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Brain Imaging in FAS
Commentary on the article by Malisza et al.
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Fetal alcohol syndrome (FAS) is caused by maternal con-
sumption of alcohol during pregnancy, though it is not clear
how much alcohol is required to result in the syndrome.
Children with FAS exhibit a wide range of symptoms such as
severe growth restriction, facial dysmorphology (i.e., smooth
philturm, thin upper lip, small palpebral fissures), and intellec-
tual disability. It affects 0.2 to 1.5 individuals per 1000 births
across various populations and is at comparable or increased
rates relative to other neurodevelopmental disorders such as
Down syndrome. The relatively high incidence of FAS in the
US is of considerable social concern given that it is a leading
cause of preventable developmental disabilities (1). Further,
children with all required features to obtain a diagnosis of FAS
are not the only ones negatively affected; those with severe
prenatal alcohol exposure, but without facial dysmorphology
required for the FAS diagnosis have also exhibited neurocog-
nitive deficits (2) and brain abnormalities (3,4). The brain is
particularly vulnerable to the teratogenic effects of prenatal
alcohol exposure. Microcephaly was among the first noted
gross neural abnormalities in children born to alcohol abusing
mothers (5) and has been consistently confirmed in postmortem
and in vivo studies (6).

The paper by Maluszic and colleagues (7) used structural
and functional MRI (fMRI), finding differences in brain acti-
vation during working memory (WM) tasks in children and
adults with fetal alcohol spectrum disorders (FASD) including
FAS, partial FAS, and alcohol related neurodevelopmental
disorder (ARND). The maintenance of structural brain changes
into adulthood described above raises the specter of potentially
permanent functional changes following prenatal exposure to
alcohol. Although the study is preliminary, it is the first
published study thus far to examine brain function in FASD
using fMRI, and hopefully will encourage further study into
this disorder using advanced imaging methods.
Designing and performing fMRI studies in children is chal-

lenging under the best circumstances, and there are particular

difficulties of interpretation when one population is impaired in
the function studied, as is the case in these FASD subjects. The
authors suggest that FASD children and adults show increased
functional activation at a low-level working memory task in
inferior and middle frontal cortices which decreased with task
difficulty, while control children and adults showed the oppo-
site pattern. Interpretation of results must remain very cautious
for several reasons. The first involves performance differences
between groups. Because both accuracy and reaction times
were lower in the FASD groups than in controls, it is difficult
to determine whether differences in activation between groups
reflect more general factors related to performance or are
specific to task-group effects. When tasks become very difficult
subjects tend to disengage or focus on irrelevant features of the
task; when challenging but within reach, brain regions in-
volved in effortful processing tend to be engaged regardless of
task or population (8,9). Other approaches to handling the
problem of group performance differences include parametric
designs; (8,10) performance matched comparisons, (11) and
separate covariance analysis of the effects of performance on
brain activation (9). Future fMRI studies of FASD incorporat-
ing these approaches would bolster the significance of the
present findings.
A second problem with interpretation involves the nature of

the comparisons. While group averaged maps of FASD or
control subjects may appear different visually, direct statistical
comparisons of group effects are required to determine whether
there are reliable group effects. Limited power and different
N’s may produce group-activation maps that appear to show
group differences but which reflect primarily differences in the
power to detect activations. Such power is often limited by
increased variability in clinical populations.
Finally, while control children and adults may both show

areas of activity within the same lobe, the precise areas of
activation do not appear to overlap in this study, which would
be testable by direct group comparisons. Although children and
adults tend to differ in magnitude of fMRI activation, in general
children and adults have shown similar patterns of engagement
in DLPFC and intraparietal cortex in working memory tasks,
(11,12) which are not seen consistently in the present studies.
In part this is likely due to the relatively small numbers of
subjects. While individual subjects may show the expected
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activation patterns (such as in Fig. 2, Fig. 3, Fig. 4, Fig. 5),
these cannot be interpreted to reflect group trends.
The structural brain abnormalities observed in FASD indi-

viduals in previous studies may also be helpful in interpreting
the pattern of functional effects observed here. Localized brain
size reduction on orbito-frontal regions have been observed in
children, adolescents and young adults with FASD, (13) and
this region showed activation abnormalities during the WM
task in both children and adults with FASD in this study. The
increased activity in orbital frontal cortex in FASD relative to
control subjects could be related to biologic aspects of the
structural abnormality, or it could result from misregistration
of images in brain regions that do not match normative brain
anatomy. While quantitative measures of brain anatomy were
not included in this report, it is possible that localized de-
creased orbito-frontal volumes in the FASD subjects were
over-compensated in the spatial registration process, resulting
in an apparent increased spatial extent of activation in this
region during WM.
The effects of prenatal alcohol exposure on brain structure

are not always observable upon gross inspection of magnetic
resonance imaging (MRI) data. Subtler effects in brain mor-
phology have been revealed only through quantitative compar-
isons of MRI data from groups of individuals with and without
prenatal alcohol exposure (6). Most recently, our group has
shown brain shape and cortical tissue density abnormalities
that persist into adolescence, long after the teratogenic expo-
sure of alcohol to the developing brain. Parietal, frontal and
temporal lobe abnormalities were prominent in the results (13)
and these effects were observable only through new brain
mapping technology which allowed detailed computerized as-
sessment with much greater localizing ability than was previ-
ously possible.

Future investigations of FASD would benefit from integra-
tion of functional and structural imaging data to help disentan-
gle potential artifacts from structural abnormalities from the
functional signal. Nonetheless, this study marks an important
new approach to studying the effects of alcohol exposure on the
structure and function of the developing brain and underscore
the need to pursue them through adulthood.
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