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The placenta is essential to nutrition before birth. Recent
work has shown that a range of clearly defined alterations can be
found in the placentas of infants with intrauterine growth restric-
tion (IUGR). In the mouse, a placental specific knockout of a
single imprinted gene, encoding IGF-2, results in one pattern of
alterations in placenta structure and function which leads to
IUGR. We speculate that the alterations in the human placenta
can also be grouped into patterns, or phenotypes, that are asso-
ciated with specific patterns of fetal growth. Identifying the
placental phenotypes of different fetal growth patterns will im-
prove the ability of clinicians to recognize high-risk patients, of
laboratory scientists to disentangle the complexities of IUGR,
and of public health teams to target interventions aimed at

ameliorating the long-term adverse effects of inadequate intra-
uterine growth. (Pediatr Res 58: 827–832, 2005)

Abbreviations
AGA, appropriate for gestational age
AGP, appropriate for genetic potential
BM, basal plasma membrane
IGF-2, insulin-like growth factor-2
IUGR, intrauterine growth restriction
MVM, microvillous plasma membrane
NHE, Na�/H� exchanger
SGP, small for genetic potential

The placenta is central to human development and in par-
ticular to fetal nutrition. However, research on this organ has
been limited because, with some exceptions (1), the placenta is
generally regarded as a passive sieve, or conduit, that does not
provide clinically relevant information about the condition of
the fetus. This view cannot be sustained in the light of recent
research that shows that the placenta can give specific indica-
tions about the degree of fetal compromise; that placental
nutrient transfer is altered if the fetus is smaller than expected,
i.e. in cases of IUGR, and that the placenta can actively
regulate the nature and extent of nutrient transfer to the fetus.

These observations are particularly important because of the
increasing recognition that growth in early life has implications
for health in later life. For example, the incidence of diabetes,
hypertension, and obesity (metabolic syndrome) and the risk of
ischemic heart disease are strongly related to growth before
birth (2,3). Furthermore, IUGR (which may be defined as the
failure of a fetus to reach its genetic growth potential) is
associated with poor outcome in the neonatal period, especially
among infants born prematurely (4,5). Reducing the adverse
effects of poor antenatal growth will be a central component of
attempts to improve the health status of future generations.
These efforts will benefit from a comprehensive understanding
of how the placenta behaves in IUGR.

In this review, we briefly describe alterations in morphology,
blood flow, and fetal oxygen delivery found in placentas from
human pregnancies complicated by IUGR. We proceed by
reviewing new data suggesting that human IUGR is a condition
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associated with specific alterations in placental nutrient trans-
porter expression and activity. Exciting recent work in mice
provides an elegant illustration of how placental gene expres-
sion, morphology, and nutrient transport can contribute to
delineating a distinct phenotype. Mouse studies also emphasize
the likely importance of imprinted genes in this regard. Some
alterations found in human placentas in pregnancies affected by
IUGR are analogous to those found in mice and are highly
likely to also represent elements of clinically relevant pheno-
types. Robust placental phenotyping would advance the ability
of the clinician to separate a pathologically IUGR baby from
one that is healthy but genetically small or to distinguish
between IUGR and other antenatal adversities such as in utero
infection. Furthermore, we note that research into the associ-
ations between poor growth and ill health has generally fo-
cused on organ systems damaged at the end of the disease
pathway, including the heart and brain. Since the pathway to
poor growth and ill health appears to start with the placenta in

many cases, placental phenotypes of IUGR will provide an
opportunity to focus research efforts on the causes of growth
restriction rather than the effects.

PLACENTAL MORPHOLOGY

In the human placenta, the primary barrier to maternal-fetal
exchange is the syncytiotrophoblast, a transporting epithelium
covering the placental villi which project into the maternal
blood of the intervillous space (Fig. 1). Villi contain capillary
networks derived from the fetal circulation. Recent studies of
placental morphology have demonstrated distinct abnormali-
ties of villi that could be associated with particular presenta-
tions of IUGR (6,7). For example, one abnormal pattern of
villous morphology (straight villi with a simple vascular net-
work and fewer interconnections than normal) is found in
severe, early-onset preeclampsia and is associated with altered
results on Doppler imaging of flow through the umbilical

Figure 1. Morphology of the villi and exchange barrier in the normal human placenta. (a) Cross section of the placenta in situ: maternal blood is supplied by
the spiral arteries and bathes the villi in the intervillous space. (b) A villous tree. The villi are the functional units of the placenta, covered in an epithelium called
the syncytiotrophoblast; the umbilical artery, running in the cord, supplies fetal blood to the fetoplacental capillary network investing the core of each villous
and draining into the umbilical vein. (c) An electron micrograph of the exchange barrier consisting of syncytiotrophoblast, the matrix of the villous core, and
the fetal capillary endothelium. The surface area of the exchange barrier is proportional to the number of villous buds and the degree of expansion provided by
the microvilli on the maternal facing plasma membrane of the syncytiotrophoblast. Diffusional transfer will be indirectly proportional to the thickness of the
barrier (double-headed arrow: corresponds to 3 �m). Transfer capacity will also be affected by the number and activity of transporter proteins (●) in the
microvillous and basal plasma membranes. (Micrograph courtesy of Dr. C.J.P. Jones).
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arteries (discussed below) (8). A contrasting pattern of placen-
tal villous morphology (villi are more tortuous and have more
interconnections than normal) is not as frequently associated
with abnormal umbilical hemodynamics or severe preeclamp-
sia and is thought to reflect alterations in placental develop-
ment late in gestation (8). A more general morphologic obser-
vation in IUGR, important because of likely effects on
diffusional permeability of the placenta, is that the surface area
of the syncytiotrophoblast is reduced whereas the thickness of
the exchange barrier formed by the trophoblast and fetal
capillary endothelium is increased (9). Additionally, IUGR of
all types shows evidence of increased placental apoptosis (10),
reflecting altered cell turnover in the placenta, which could be
associated with the changes in the size and internal architecture
of the organ.

PLACENTAL BLOOD FLOW, OXYGEN, AND
NUTRIENT DELIVERY

Clinical studies of IUGR have included a long-standing
focus on blood flow through the maternal and fetal circulations
of the placenta. Doppler velocimetry analysis has shown re-
duced blood flow in both the uterine and umbilical arteries in
IUGR, and such measurements, particularly in regard to the
umbilical circulation, have made a significant contribution to
recent advances in the management of high-risk pregnancies
(11). In normal pregnancies, branches of the uterine arteries are
converted into low-resistance uteroplacental vessels. Alter-
ations in this process have been observed on placental bed
biopsies from IUGR pregnancies and are associated with evi-
dence of bilateral high-resistance flow velocity waveforms
with early diastolic notches at 24 weeks of gestation (11,12).
However, abnormal patterns of uterine artery Doppler signal
show poor sensitivity and specificity for adverse outcome (13).
Abnormal umbilical artery Doppler waveforms are thought to
reflect deranged placental impedance secondary to altered ves-
sel morphology in the villi (see above). Absent or reversed
end-diastolic flow velocity in the umbilical artery waveforms
shows a strong association with increased perinatal mortality
(11).

In utero cord blood sampling has demonstrated that IUGR is
associated with hypoxemia (14). Under normal circumstances,
oxygen diffuses readily across barriers and exchange is primar-
ily limited by the rate of supply to, and removal from, the
barrier, i.e. blood flow (15). However, in IUGR uterine venous
samples show significantly higher O2 content and lower coef-
ficients of uterine O2 extraction (16). This suggests, like the
Doppler studies, that impairment of the fetoplacental circula-
tion in the villi and consequent decrease in the ability of the
fetus to extract oxygen are of considerably greater importance
etiologically than changes in uterine blood flow. Furthermore,
in all cases of IUGR, fetuses have lower plasma concentrations
of amino acids than infants of normal size (17,18). The phys-
icochemical characteristics of these nutrients mean that their
rate of transfer is much slower than that of oxygen and is
limited much more by the exchange barrier itself than by blood
flow (15). Together, these data and the morphologic observa-
tions described above focus attention in IUGR on the devel-

opment of the capacity of the villi, and specifically the syncy-
tiotrophoblast, to supply nutrients to the fetus.

PLACENTAL TRANSPORT

An abundance of descriptive data, primarily obtained in
vitro, has recently accumulated describing changes in placental
transport capacity in pregnancies complicated by IUGR due to
alterations in activity of plasma membrane transporter proteins.
In humans and animal models, IUGR is typified by a decrease
in the activity of placental amino acid transporters. The System
A transporter (expressed by genes SLC38-A1, -A2 and, -A4) is
critical in mediating the uptake of neutral amino acids (glycine/
serine/alanine) across the syncytiotrophoblast maternal facing,
microvillous plasma membrane (MVM) (Fig. 1), the rate-
limiting step in transplacental amino acid transfer (19). Within
the normal range of birth weights, an inverse relationship
between birth weight and MVM System A activity has been
demonstrated (20). By contrast, MVM System A activity has
consistently been shown to be down-regulated in IUGR (21–
24). Furthermore, the most severe cases of IUGR, as assessed
by abnormal pulsatility index in the umbilical artery and
abnormal fetal heart rate tracings, are associated with the most
pronounced decreases in MVM System A activity (23). These
data suggest that reduced MVM System A activity is a robust
marker for IUGR. The transport of essential amino acids, such
as taurine (25), leucine, and lysine (26) has also been reported
to be decreased in the MVM and/or fetal facing, basal plasma
membrane (BM) isolated from IUGR placentas. These in vitro
findings are compatible with data on cord plasma amino acid
concentrations (17,18) and an in vivo study in pregnant women,
using stable isotopes, which showed that placental transfer of
the essential amino acids leucine and phenylalanine is reduced
in IUGR (27).

Transport of other solutes is also affected. The activity of
MVM lipoprotein lipase is critical in releasing free fatty acids
(FFA) incorporated in lipoproteins circulating in maternal
blood. Thus, lipoprotein lipase–mediated breakdown of li-
poproteins is the important first step in transplacental transfer
of FFA. MVM lipoprotein lipase activity is reduced in IUGR
(28), consistent with clinical studies showing lower fetal/
maternal ratios for long-chain polyunsaturated fatty acids in
IUGR (29). Placental ion transport is either correlated with
fetal growth or appears to be regulated in a compensatory
manner relative to fetal growth. Both Na�/K� ATPase and
Na�/H� exchanger (NHE) placental expression and activity
are down-regulated in human IUGR (23,30–32). These two
critical membrane transport systems are involved in pH regu-
lation, vectorial Na� transport and maintenance of the Na�

gradient that drives the transport of other vital nutrients such as
amino acids. Alterations in MVM NHE activity appear to be
related to the severity of IUGR: transporter activity is not
changed in less severe IUGR cases, primarily at term
(22,30,32). Some ions appear to be regulated quite differently.
BM Ca2� ATPase (or calcium pump) is up-regulated in cases
of IUGR, which may represent a compensatory activation of
the placental calcium transport system stimulated by fetal
demand (33).
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Placental transporters can be regulated by a variety of factors
that are likely to be clinically relevant. Hypoxia reduces the
expression and activity of System A amino acid transporter
(34) and increases the expression of glucose transporters in
cultured term human trophoblasts (35). The placenta itself may
participate in the regulation of transporters in an autocrine/
paracrine fashion. For example, leptin is produced in large
amounts by the syncytiotrophoblast (36), leptin receptors are
present in the syncytiotrophoblast plasma membranes, and
leptin stimulates System A activity in isolated villous frag-
ments in vitro (37). In addition, small-for-gestational age ba-
bies have low umbilical plasma leptin concentrations at birth
(38). Furthermore, insulin and the insulinlike growth factors
may affect placental nutrient transfer by increasing the activity
of the System A transporter (37,39). In human IUGR, umbil-
ical plasma concentrations of PTH-related peptide (PTHrp)
38–94 are elevated (33) and PTHrp 38–94 stimulates BM
Ca2� ATPase activity in vitro (40), providing one possible
mechanism underlying the increased activity of the calcium
pump in human IUGR (33).

It is important to note that some transporters do not show
altered activity in IUGR. For example, both the expression of
the glucose transporter GLUT1, per unit membrane area, and
the glucose transporter activity in MVM and BM, are un-
changed in IUGR (24,41). This indicates that the type of
alterations in transporter activity seen for System A are not
found for all transporters and are not a general reaction to
adversity. We can summarize these data by classifying alter-
ations to placental transporters in IUGR to three groups: (1)
nutrient transporters that are unaffected by IUGR, e.g. glucose;
(2) transporter activity that is decreased when fetal growth is
restricted e.g. System A, NHE; (3) changes in transport activity
potentially compensatory to reduced fetal and placental growth
e.g. Ca2�.

This classification reflects the data in relation to human
IUGR as reviewed above. There may be differences in other
species. For example, expression of a second glucose trans-
porter isoform, GLUT3, as well as GLUT1 may be important
in the sheep placenta (42). GLUT3 but not GLUT1 expression
is reduced in placentas from globally undernourished rat moth-
ers, in which the fetuses are growth restricted (43), whereas in
the same species both GLUT1 and GLUT3 are up-regulated in
dexamethasone-induced IUGR (44).

CAUSE AND EFFECT: HELP FROM THE MOUSE

Implicit in much of the above data is a difficulty inherent in
understanding the relationship between placental phenotypes
and IUGR: does the former cause or follow from the latter?
There are hints in the data described already that the placental
phenotypes in IUGR are a mixture of both scenarios. However,
recent work on a knockout mouse model in which the placen-
tal-specific transcript of the IGF-2 (Igf-2) gene was deleted
shows unequivocally that changes that create a placental phe-
notype, similar to a group of those found in human IUGR, can
precede a decline in fetal growth (45,46). In this mutant mouse,
placental weight is reduced as early as d 14 of pregnancy (term
is d 20 in this species, so this equates to about 28/40 weeks in

human), but fetal growth restriction is not found until about d
19 (45). The reasons for this delay in restriction to fetal growth
seem to be twofold (45,46): (1) initial up-regulation then
decline in System A activity in the mutant placentas and (2) an
increasingly marked reduction in the diffusional permeability
of the mutant placentas to hydrophilic molecules, apparently
arising from a decrease in placental trophoblast surface area
and an increase in exchange barrier thickness that is remark-
ably similar to that found in the human placenta in IUGR (9).

The Igf-2 gene is imprinted, expressed only from the pater-
nal allele. Approximately 60 imprinted genes have so far been
discovered, and all that have been examined appear to have a
role in controlling placental and fetal growth (47). Interestingly
these imprinted genes include hormonal regulators, such as
Igf-2, and transporters themselves: the System A SLC38–A4
gene has recently been shown to be expressed only from the
paternal allele (48,49). This suggests that examination of ex-
pression of imprinted genes could be an important component
of placental phenotyping.

CONCLUSIONS

These observations, accumulated essentially over the past
decade, have enabled us to describe a series of very specific
alterations to an organ that many perceive as homogeneous in
health and disease. This constellation of findings is particularly
striking given the multifactorial etiology of IUGR, difficulties
in distinguishing genetically small from growth restricted fe-
tuses, and differing experimental methodologies. Furthermore,
the information from the placenta-specific igf-2 knockout
mouse model of IUGR has shown how a combination of these
alterations can be related to altered expression of a single gene.
Thus, in mouse, a multifaceted placental phenotype resulting in
IUGR is related to a single gene deletion. This leads us to
speculate that defining similar phenotypes in humans (not
necessarily related to the IGF system) will help to disentangle
the complexities of IUGR. We propose that a rigorously de-
fined placental phenotype be taken as the starting point for
defining IUGR and other fetal growth patterns rather than vice
versa. This is represented diagrammatically in Figure 2. As
shown in Figure 2A, the fetus who is of normal size for
gestational age (AGA) and of normal size for its genetic
potential (AGP) is appropriately grown and has a placenta with
a normal phenotype (phenotype 1). An alternative explanation
for an AGA infant is that the infant is small for its genetic
potential (SGP). Hitherto, clinical examination has not allowed
these two possibilities to be distinguished reliably but in the
case illustrated (Fig. 2A), the AGA:SGP infant has a moder-
ately abnormal phenotype (e.g. decreased exchange surface
area, increased thickness, reduced expression/activity of amino
acid transporters [phenotype 2]). In Figure 2B, a situation is
depicted in which a small for gestational age infant may be
AGP or SGP. The SGA:SGP infant is likely to be identifiable
by an abnormal placental phenotype (phenotype 4 compared
with phenotype 3). Finally, as shown in Figure 2C, the IUGR
baby delivered prematurely due to severe fetal compromise has
a placental phenotype that is markedly abnormal (phenotype 6)
and different from the placental phenotypes associated with
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other causes of prematurity. As well as the general risks of
prematurity (phenotype 5), a premature infant with IUGR will
have specific risks derived from in utero malnutrition.

We suggest that infants with abnormal placental phenotypes
have a greater risk of neonatal mortality and morbidity and
possibly ischemic heart failure and diabetes in later life. Cur-
rently, the distinctions between infants who are AGP/SGP are
difficult, and we propose that clinical markers derived from
detailed placental phenotyping may aid the clinician in the
identification of babies at risk of short- and long-term conse-
quences. For example, in the mouse, a reduction in placental
size was an early indicator of IUGR (45,46) and in women, the
three-dimensional ultrasound measurement of placental vol-
ume in the second trimester correlates significantly with birth
weight (50,51). Placental volume measurements may therefore
provide one predictor of later decreases in fetal growth rate.
The predictive value of such clinically applicable measures is
likely to be improved when they are integrated with novel tests
for other placental phenotypes. Development of such novel
tests is the exciting prospect that can now be glimpsed. Possi-
bilities include measurement of transporter activity in the
fragments of MVM plasma membranes, which are shed into
maternal blood during every pregnancy (52) or the use of

positron emission tomography with suitable tracer substrates to
image placental transporter activity in utero: a suitable sub-
strate for System A ([N-methyl-11C]alpha-methylaminoisobu-
tyric acid) is now available (53). These specific diagnostic tests
are essential prerequisites for developing the currently nonex-
istent in utero therapies for fetal growth anomalies, which are
the ultimate goal. Placental phenotyping both in utero and after
delivery will provide more predictive information concerning
diseases in later life than the crude proxies of intrauterine
growth currently available.
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