
inadequate (49). For example, Lesch-Nyhan disease is caused
by a mutation in the HPRT1 gene causing overproduction of
uric acid. However, knockout mice lacking HPRT1 expression
do not display the Lesch-Nyhan phenotype, possibly because
they do not accumulate uric acid due to biochemical differ-
ences between rodents and humans. Disruption of the HPRT1
in HESC by homologous recombination has allowed us to
recapitulate some of the characteristics of Lesch-Nyhan syn-
drome, including the accumulation of uric acid (49). Such
mutated cells can help researchers to further investigate the
genetic disease and to analyze drugs that will prevent the onset
of its symptoms. An alternative approach for modeling human
inherited disorders is the derivation of HESC that have natu-
rally inherited mutations. This can be achieved by the proce-
dure of preimplantation genetic diagnosis (PGD) (Fig 1). This
technique is offered to couples at high risk of transmitting a
genetic defect, eliminating the need for therapeutic abortion.
In PGD, embryos diagnosed to be free of the genetic mutation
are selectively transferred for implantation and the affected
embryos are discarded. The affected embryos, which carry
specific mutations that are associated with particular inherited
disorders, can be used for the establishment of new ES cell
lines (51,52). Such cell lines have recently been established
for Thalassemia, Duchenne muscular dystrophy, Huntington
disease, Fanconi anemia, and several other diseases (51,52). A
different approach to obtain HESC with naturally occurring
mutations would be to establish new cell lines from nuclear

transfer (NT)-derived blastocysts (Fig. 1). In this method, a
nucleus from a somatic cell of an adult is introduced into an
enucleated oocyte, resulting in a cloned embryo. The NT-
derived embryo can then be used for the establishment of ES
cells (Fig. 4). By introducing the nucleus of a somatic cell
from a genetically affected patient, an ES cell line with the
specific mutation will be produced. This approach, which
involves embryo cloning, has been demonstrated to be feasible
in mouse (53,54). By transferring a somatic cell nucleus from
skin cells of patients into enucleated oocytes, it might be
possible in the future to generate genetically tailored HESC
for different disorders with reasonable efficiency. ES cell lines
containing a specific genetic alteration, either by targeted
mutagenesis, PGD, or embryo cloning, may thus serve as a
model system for specific diseases, allowing us to improve our
understanding of the pathology by studying the abnormal
phenotype at the cellular and molecular levels.
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Enucleated oocyte

Enucleated oocyte
and donor cell for nuclear
transfer

~5 days in culture
Nuclear transfer blastocyst

Isolation of ICM cells

|

Nuclear transfer derived ES cells

RS
S
Figure 4. Somatic nuclear transfer (NT). A procedure that involves the
introduction of a nucleus from a somatic cell into a metaphase II stage
enucleated oocyte. The NT-derived zygote can be left to develop into
blastocyst in vitro. Isolation and further propagation of the ICM cells of the
cloned blastocyst results in the establishment of a new HESC line.
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CELL REPROGRAMMING BY CELL FUSION

The recent advances in the derivation of HESC and the
success in mammalian embryo cloning by somatic cell nuclear
transfer (NT), provide an attractive possibility for restoring
tissue function by cell transplantation through therapeutic
cloning. An alternative approach for dedifferentiating somatic
cells, to produce autologous ES cell lines that would bypass
the problematic issue of embryo cloning, is to produce hybrid
cells that are a product of fusion between a somatic cell and an
existing ES cell line. Such hybrid cells have been obtained by
fusing human fibroblasts with HESC (55). Some of these
hybrids are tetraploids and resemble the phenotype of ES cells
in terms of morphology, growth rate, antigen expression, and
immortality. They also have a wide differentiation potential, as
determined by their ability to form EB in vitro and teratomas
in vivo. Genome-wide transcriptional activity, reporter gene
activation, allele-specific gene expression, and DNA methyl-
ation showed that the fibroblast genome has been repro-
grammed by the ES cell to an embryonic state (55). Thus,
fusion between ES and somatic cells may serve as a powerful
tool for the identification of critical factors and underlying
mechanisms by which adult cells can be reprogrammed. Fur-
thermore, they may teach us more about cell commitment and
embryonic differentiation.

SUMMARY

The recent derivation of HESC has generated much interest,
mainly due to their therapeutic potential. Yet, another crucial
role that these cells will probably have in the near future will
be as a model system for basic developmental research. HESC
provide a new approach to the study human embryo develop-
ment, which has so far been limited by the inadequacy of
available models. Investigation of HESC differentiation will
open new opportunities for observing and studying early
human embryonic development and disease in a straightfor-
ward fashion. In this review, we have summarized the meth-
ods by which HESC can be used for this purpose.
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