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Adeno-Associated Virus-Based Gene Therapy for
Inherited Disorders
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Adeno-associated virus vectors are capable of long-term gene
transfer without obvious adverse effects in a number of animal
models. Over the last two decades, preclinical and early phase
clinical trials in cystic fibrosis and alpha-1 antitrypsin deficiency
were undertaken to test the feasibility of this approach. The
results of those studies have been important since they have
indicated that in vivo gene transfer is feasible and relatively safe.
In addition, a number of key limitations to the current generation
of AAV2 gene therapy vectors have been defined. The informa-
tion about these limitations has been used to develop newer AAV
vector approaches, based on new mutant and alternative serotype

capsids and enhanced promoter systems. The evaluation of safety
and efficacy of these newer agents is ongoing. (Pediatr Res 58:
1143–1147, 2005)

Abbreviations
AAT, alpha-1 antitryspin
AAV, adeno-associated virus
CF, cystic fibrosis
CFTR, cystic fibrosis transmembrane conductance regulator
rAAV, recombinant adeno-associated virus

The promise of gene therapy began with the identification of
single genes responsible for autosomal recessive disorders like
cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency,
and with the development of gene transfer vectors based on
viruses capable of in vivo DNA transfer and gene expression.
Over time, positive results from proof-of-concept studies in
cell culture and animal models and the accumulation of pre-
clinical safety data has led to the initiation of phase I and II
clinical trials of recombinant adeno-associated virus serotype 2
(rAAV2)-CFTR and rAAV2-AAT gene therapy vectors. As
these trials have progressed, much attention has been focused
on potential safety issues, such as insertional mutagenesis,
inadvertent germ line transmission, and immune responses to
vector components and transgene products. To date, over 140
CF patients and 8 AAT deficient patients have been safely
treated with rAAV2 vectors. No dramatic therapeutic benefits
have yet been observed. However, important new information
has been gained from both clinical and preclinical studies,

which has informed the development of new vector strategies
based on alternate rAAV serotypes. Simultaneously, gene
transfer experiments have led to an improved understanding of
the pathogenesis of the complex phenotypes associated with
these disorders.

AAV AND RECOMBINANT AAV VECTORS
AAV is one of a relatively small group of viruses that have

been successfully modified for use as gene transfer agents in
human trials (1–8). The properties of AAV that make it
potentially useful for therapeutic gene transfer are listed in
Table 1. AAV is a 20-nm diameter replication-deficient par-
vovirus (Fig. 1) native to humans and nonhuman primates and
exists in nature in over 100 distinct variants, including both
those defined serologically as serotypes and those defined by
DNA sequence as genomovars (9–10). There is no consistent
indication of AAV infection being associated with human
disease, although adverse effects on early embryos have been
suggested from ex vivo studies. Interestingly, many of the AAV
serotypes have distinct cell and tissue affinities, potentially
creating the option for generating a variety of different vector
classes from this one genus of virus.
The life cycle of AAV has been studied in detail (11–12).

Cells infected with AAV require a helper virus, such as an
adenovirus, herpesvirus, or vaccinia virus, to replicate effi-
ciently in cell culture. Cells infected with AAV alone usually
harbor AAV genomes in a persistent or latent state. Latent
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AAV genomes exist in a number of forms including episomal
forms, randomly integrated forms, and forms that are inte-
grated site-specifically into a region of human chromosome 19
known as the AAVS1 site (13–18). The 4.7 kb AAV genome
mediates all of these functions with only 2 genes, the cap gene,
which encodes the 3 AAV capsid proteins, and the rep gene,
which encodes the four nonstructural Rep proteins, which are
required for viral replication and site-specific integration.
Flanking the AAV genes are the inverted terminal repeats
(ITRs), which contain the cis-acting sequences required for
DNA replication and packaging. Sequences within the ITR
also have transcription regulatory activity, including enhancer
function and a low efficiency promoter function.
Recombinant AAV vectors based on the most frequently

studied serotype, AAV2, were produced in the mid-1980s by
creating ITR-deleted helper plasmids to supply rep and cap
functionsm (19–21). Recombinant AAV2 vector plasmids
were also constructed in which ITR-sequences flanked the
therapeutic gene of interest, along with an appropriate pro-
moter and polyadenylation signal. When helper plasmids and
vector plasmids were co-transfected into permissive cells (usu-
ally human embryonic kidney 293 cells) that were also infected
with a helper adenovirus, those cells packaged rAAV2 virions
containing only the therapeutic vector genomes. Vector parti-
cles, thus produced, could be purified using CsCl density
gradient ultacentrifugation. Over time, rAAV2 packaging and
purification technology has improved, and helper plasmids
now most frequenly encode both adenovirus and AAV helper
genes. Recombinant vector particles are often purified using
column chromatography methods and/or nonionic gradient

media, resulting in a higher level of infectivity of recombinant
virus as well as higher overall titers (22).

RECOMBINANT AAV2 VECTORS FOR CYSTIC
FIBROSIS (CF) GENE THERAPY

CF was one of the first human diseases targeted for gene
therapy with rAAV vectors. Early work focused on defining
small endogenous promoter elements within the left-hand end
of the AAV genome that could be used to express the relatively
large coding sequence of the CF transmembrane conductance
regulator (CFTR) gene (4.44kb) within the limited packaging
capacity of this small virus (approximately 5kb packaging
limit) (23–24). Since 0.3 kb was required for the two AAV2-
ITRs, there was relatively little space available for exogenous
promoter elements. Vectors expressing reporter genes or CFTR
from compact elements in or near the AAV2-ITR were pro-
duced and shown to mediate the typical cAMP-activated chlo-
ride currents characteristic of CFTR expression (Fig. 2), as
well as restoring regulation of other ion channels in airway
epithelial cells, such as the outwardly rectifying chloride chan-
nel (25).
Preclinical studies demonstrated that rAAV vectors were

capable of long-term gene transfer and expression in the
bronchial epithelium of rabbits and nonhuman primates, de-
spite the fact that vector genomes appeared to persist predom-
inantly in the episomal state (26–29). Importantly, studies also
demonstrated no increase in inflammatory cells, or pro-
inflammatory cytokines after rAAV delivery to the lower
airways of nonhuman primates. Likewise, there were no ad-
verse changes in chest x-rays, arterial blood gases, or pulmo-
nary function tests in these animals after rAAV delivery. Based
on this information, a number or phase I and phase II clinical
trials of rAAV2-CFTR were performed.
Phase I clinical trials of rAAV2-CFTR included studies of

nasal and endobronchial instillation, direct instillation into the

Table 1. Properties of AAV supporting its potential role in gene
therapy

Non-pathogenic
Capable of persistent infection
Present in over 100 variants with diverse cell tropisms
Generally elicits mild innate cytokine response
Genome readily modified in proviral plasmids
Recombinant production and purification methods in place

Figure 1. Electron micrograph of AAV2 particles. The broader field shows
purified wild-type AAV2 particles. The inset shows a side-by-side micrograph
of an AAV2 particle and an Adenovirus type 5 particle. (Reproduced with
permission from Flotte et al. 1996 Hum Gene Ther 7:1145–1159. © Mary Ann
Liebert, Inc.)

Figure 2. cAMP-activated chloride efflux mediated by rAAV2-CFTR trans-
duction of an immortalized CF bronchial epithelial cell line. (A) The rate of
36Cl� efflux is expressed as a percent of total isotype effluxed within each
given interval over time. The arrow indicates the addition of the cAMP agonist
cocktail, consisting of forskolin, IBMX and CPT-cAMP (Reproduced with
permission from Flotte et al. 2005 Hum Gene Ther 16:921–928. © Mary Ann
Liebert, Inc.). (B) Depiction of the rAAV2-CFTR construct utilizing the
inverted terminal repeat (ITR) to drive CFTR expression.
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maxillary sinuses, and aerosol inhalation (1–8). These studies
showed definite evidence of dose-related DNA transfer, and
some indication of gene expression. Subsequent phase II stud-
ies of aerosol inhalation of rAAV2-CFTR have indicated again
that gene transfer and its effects are detectable for approxi-
mately 30 d after the initial instillation (Fig. 3). Altogether over
200 CF patients participated in these trials, with over 140
receiving active vector. There was no consistent indication of
vector-related adverse effects from any of these studies. Un-
fortunately, neutralizing antibodies were also detected and
repeated doses did not show evidence of repeated efficient gene
transfer. The shorter duration of gene transfer in the human
studies may be due to an accelerated turnover of bronchial
epithelium in the context of the diseased CF lung.
During the course of these studies a number of key limita-

tions of the rAAV2-CFTR vector technology came to light,
some from these studies directly and others from the work of
other investigators. Some of these key limitations are listed in
Table 2. The efficiency of gene transfer and expression appear
to have been limited by the relatively low abundance of the
typical AAV2 receptor (heparan sulfate proteoglycan) and its
co-receptors (alphaV-beta5 integrin, and FGF-receptor) on the
apical surface of the airways and by the relative inefficiency of
the AAV-ITR promoter (30–32). Both of these were relative
limitations, however, as indicated by recent data from a tra-
cheal xenograft model in which an alternative receptor path-
way that is more susceptible to proteasome-mediated degrada-
tion has been defined (33). When this pathway is blocked, the
efficiency of gene transfer with the original rAAV2-ITR-
promoter driven vector was comparable with newer vectors.
Nonetheless, this inefficiency was compounded by inactivation
of rAAV2 particles by extracellular barriers, including neutro-
phil elastase, neutrophil-derived alpha defensins, and other
substances (34). The ultimate problem, however, appears to
have been the short duration of gene transfer, which apparently
related to the more rapid turnover of the CF airway epithelium
with the subsequent loss of episomal rAAV genomes. The
development of neutralizing antibodies by patients in these
studies correlated with an inability to observe repeated positive
results with repeated administrations of the vector.

DEVELOPMENT OF THE NEXT GENERATION OF
rAAV-CFTR: rAAV5-CB-dl264 CFTR

Based on the information gleaned from these trials and other
developments in the field, newer generations of rAAV-CFTR
have been developed by a number of groups. One such agent
combines the newly available serotype 5 capsid (actually a
pseudotype, since the AAV2-ITRs are present in the vector
DNA cassette), a large very efficient CMV/beta actin (CB)
hybrid promoter, and a minigene version of CFTR that omits
sequences that are not necessary for cAMP-activated chloride
channel activity (35). The serotype 5 capsid targets alternative
receptors present in higher abundance in the CF airways, and
may avoid neutralizing antibodies to AAV2. The more active
promoter will assure a greater level of mRNA expression
within each transduced cell, while the CFTR minigene allows
sufficient capacity within the vector for the promoter to be
efficiently packaged.
Recently published studies with the rAAV5-CB-dl264CFTR

indicate that it is capable of high level expression of CFTR
chloride currents in cell lines, and ameloriation of the lung
inflammation and weight loss phenotypes of CFTR knock-out
mice that are exposed to a Pseudomonas-agarose bead slurry
(Fig. 4). This vector type also has shown an increase in the
efficiency of gene transfer in larger animal models.

Figure 4. Protective effect of rAAV5-CFTR on weight loss and lung inflam-
mation in a Pseudomonas-agarose bead-infected CFTR knockout mouse
model. (Reproduced with permission from Sirninger et al. 2004 Hum Gene
Ther 15:832–841. © Mary Ann Liebert, Inc.) (A) Amelioration of weight loss
after challenge with Pseudomonas in rAAV5-CFTR vector treated vs. GFP-
vector treated controls. (B) Amelioration of Pseudomonas-induced lung in-
flammation with rAAV5-CFTR as compared with controls. (C) RT-PCR
demonstration of CFTR mRNA expression in vector-treated mouse lung
homogenates.

Figure 3. Evidence of efficacy of rAAV2-CFTR gene transfer in a prospec-
tive, double-blinded, placebo-controlled trial. Plotted are the changes from
baseline in FEV-1 in liters, in vector-treated (n � 20, open squares) and
placebo controls (n � 17, closed circles). The asterisk indicates a significant
difference at p � 0.04. [Adapted from Moss et al. 2004 Chest 125:509–521 ©
American College of Chest Physicians, with permission).

Table 2. Key limitations of rAAV2-CFTR vector technology

Relative paucity of AAV2 receptors and co-receptors on luminal surface of
airway

Inefficiency of the ITR promoter
Inactivation of rAAV2 within the CF airway (elastase, alpha defensins,
mucus, glycocalyx)

Rapid turnover of CF airway epithelium limiting the persistence of rAAV2
episomes

Development of neutralizing anti-AAV2 antibodies limiting the efficiency or
repeated dosing
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RECOMBINANT AAV VECTORS FOR GENE
THERAPY OF AAT DEFICIENCY

One of the key limitations of rAAV vectors learned from the
preclinical and clinical studies associated with the CF gene
therapy effort, was the finding that the majority of vector
genomes were episomal, thus limiting their persistence in the
steadily proliferating CF bronchial epithelium. Diseases due to
deficiencies of secreted proteins might not share that problem,
however, since nonproliferating cells might be targeted for
gene transfer. One such disease of interest is alpha-1 antitryp-
sin (AAT) deficiency. The frequency of AAT mutation in the
population is similar to that seen with CF, approximately 4%.
AAT deficiency is more genetically homogeneous than CF,
however, with �95% of mutant alleles being represented by
the so-called Z allele. This missense mutation leads to a defect
in secretion of this important 52kD antiprotease from hepato-
cytes into the circulation. A lack of AAT results in long-term
loss of pulmonary interstitial elastin, due to the unopposed
action of neutrophil elastase and other neutrophil products. The
loss of interstitial elastin and chronic airway inflammation lead
to a form of chronic obstructive pulmonary disease that is
typically diagnosed in adulthood. Genotype-phenotype and
protein replacement experience suggests that lung disease risk
is much reduced if plasma AAT levels are above 11 micromo-
lar (570–800 �g/mL; 57–80 mg/dL) (36). The goal of gene
therapy for AAT lung disease is, therefore, to substitute for
protein replacement in expressing levels in that range.
The potential utility of rAAV2-mediated transduction of

skeletal muscle as a site for ectopic AAT secretion was de-
scribed in a number studies from the late 1990s in which the
biologic efficacy of rAAV2 vectors and the efficiency of se-
cretion were noted (37–40) demonstrated that a single IM dose
of rAAV2-AAT in C57Bl6 mice resulted in levels of AAT that
would be therapeutic in humans (Fig. 5). Interestingly, C57Bl6
mice were tolerant for human AAT, while many other mouse
strains were not, apparently due to immunologic differences.
Even more serendipitous was the observation that another
immunologic control strain for these experiments, a DNA-
dependent protein kinase (DNA-PK)-deficient severe com-

bined immune deficiency (SCID) mouse model was also
readily transduced by rAAV2-hAAT, but resulted in a predom-
inance of integrated vector forms long-term (41). This stood in
contrast to C57Bl6 mice, which demonstrated predominantly
episomal persistence. This finding was later reproduced with
liver delivery of rAAV2-AAT (42). The latter approach had the
added feature of allowing for more sensitive and specific
differentiation between episomal and integrated forms. Further
data indicated in a cell-free system, that DNA-PK, a critical
component of the ligase used for DNA double-strand break
repair and VDJ recombination both inhibited rAAV2 integra-
tion and promoted the formation of episomal vector-to-vector
junctions.
These studies not only established the proof-of-concept for

IM rAAV2-AAT gene therapy trials in humans, but also
pointed out that the episomal pool of vector genomes that
predominates with rAAV2 vectors is formed by an active
process that requires the activity of host cell factors, like
DNA-PK. Further preclinical studies were performed in
C57Bl6 mice and New Zealand White rabbits to better define
the potential for inadvertent germline transmission or other
vector-related adverse effects (43). Based on that information a
phase I study of rAAV2-AAT IM injection in C57Bl6 mice has
been initiated. This ongoing study will include doses up to
approximately 7 � 1013 vector genomes per patient (7). At the
same time, critical proof-of-concept and safety data are being
generated with a rAAV1-pseudotyped rAAV-AAT vector, a
vector which mediates 500-fold greater gene transfer efficiency
in recent studies (44).

SUMMARY AND FUTURE DIRECTIONS

The development of rAAV2 vectors for CF and AAT defi-
ciency has resulted in a number of key findings, including an
excellent safety record through experience with over a thou-
sand animals and nearly 150 human patients. In addition to the
short-term safety of this class of vector, an important series of
studies suggest that the risk of insertional mutagenesis with this
vector class is likely to be smaller than that seen with retrovirus
vectors, since the majority of rAAV genomes are episomal and
since this episomal persistence is mediated by a specific
DNA-PK dependent host-cell pathway. The efficacy data with
rAAV2 vectors has been more modest. However, the advent of
newer rAAV serotypes has opened the possibility that lessons
learned from the early years of CF and AAT gene therapy will
be salient to the development of later generations of AAV
vectors that have enhanced efficacy, while retaining the impor-
tant safety features of this vector.
Recent years have also witnessed an extensive expansion of

the use of these vectors to other diseases, particularly genetic
and metabolic disorders involving the muscle, liver, and CNS.
Recombinant AAV vectors have also been used to model and
complement important animal models that better mimic the
human phenotypes of these disorders. The combination of
better animal models and improved biologic efficacy support
the concept that in the future, safe and effective rAAV-
mediated gene transfer methods will be devised.

Figure 5. Sustained serum levels of human AAT after intramuscular injection
of rAAV2-AAT. (Reproduced with permission from Song et al. 2001 Proc
Natl Acad Sci U S A 98:4084–4088 © The National Academy of Sciences of
the USA). Serum levels of hAAT in mice after a single IM injection of 1.4 �
1013 vector genome particles per mouse in SCID (open circles) or C57Bl6
mice (open squares).
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