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Lung hypoplasia (LH) is a serious cause of neonatal compro-
mise, but little is known of its functional effects on the pulmo-
nary circulation. Our aim was to characterize birth-related
changes in the pulmonary circulation of newborn lambs with LH
and to compare them with alterations in respiratory function. LH
was induced in six ovine fetuses by the creation of a tracheo-
amniotic shunt as well as amniotic fluid drainage starting at 105.6
� 1.5 (mean � SEM) days of gestation (term ~147 d). At 139.9
� 0.3 d, fetuses were exteriorized under anesthesia to implant
vascular catheters and an ultrasonic flow probe around the left
pulmonary artery. The lambs then were delivered and ventilated
for 2 h, during which systemic and pulmonary artery pressures,
left pulmonary blood flow, and measures of respiratory function
were recorded. At autopsy, lungs were weighed and volume was
measured at 20 cm H2O. In LH lambs, lung weight was 25%
lower and respiratory system compliance was 30% lower than in
controls. Mean pulmonary blood flow in LH lambs was 42%
lower and pulmonary vascular resistance was 138% higher than
in controls. Morphometry showed that volume density of pulmo-
nary arteries in LH was 30% lower than in controls. We conclude
that, in this LH model, changes in ventilatory indices were
proportional to the change in lung size, whereas changes in the
pulmonary circulation were greater than the change in lung size
and were associated with reduced density of pulmonary arteries.

LH severely impairs normal adaptation of the pulmonary circu-
lation in the perinatal period. (Pediatr Res 57: 530–536, 2005)

Abbreviations
AaDO2, alveolar-arterial difference of oxygen tension
BW, body weight
CDH, congenital diaphragmatic hernia
Crs, total respiratory system compliance
EEP, end-expiratory pressure
FIO2, fraction of inspired oxygen
LH, lung hypoplasia
LV, lung volume
LW, lung weight
MAP, mean airway pressure
PaCO2, partial pressure of carbon dioxide in the arterial blood
PaO2, partial pressure of oxygen in the arterial blood
PAP, pulmonary artery pressure
PBF, pulmonary blood flow
PIP, peak inspiratory pressure
PVR, pulmonary vascular resistance
SAP, systemic artery pressure
Va, volume density of arteries in the lung (tissue and airspace)
Vat, volume density of arteries in lung tissue alone
VEI, ventilatory efficiency index
Vt, tidal volume

Fetal lung hypoplasia (LH) results from impaired lung tissue
growth during fetal development and can result in severe
respiratory insufficiency in the neonate. LH is present in ap-
proximately one in 1000 human live births (1,2), and, despite
recent advances in the treatment of newborn infants with
respiratory insufficiency, it remains one of the major causes of
neonatal mortality and morbidity (3–5). The incidence of LH in
neonatal autopsies is reportedly increasing because death rates
as a result of other neonatal diseases are decreasing (6).

LH is associated with many predisposing conditions (7),
including chronic oligohydramnios, as a result of fetal anuria
or amniotic fluid leakage (8–10), intrathoracic masses, as in
congenital diaphragmatic hernia (CDH), and decreased fetal
breathing movements (5,11). The impaired growth and struc-
tural development of the lung associated with LH has been
reported in previous morphometric studies in human infants
and experimental animal models. For example, radial alveolar
counts are reduced in preterm infants with LH after premature
rupture of membranes (10). Similarly, studies in animal models
of LH have found reduced size and number of alveoli and
alveolar ducts and thickened alveolar walls (12–14). Other
studies have reported on the relationship between alterations in
lung structure associated with LH and physiologic alterations
in ventilatory function. In fetal rabbits with LH, morphometric
alterations in the lungs were associated with decreased dy-
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namic compliance of the air-filled lungs (12). Similarly, in
infants who have CDH, reductions in alveolar number and lung
volume (LV) were correlated with higher partial pressure of
carbon dioxide in the arterial blood (PaCO2) and the need for
ventilatory support (15).
It is apparent that LH is associated not only with reduced

growth and altered structural development of the airways and
respiratory units but also with impaired growth and develop-
ment of the pulmonary vasculature. In an infant with LH
associated with CDH, reductions in the size and number of
pulmonary arteries, airways, and alveoli were observed, and
these reductions were closely related to the reduction in lung
size (16). Other studies have reported the extension of muscu-
larization further down the arterial tree and increased medial
thickness of pulmonary arteries in human infants with LH
(17,18) as well as in animal models of LH induced by CDH
(19). Decreased numbers and surface area of pulmonary cap-
illaries have also been reported in animal models of CDH
(20,21). However, little is known about the physiologic aspects
of perinatal adaptation of the pulmonary circulation in hypo-
plastic fetal lungs. Hence, our objectives were to characterize
changes in pulmonary hemodynamics in newborn lambs with
LH and to compare them with alterations in lung mechanics
and ventilation. We induced LH by prolonged drainage of fetal
lung liquid and amniotic fluid and ventilated the animals after
birth as they were not expected to survive without respiratory
support.

METHODS

Experiment protocol. The study was approved by the Animal Welfare
Committee of Monash University. Twelve pregnant ewes and their fetuses
(Merino � Border-Leicester) were anesthetized and underwent aseptic surgery
at 105.6 � 1.5 d (mean � SEM) of gestation (term ~147 d). These animals
were divided into two equal groups (n � 6 for each): an LH group and a control
group. We implanted a fetal tracheal catheter (internal diameter 3.5 mm, length
80 mm, side holes at each end) and two amniotic fluid drainage catheters
(internal diameter 3.5 mm, length 250 mm, side holes at each end) for the
induction of LH. The fetal tracheal catheter acted as a tracheo-amniotic shunt
and allowed fetal lung fluid to drain into the amniotic cavity. In addition,
amniotic fluid was drained via the two amniotic catheters either into the
maternal peritoneal cavity (n � 4) or into a sterile bag that was external to the
ewe (n � 2). In the LH fetuses, amniotic and fetal lung fluids were drained
passively from the time of surgery until delivery at ~140 d of gestation. Five
of the control fetuses underwent the same surgical preparation as LH animals
but had a short re-entrant catheter (internal diameter 3.5 mm, length 140 mm,
side holes at each end) or indwelling tube (internal diameter 3.5 mm, length 50
mm) implanted into the trachea; one control fetus received no surgical treat-
ment. In control animals, amniotic and fetal lung fluids were not drained.

At 139 � 0.3 d of gestation, the pregnant ewes were anesthetized with
halothane (3%). The fetal head and chest were exteriorized, and catheters were
inserted into a carotid artery and jugular vein; the existing tracheal tube was
removed and replaced by an endotracheal tube for ventilation after birth. The
trachea was ligated around the endotracheal tube to avoid any air leakage
during ventilation. After a left thoracotomy, an ultrasonic flow probe (5-6SB;
Transonic Systems, Ithaca, NY) was placed around the left pulmonary artery
and a nonocclusive catheter was inserted into the main pulmonary artery. The
lambs then were delivered, weighed, and laid in the right lateral posture on a
mattress under a radiant heater. Amniotic fluid was collected before and after
delivery of the fetus, and the volume was measured. Once delivered, the lambs
were ventilated and monitored for 2 h with a constant-flow, time-cycled,
pressure-controlled ventilator (Babylog 8000 Plus; Draeger Medizintechnik,
Luebeck, Germany). Blood flow in the left pulmonary artery was measured
with an ultrasonic flowmeter (T108; Transonic Systems). During the experi-
ment, the lambs were anesthetized, sufficient to eliminate spontaneous respi-
ration, with an i.v. infusion of alphaxalone/alphadolone acetate (Saffan; Pitman
Moore, NSW, Australia) in glucose/saline solution, and respiratory and circu-

latory data were recorded continuously using a digital data acquisition system
(Powerlab/8sp; ADInstruments, NSW, Australia). The recorded respiratory
and circulatory variables were fraction of inspired oxygen (FIO2), ventilating
pressures, ventilating flow and volume, systemic artery pressure (SAP), pul-
monary artery pressure (PAP), and left pulmonary blood flow (PBF). Venti-
lating pressure, flow, and volume signals were obtained from the analogue
outputs of the ventilator and recorded in a computer via an AD converter for
further analyses.

The initial ventilator settings were as follows: flow, 6 L/min; FIO2, 1.0;
ventilation rate, 60 breaths/min; inspiration time, 0.5 s; peak inspiratory
pressure (PIP), 25 cm H2O; end-expiratory pressure (EEP), 5 cm H2O. These
settings were adjusted every 5–15 min according to the arterial blood gas
tensions and tidal volume (Vt), aiming for target values of PaCO2 35–45 mm
Hg; PaO2 60–100 mm Hg; and Vt 5–10 mL/kg body weight. The PIP was
adjusted depending on Vt, and then ventilation rate was adjusted depending on
PaCO2 values. The FIO2 was adjusted depending on the PaO2. The EEP was kept
at 5 cm H2O at least for the first hour; after 1 h, if the PaO2 exceeded 100 mm
Hg on FIO2 of 0.4, then the EEP was decreased in 1-cm H2O increments.

After 2 h of ventilation, lambs were killed painlessly by a lethal dose of
sodium pentobarbitone (1.5 g, i.v.). The lungs and heart were removed and
weighed. After the left bronchus was ligated, the left lung was removed and
portions were frozen in liquid nitrogen and then stored at �70°C for biochem-
ical analysis; other portions were removed for dry weight analysis. The right
lung was fixed via the trachea at 20 cm H2O with 4% paraformaldehyde. After
3–5 d of fixation (for future histologic analysis), the right LV was determined
using the Cavalieri method (22). Pulmonary DNA and soluble protein concen-
trations in lung tissue were determined using established fluorometric DNA
and colorimetric protein assays (23).

Data analysis. Data relating to blood gas tensions, ventilatory pressure,
flow and volume, left PBF, and pulmonary and systemic artery pressures were
analyzed at 15, 30, 60, 90, and 120 min after birth. At each time point, values
from five consecutive cycles of ventilation or heart beat were sampled and
averaged for further analysis.

We calculated the following four derived variables:

1. Alveolar-arterial difference of oxygen tension (AaDO2; mm Hg), an index
of oxygenation: FIO2 � (760 � 52) (mm Hg) � PaCO2(mmHg)/0.8 �
PaO2(mmHg), where 760 mm Hg is mean atmospheric pressure at our
laboratory, 52 mm Hg is saturated water vapor pressure at 39°C and 0.8 is
an assumed RQ (respiratory quotient).

2. Ventilatory efficiency index (VEI) (24), an index of CO2 elimination
efficiency: 3800/ventilation rate (/min)/(PIP � EEP) (cm H2O)/PaCO2.

3. Total respiratory system compliance (Crs; mL/cm H2O): volume differ-
ence between end-inspiration and end-expiration/pressure difference be-
tween end-inspiration and end-expiration (at points of no flow)

4. Pulmonary vascular resistance (PVR; mm Hg · mL�1 · min): (mean PAP
� 5) (mmHg)/meanPBF (mL/min). Left atrial pressure was assumed to be
5 mm Hg.

Morphometry. From the right lung of each animal, nine paraffin-embedded
sections of 4-�m thickness were stained with Masson’s trichrome stain.
Pulmonary arteries were distinguished from pulmonary veins on the basis of
structure and position (25). From each section, three different fields were
randomly selected and examined at �100 magnification, with a total of 27
fields per animal analyzed, using ImagePro Plus Version 4.5 for Windows
Image Analysis (Media Cybernetics, Silver Spring, MD). The external elastic
lamina of all arteries with diameter �25 �m was traced and the areas within
the lamina were summated. The area of tissue (nonairspace areas) was also
measured using an automated counting system in the same computer program
that recognizes and summates dark areas. Volume density of arteries in the
lung (Va) is defined as the total area occupied by arteries relative to the total
field area. Volume density of arteries in lung tissue (Vat) is defined as the total
area occupied by arteries relative to the area occupied by tissue (airway walls,
blood and lymph vessels, connective tissue, capillaries, and alveolar septae).

The results are presented as mean � SEM. Differences among the animal
characteristics, autopsy data, and lung composition data were analyzed using
an unpaired t test. Differences in respiratory and circulatory variables over time
and between groups were analyzed using a two-way ANOVA for repeated
measures. Significant differences then were identified with a least significant
difference test. The level of significance for all statistical analyses was p �
0.05.

RESULTS

The gestational ages at the time of treatment onset, namely
tracheal tube and amniotic catheter implantation, were not
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different between LH and control animals (105.5 � 2.5 versus
105.8 � 1.4 d). Similarly, the gestational ages at delivery
(140.0 � 0.5 versus 139.8 � 0.2 d) and birth weights (3.33 �
0.18 versus 3.66 � 0.29 kg) of the LH and control groups were
not different. Amniotic fluid volume was decreased by 58% in
LH animals compared with controls (Table 1). No overt fetal
anomalies were observed.
Lung growth. The wet and dry lung/body weight ratios were

reduced, respectively, by 25% (p � 0.05) and 28% (p � 0.01)
in LH lambs compared with controls (Table 1). Similarly, total
lung DNA content (mg/kg body weight) was reduced by 22%
(p � 0.05) in LH lambs compared with controls (Table 1).
Total lung protein content (g/kg body weight) tended to be
lower in LH than in control lambs; however, the difference was
not significant (p � 0.096). The concentration of both DNA
(mg/g) and protein (mg/g) of lung tissue was not different
between the groups. LV at 20 cm H2O was 39% lower in LH
lambs compared with controls (p � 0.01).
Oxygenation and ventilation. Arterial pH (LH 7.396 �

0.086 versus control 7.437 � 0.042 at 2 h), PaCO2 (LH 36.6 �
5.3 versus control 34.8 � 2.3 mm Hg at 2 h), and PaO2 (LH 94
� 23 versus control 75 � 15 mm Hg at 2 h) were not
significantly different between the two groups of lambs over
the 2-h study period. The hematocrit of the lambs at 2 h after
birth was not different between the groups (39.3 � 2.6 versus
38.6 � 1.3%). The FIO2 required to maintain the target PaO2
was reduced at a greater rate in control lambs than in LH
lambs. The FIO2 was significantly higher in LH lambs than in
controls at 15 and 30 min but was not different at 60, 90, and
120 min (Fig. 1A). After delivery, PIP, ventilation rate and
mean airway pressure (MAP) progressively decreased in both
groups; however, they decreased more slowly in LH lambs
than in controls. The PIP was not different between groups at
15 min but was significantly higher in LH lambs than in
controls at 30, 60, 90, and 120 min (21.0 � 1.5 versus 16.0 �
3.6 cm H2O; p � 0.01 at 2 h). The PEEP remained at 5 cm H2O
in all LH lambs, but it was able to be reduced in five control
lambs at 1 h after birth. It was significantly higher in LH than
in control lambs at 90 and 120 min (5.0 � 0.0 versus 2.8 � 1.6
cm H2O; p � 0.01 at 2 h). The ventilation rate progressively
declined in both groups and at 2 h tended to be higher in LH
than in control lambs (35.0 � 5.5 versus 31.7 � 2.6/min; p �
0.207). The MAP was not different between groups at 15 min
but was significantly higher in LH lambs than in controls at 30,
60, 90, and 120 min (Fig. 1B). The AaDO2 decreased with time

in both groups of lambs; during the first hour after birth, it
decreased more quickly in LH than in control lambs. After this
time, however, the difference between groups did not reach
statistical significance (Fig. 1C).
VEI significantly increased with time in both groups and was

lower in LH than in control lambs. The difference between
groups was significant at 90 and 120 min; at 120 min, VEI was
28% lower than in controls (0.20 � 0.02 versus 0.27 � 0.03;
p � 0.05; Fig. 2A). Crs adjusted for body weight (Crs/BW)
significantly increased in both groups and was lower in LH
than in control lambs over the study period; the difference was
significant at 15, 60, 90, and 120 min; at 120 min, Crs/BW was
30% lower in LH lambs than in controls (0.40 � 0.03 versus
0.57 � 0.04 mL · cm H2O

�1 · kg�1; p � 0.05; Fig. 2B). In
contrast, neither Crs adjusted for lung weight (LW) nor Crs
adjusted for LV was different between the groups at all time
points.
Pulmonary circulation. Blood flow through the left pulmo-

nary artery, adjusted for BW (meanPBF/BW), was signifi-
cantly lower in LH than in control lambs at all time points (Fig.
3A); at 120 min, it was 42% lower (p � 0.01) in LH lambs
(49.4 � 5.9 mL · min�1 · kg�1) than in controls (85.4 � 9.0
mL · min�1 · kg�1). Maximum PBF adjusted for BW (max-
PBF/BW) was significantly lower in LH than in control lambs
(Fig. 3B); at 120 min, it was 33% lower (p � 0.05) in LH
lambs (148.1 � 13.9 mL · min�1 · kg�1) than in controls
(220.7 � 28.1 mL · min�1 · kg�1). Minimum PBF adjusted for
BW (minPBF/BW) was lower in LH than in control lambs over
the study period (significant difference at 15, 60, and 120 min).
At 120 min, minPBF/BW was �1.8 � 6.3 mL · min�1 · kg�1

in LH lambs and 23.0 � 4.2 mL · min�1 · kg�1 in controls
(Fig. 3C). In two of the control lambs, minPBF/BW was
negative (i.e. reverse flow) at 15 min but was positive in all
control lambs at 90 and 120 min. In contrast, all LH lambs
showed negative minPBF/BW at 15 and 30 min, and in two of
them, it remained negative at 120 min. Figure 4 shows typical
PBF waveforms in LH and control lambs at 120 min; in control
lambs, PBF remained positive throughout the cardiac cycle,
and the decrease in flow immediately after systole was reduced
compared with LH lambs. In contrast, in LH lambs, PBF
rapidly decreased after systole and commonly decreased below
zero, indicating retrograde flow in the pulmonary artery (a
characteristic of the fetal state; Fig. 4). Mean PBF adjusted for
LW tended to be lower in LH compared with control lambs,
reaching significance only at 30 min; at 2 h, the values were not
significantly different (LH 5.68 � 2.17 versus control 7.65 �
2.52 mL · min�1 · g�1).

Mean PAP was higher in LH than in control lambs over the
study period (significant differences at 15, 60, and 120 min)
and was 34% higher at 120 min (41.3 � 2.4 versus 30.8 � 0.8
mm Hg; p � 0.01; Fig. 5A). The ratio of mean PAP to mean
SAP (PAP/SAP) was significantly higher in LH than in control
lambs at all time points and was 68% greater at 120 min (1.01
� 0.07 versus 0.60 � 0.04; p � 0.01; Fig. 5B). At 120 min,
three LH lambs still showed PAP/SAP �1 (i.e. mean PAP was
higher than mean SAP). In contrast, in all control lambs,
PAP/SAP was �1 (i.e. mean PAP was lower than mean SAP)
at all time points. PVR adjusted for body weight (PVR*BW)

Table 1. Amniotic fluid volume and data relating to lung size in the
LH and control groups

Variable LH Control

Amniotic fluid volume (mL) 183 � 69a 433 � 44
Wet LW (g/kg BW) 21.7 � 1.3a 29.1 � 2.4
Dry LW (g/kg BW) 2.67 � 0.10b 3.72 � 0.19
Lung DNA (mg/kg BW) 145.0 � 6.7a 185.5 � 12.5
Lung protein (g/kg BW) 0.918 � 0.046 1.384 � 0.249
LV (mL/kg BW) 23.2 � 1.2b 38.0 � 2.4

Wet LW, dry LW, lung DNA content, lung protein content, and LV (at 20
cm H2O fixation pressure) are adjusted for BW in kg. Values are mean � SEM.
Significant differences between the LH and control groups: a p � 0.05, b p �
0.01.
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was significantly higher in LH than in control lambs at all time
points and was 138% higher at 120 min (0.76 � 0.06 versus
0.32 � 0.04 mm Hg · mL�1 · min · kg; p � 0.01; Fig. 5C).
PVR adjusted for LW (PVR*LW) was also higher in LH than
in control lambs (significant difference at 15, 30, and 120 min)
and was 82% higher at 120 min (6.9 � 0.7 versus 3.8 � 0.6
mm Hg · mL�1 · min · g; p � 0.05). In LH lambs, both
PVR*BW and PVR*LW decreased with time but did not reach
the level measured in control lambs, which showed constant
low values over the 2-h experiment.
Morphometry of pulmonary arteries. The Va tended to be

lower in LH lambs than in controls (2.70 � 0.35 versus 3.82 �
0.37 � 10�3; p � 0.051; Fig. 6A). The Vat was significantly
lower in LH lambs than in controls (10.5 � 0.9 versus 15.1 �
1.1 � 10�3; p � 0.05; Fig. 6B).

DISCUSSION

In this study, we induced moderate LH in fetal sheep by
creating a tracheo-amniotic shunt and draining amniotic fluid
for ~35 d. This treatment was expected to chronically reduce
the level of fetal lung expansion and hence inhibit lung growth
during the canalicular, saccular/alveolar phases of lung devel-
opment. Immediately after birth, the LH was associated with a
decreased Crs and increased ventilatory requirements. In addi-
tion, we found major differences between groups in PVR, PBF,
and PAP, which are indicative of major alterations within the
pulmonary circulation and are consistent with the decrease in
the volume density of arteries in lung tissue.
Creation of lung hypoplasia. A number of animal models

have been used to create fetal LH by mimicking human clinical

situations that cause LH (26–29). We induced lung hypoplasia
by the combined drainage of fetal lung liquid and amniotic
fluid. A reduced volume of amniotic fluid (oligohydramnios) is
known to be associated with LH by causing either direct or
posture-related (increased “ventroflexion”) compression of the
lungs, although decreased fetal breathing movements may also
contribute (10,28,30–32). The fetal tracheo-amniotic shunt is
likely to accentuate the reduction in lung expansion (and thus
LH) associated with oligohydramnios by creating a low-
resistance pathway for fetal lung liquid to leave the lungs
(30,33). Our method of prolonged drainage of amniotic and
lung fluid was successful in inducing a moderate degree of fetal
lung hypoplasia, as indicated by the 28% reduction in dry LW
and 22% reduction in pulmonary DNA content in LH lambs
compared with controls (30,34). In most cases, amniotic fluid
drainage was incomplete, perhaps as a result of trapped pockets
of fluids or a small pressure gradient between the amniotic sac
and maternal peritoneal cavity or the fluid collecting bag,
which may have been responsible for the relatively modest
degree of LH that we observed. Nevertheless, this degree of
LH was sufficient to cause significant changes in respiratory
function and PBF in ventilated neonatal lambs.
Oxygenation and ventilation. A number of previous studies

have reported decreased oxygenation and ventilation in neo-
nates with LH. In our study, the FIO2 was reduced more quickly
in control lambs than in LH lambs within the first hour after
birth, although it was not different between the two groups after
60 min. The AaDO2 was higher in LH lambs than in controls
within the first hour and was not different between the two
groups after 60 min. These results indicate that in this model,
LH lambs had poorer oxygenation immediately after birth and
improved less rapidly than controls, attaining a near-normal
oxygenation level by 1 h after birth. This mild impairment of
oxygenation could be a result of the moderate degree of LH
created in this study.
In contrast to the similar oxygen requirements in both groups

at 1 h after birth, the persistent difference in MAP and VEI
between the two groups over the postnatal study period indi-
cates that ventilatory efficiency was decreased in LH lambs and
that these animals required more ventilatory support as indi-
cated by higher ventilating pressure settings. It is interesting
that Crs/BW showed similar trends to those of VEI; that is,
both Crs/BW and VEI increased with time but were lower in

Figure 1. Changes over the 2-h study period in FIO2 (A), MAP (B), and AaDO2 (C) in the LH (F) and control (E) groups. Data are mean � SEM. Differences
between LH and control groups: *p � 0.05, **p � 0.01.

Figure 2. Changes over the 2-h study period in VEI (A) and Crs (B) adjusted
for body weight (Crs/BW), in the LH (F) and control (E) groups. Data are
mean � SEM. Differences between LH and control group: *p � 0.05, **p �
0.01.
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LH lambs over the whole experiment. At 120 min, the reduc-
tions in VEI and Crs/BW were 28 and 30%, respectively,
which were similar to the reductions in wet and dry LWs (25
and 28%, respectively). Hence, assuming that CO2 production
and the physiologic dead space were not different between the
groups, alveolar ventilation rate was also proportional to lung
size. Crs adjusted for LW (Crs/LW) and Crs adjusted for LV
(Crs/LV) were not different between the groups. Alterations in
the development of type I and II alveolar epithelial cells and in
the production of surfactant in LH are controversial (12,35).
However, the above results suggest that the change in lung
compliance was due to the change in lung size and not to any
superimposed factors such as a deficiency in surfactant pro-
duction or release.
Pulmonary circulation. A major finding was that PVR was

much higher in LH lambs than in controls. Although PVR
decreased in LH lambs with time, even at 2 h after birth, PVR
adjusted for either BW or LW was still 138 and 82% higher,
respectively, in LH lambs than in controls. Our findings indi-
cate that the increase in PVR was more marked than what
could be expected from the decrease in lung size, resulting in
a severe impairment of the perinatal adaptation of the pulmo-
nary vascular system in LH animals. The LH-induced increase
in PVR would explain the observed decreases in meanPBF,

maxPBF, and minPBF. An increase in PVR would also explain
the higher PAP in LH lambs compared with controls; indeed,
in LH lambs, PAP remained around the same level as mean
SAP throughout the study period.
A previous study has examined the effect of LH on PBF

(using the microsphere method), PAP, and PVR in a fetal ovine
model of CDH (36). In the LH fetuses, it was found that PBF
was reduced and both PAP and PVR were increased. However,
when adjusted for LW, PBF was not decreased (i.e. the de-
crease in PBF was proportional to the reduction in the lung
mass) and PVR was increased only slightly; the increase in
PVR was more than proportional to the reduction in the lung
mass but was not significant (36). In our study, the increase in
PVR was greater than what could be attributed to the decrease
in lung size. Pulmonary vascular tone is known to be affected
by oxygen tension and pH (37,38), but in this study, we found
no difference in FIO2, PaO2, and pH between the two groups
over the second half of the study period. Hence, O2 tension and
pH around the distal pulmonary arteries would be expected to
be at the same level in both groups.
To explain the higher PVR in LH lambs, relative to lung

size, there are three major possibilities. First, the growth and
development of the pulmonary vascular bed in LH lambs might
be more severely impaired than that of airspace and overall
lung tissue growth. This would lead to a reduced cross-
sectional area of the pulmonary vascular bed and hence an
increase in its resistance. This explanation is compatible with
our morphometric findings, which showed a 30% decrease in
volume density of arteries relative to tissue volume (Vat).
Assuming that tissue volume is related to tissue weight, the
significant reduction in Vat would likely cause an increase in
arterial resistance and hence an increase in PVR. In our model
of LH, lung liquid and amniotic fluid drainage occurred in the
canalicular (~80–120 d) and saccular/alveolar stages (~120–
140 d) of lung development. Therefore, the development of
pulmonary capillaries may have been affected by the treatment.
Some previous studies of pulmonary capillary development in
a CDH model revealed a decrease in the capillary surface area
that was proportional to the reduction in alveolar surface area
(20,21). However, in this study, the analysis of pulmonary
capillaries was not possible because we pressure-fixed the lung
tissue via the airways without concomitant perfusion fixation

Figure 4. Records of left PBF waveforms at 2 h after birth from a lamb (A)
with LH and a control lamb (B).

Figure 3. Changes over the 2-h study period in mean meanPBF/BW (A), maxPBF/BW (B), and minPBF/BW (C) in the LH (F) and control (E) groups. Data
are mean � SEM. Differences between LH and control groups: *p � 0.05, **p � 0.01.
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through pulmonary vessels, which caused a collapse of
capillaries.
Second, as PVR is dependent on the capillary-alveolar trans-

mural pressure, higher alveolar pressures resulting from higher
MAP (39) may lead to compression of pulmonary capillaries
(40) and hence increased PVR (41). Therefore, we cannot
exclude the possibility that the higher MAP in our LH animals
contributed to the increased PVR by increasing pulmonary
capillary resistance. In fact, there was a significant correlation
between MAP and PVR*LW in the LH group of lambs (p �
0.01, r2 � 0.32) but not in the control group (p � 0.70, r2 �
0.01). This may indicate that a more severe LH resulted in the
need for higher MAP to maintain adequate ventilation, which
in turn caused a higher PVR.
Third, it is possible that the higher PVR in lambs with LH

resulted from increased vasoconstrictor tone in the peripheral
pulmonary arteries. It is well established that neonatal persis-
tent pulmonary hypertension associated with LH responds to
vasodilator treatment (5,42–44). Thus, the greater increase in
PVR relative to the reduction in lung size in the present study
could be the consequence of increased vasoconstrictor activity
of the pulmonary arteries. Further studies examining the phys-
iologic responses of the pulmonary vasculature to various
vasodilating and vasoconstricting challenges would be required
to elucidate this point.
In contrast to all control lambs, we found a persistence of

diastolic retrograde flow in the left pulmonary artery in four
LH lambs. We speculate that this is caused by a persistent
elevation of PVR in association with continued right-to-left
shunting through the patent ductus arteriosus. Our observation
that the mean PAP relative to SAP stayed significantly high in
LH lambs supports this speculation.

CONCLUSIONS

In our ovine model of moderate LH, changes in indices of
lung ventilation were proportional to the changes in lung size.
Changes in indices of pulmonary circulation were greater than
the changes in lung size despite similar FIO2 and oxygenation
and were associated with impaired growth of pulmonary arter-
ies. LH severely impairs normal adaptation of pulmonary
circulation in the perinatal period.
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