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Fetal tracheal occlusion (TO) has been used to reverse the
lung hypoplasia associated with congenital diaphragmatic hernia
(CDH). However, TO has a detrimental effect on type II pneu-
mocyte function and surfactant production. Previously, we have
shown that in surgically created CDH lambs, TO improved
markedly the response to resuscitation even though the lungs
remain surfactant deficient. The goal of this investigation was to
assess the effects of exogenous surfactant administered at birth to
CDH lambs with or without fetal TO during 8 h of resuscitation.
Lambs were divided into five groups: CDH, CDH�surfactant
(SURF), CDH�TO, CDH�TO�SURF, and nonoperated con-
trols. A left-sided CDH was created in fetal lambs at 80 d
gestation. TO was performed at 108 d, and the lambs were
delivered by hysterotomy at 136 d. Bovine lipid extract surfac-
tant was administered before the first breath and again at 4 h of
life. All CDH�SURF lambs, but only three of five CDH lambs,
survived up to 8 h. When compared with the corresponding
nonsurfactant-treated group, surfactant-treated CDH and

CDH�TO lambs did not demonstrate improved alveolar-arterial
oxygen gradients, pH, or PCO2. In fact, in the CDH�TO group,
surfactant treatment significantly worsened ventilation efficiency
as measured by the ventilation efficiency index. The observed
improvement in pulmonary compliance secondary to surfactant
treatment was not significant. This investigation demonstrates
that prophylactic surfactant treatment at birth does not improve
gas exchange or ventilation efficiency in CDH lambs with or
without TO. (Pediatr Res 58: 689–694, 2005)

Abbreviations
AaDO2, alveolar-arterial oxygen gradient
CDH, congenital diaphragmatic hernia
PaCO2, partial pressure of arterial carbon dioxide
PaO2, partial pressure of arterial oxygen
SURF, surfactant
TO, tracheal occlusion
VEI, ventilation efficiency index

The high mortality rate associated with CDH is related to its
complex pathophysiology. Pulmonary hypoplasia, pulmonary
hypertension, decreased pulmonary compliance, and surfactant
deficiency may all contribute to hypoxemia, hypercarbia, and
acidosis. These factors stimulate pulmonary artery vasocon-
striction, creating a cycle of worsening pulmonary hyperten-
sion, right-to-left shunting, and further physiologic deteriora-
tion of blood gases (1–3).

Both the surgically created CDH animal model as well as
human neonates with CDH, have significantly increased lung
growth after fetal TO compared with their CDH-only counter-
parts (4–6). In addition, this fetal surgical intervention pre-
vents excess pulmonary artery muscularization in fetal CDH
lambs by thinning the medial area of small pulmonary arteries
(7). These structural changes decrease pulmonary hypertension
and improve gas exchange, ventilation, and compliance. How-
ever, TO in intact fetal lungs is associated with a dramatic
decrease in the number and function of type II pneumocytes,
the cells that produce lung surfactant (8–11).

Both CDH lambs and rats are believed to be surfactant
deficient (4,12,13). Although the hypoplastic lungs of lambs,
induced by lung liquid drainage, are associated with a higher
density of type II pneumocytes (14), the function of these
pneumocytes at birth appears impaired. Moreover, surfactant
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protein mRNA expression in lung homogenates is decreased
(15). This observation is consistent with data showing a de-
crease in the concentration of phospholipids and surfactant
proteins recovered by bronchoalveolar lavage (BAL) (4).
There is controversy concerning the surfactant status of human
newborn infants with CDH. Surfactant deficiency in CDH
infants was suggested by Glick et al. (16) when they showed
clinical improvement in three patients after exogenous surfac-
tant administration. However, this result is confounded because
two out of the three infants were premature. In contrast,
Ijsselstijn et al. (17) showed that CDH patients have a similar
surfactant phospholipid concentration as various control pa-
tients. However, an alternate report from Asabe et al. (18)
suggests that the protein content of surfactant is abnormal in
human CDH patients.

Antenatal steroid administration benefits lung development
and maturation in both lambs with surgically created CDH
(19,20) and rats with pharmacologically induced CDH (21).
However, the beneficial effect of steroids may be independent
from their effect on surfactant (22–27). Indeed, we have shown
that despite antenatal treatment with steroids, lambs with CDH
or CDH�TO remain markedly surfactant deficient at birth (4).
However, we have also observed that CDH lambs with TO
have a marked and sustained improvement in oxygenation and
VEI over an 8-h resuscitation period (28). In contrast, complete
recovery of the expression of mRNA for surfactant proteins B
and C in lambs with CDH, but not in lambs with CDH and TO,
was observed after a short period of resuscitation (28,29).

Exogenous surfactant can be administered to neonates pro-
phylactically (before the first breath) or as “rescue therapy”
(after the appearance of respiratory distress symptoms). In
lambs and humans with CDH, prophylactic surfactant admin-
istration has been shown to significantly improve gas exchange
and lung mechanics (16,30). However, the absence of control
groups combined with the short duration of the experiments in
lambs, and the presence of prematurity along with the lack of
appropriate controls in the small human study, make the sig-
nificance of these changes difficult to assess. In contrast, rescue
surfactant therapy does not improve gas exchange or compli-
ance in either animals or humans with CDH (31,32). Prophy-
lactic surfactant is thought to distribute itself more evenly
throughout the lung as aeration has not yet taken place (33,34).

Permissive hypercapnia and other modalities have increased
the survival of neonates with CDH in the past decade (35).
Further improvement will require a combination of various
treatment strategies. The goal of this study was to assess the
benefit of prophylactic surfactant treatment in CDH lambs with
and without TO over an 8-h resuscitation period.

MATERIALS AND METHODS

Ethics approval for all animal experiments was obtained from the McGill
University Animal Care Committee. Methods for this study, with the exception
of the exogenous surfactant portion, were similar to those previously published
by our group (28). The CDH, CDH�TO, and control groups were the same
animals used in our previous study (28).

Fetal lamb interventions. A left-sided diaphragmatic hernia was created in
fetal lambs at 80 d gestation as described previously (36). Fetal tracheoscopy
(2.7 mm Semi Flexible Mini-Endoscope, Karl Storz GmbH & Co., Tuttlingen
Germany) was used in combination with a detachable balloon system (GVB12

Latex Goldvalve Balloon, diameter 14 mm, length 22.5 mm, volume 2.5 mL;
CCOXLS co-axial catheters) to achieve TO at 108 d gestation (37). At 129 d
gestation, all ewes, including the control group, received 250 mg medroxy-
progesterone intramuscularly (i.m.) to decrease the incidence of preterm labor
(38); and at 135 d gestation, they received 0.5 mg/kg betamethasone i.m. to
accelerate lung development and maturation (39). Careful assessment of lung
growth, lung development, surfactant content, and vascular remodeling in
lambs killed at birth following a similar antenatal protocol was published
previously (4,7).

Ex-utero intrapartum treatment (EXIT). While under maternal inhala-
tional anesthesia with the placental circulation maintained, the fetal lambs
underwent a limited neck dissection to permit cannulation of both the right
common carotid artery (preductal) and internal jugular vein. A tracheostomy
was performed through which a 4-mm uncuffed endotracheal tube was in-
serted. The fetus was then disconnected from placental circulation and venti-
lated for up to 8 h.

Surfactant supplementation. The first dose of of BLES (bovine lipid
extract surfactant) (15 mL, approximately 5 mL/kg) (BLES Biochemical Inc,
London, ON, Canada) was given through an 8F feeding tube positioned just
above the carina during the EXIT procedure when the lamb was still connected
to its placental circulation. Then, the endotracheal tube was occluded until
delivery. A second dose of BLES (5 mL/kg) was given at 4 h of life. Given that
CDH lambs with TO were still profoundly surfactant deficient after 8 h of
resuscitation as measured by their surfactant protein C content (28) and given
the known deleterious effects that ventilation and hyperoxia have on surfactant
(40–43), we decided to administer this second dose of surfactant to maximize
the chance of obtaining a sustained improvement. The lamb was disconnected
from the ventilator and manually ventilated for 30 s. Surfactant was adminis-
tered in three aliquots with the lamb in the following positions: on the left side,
on the right side, and supine. After delivery of each aliquot, the lamb was
manually ventilated for 1 min. Upon completion of surfactant delivery, the
lamb’s endotracheal tube was reconnected to the ventilator.

Eight-hour resuscitation. Sedation was achieved with ketamine 2 mg/kg/h
(i.v.), paralysis with pancuronium 0.1 mg/kg/h (i.v.), and alkalosis with sodium
bicarbonate 0.5 mmol/kg/h (i.v.). We used the following initial ventilator
settings (Sechrist Infant Ventilator Model IV-100B, Sechrist Industries, Ana-
heim, CA) with the permitted range in parentheses: peak inspiratory pressure
(PIP) 25 cm H2O (15–30); peak end-expiratory pressure (PEEP) 5 cm H2O
(3–7); FiO2 1.0 (0.21–1.0); respiratory rate (RR) 120 breaths per minute
(10–120); minimum inspiratory time 0.25 s; inspiratory time to expiratory time
ratio (I:E) 1:1. Ventilator settings were changed accordingly if PaCO2 �65 mm
Hg or PaCO2 �40 mm Hg; if PaO2 �40 mm Hg or PaO2 �100 mm Hg; and if
pH �7.4 or pH �7.5. We calculated the correction necessary to bring the pH
up to 7.4 and gave boluses of 2 mmol/kg of NaHCO3 (i.v.) to increase the pH
by 0.1 unit. Tension pneumothoraces were treated with chest tubes, including
subxiphoid incisions. Preductal arterial blood gases were analyzed using a
portable clinical analyzer and EG7� cartridges (i-STAT, Sensor Devices Inc.,
Waukesha, WI).

Outcome measures. Oxygenation and ventilation parameters were calcu-
lated as follows: AaDO2 � [((713 � FiO2) � PaCO2)/0.8] � PaO2; VEI �
3800/[(PIP � PEEP) � respiratory rate � PaCO2] (44,45).

Statistical analysis. Five groups were compared: CDH (n � 5),
CDH�SURF (n � 4), CDH�TO (n � 5), CDH�TO�SURF (n � 6), and
nonoperated controls (Cont) (n � 4). For longitudinal data, a repeated measure
analysis procedure (SAS, SAS Institute, Cary, NC) was used to assess the
effect of time between groups (treatment by time interaction). In the case of
missing values, we used the previous value. For PCO2, pH, AaDO2, and VEI,
the amount of missing values was �4%, which included the missing values for
the lambs that died before the end of the 8-h resuscitation protocol. For the
compliance data, due to technical difficulties, the amount of missing values was
10%, including three lambs for which no measure of compliance was available
(two CDH and one control). For nonlongitudinal data, a one-way ANOVA test
with treatment as a factor was used. Four post hoc comparisons were per-
formed. The effects of surfactant treatment on CDH were assessed by com-
paring i) CDH with CDH�SURF, and ii) CDH�SURF with controls. The
effects of surfactant treatment in CDH�TO were assessed by comparing iii)
CDH�TO with CDH�TO�SURF, and iv) CDH�TO�SURF with controls.
For comparison between CDH, CDH�TO, and controls, the reader should
refer to our previous publication (28). The Bonferroni procedure was used in
the case of multiple comparisons. Data are presented as the mean � SEM.

RESULTS

The in utero mortality rates for both sets of experiments
were �35% in the different experimental groups. This is less
than the commonly reported rate of 50% (12).
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Only animals with a diaphragmatic defect and herniated
viscera in the left chest at the time of autopsy were considered
as CDH�TO�SURF lambs. One animal was excluded due to
inadequate CDH.

All 10 lambs in both SURF groups survived the 8-h resus-
citation period. In contrast, only three of the five CDH-only
lambs survived (Table 1). The need for chest tube placement to
treat tension pneumothoraces was also recorded (Table 1).
None of the control animals required chest tubes. In contrast,
all CDH-only animals required chest tubes, and three of five
CDH�TO lambs had chest tubes in place. The addition of
exogenous surfactant appeared to decrease the incidence of
pneumothoraces, although this could not be shown as being
statistically significant due to the small numbers of animals per
group. Three of the four CDH�SURF lambs required chest
tubes whereas only two of the six CDH�TO�SURF animals
required chest tubes.

Both CDH and CDH�SURF lungs were hypoplastic with
wet lung weight/body weight (LW/BW) ratios of 1.11 �
0.12% and 0.99 � 0.14%, respectively (Fig. 1). TO�SURF
significantly increased the LW/BW ratio (CDH�TO: 2.39 �
0.42% and CDH�TO�SURF: 2.14 � 0.23%) of CDH ani-
mals to values comparable to those of controls (1.73 � 0.04%)
(Fig. 1). More complete studies looking at lung growth, lung
development, surfactant content, and vascular remodeling in
lambs killed at birth after a similar antenatal protocol have
been published previously (4,7).

Arterial pH, but not PaCO2, significantly improved after
surfactant administration in the CDH-only group (Fig. 2, A and
B, Table 2). In contrast, pH and PCO2 failed to improve in the
group of lambs with CDH�TO�SURF when compared with
CDH�TO (Fig. 2B, Table 2). In fact, after 180 min of resus-
citation, both pH and PCO2 had worsened with surfactant
supplementation after TO; however, this difference was not
significant (p � 0.05) (Fig. 2, A and B, Table 2).

Oxygenation, as calculated by AaDO2, did not improve with
surfactant treatment in any of the two groups (Fig. 2C, Table
2). Ease of ventilation, as measured by an increased VEI, was
not improved with the addition of surfactant. In fact, the VEI
was significantly worse in the CDH�TO�SURF group when
compared with the CDH�TO group (Fig. 2D, Table 2). Pul-
monary compliance was lowest for the CDH-only group
throughout the resuscitation period (Fig. 3). Surfactant admin-
istration appears to improve compliance. The CDH�SURF
group maintained higher compliance than the CDH group,
reaching levels similar to the control group. CDH�TO�SURF
lambs had the highest compliance. However, none of these
differences proved to be statistically significant owing to the

large differences among individuals of the same group and the
limited number of animals in some groups.

DISCUSSION

In this investigation, we demonstrate that prophylactic de-
livery of exogenous surfactant at birth significantly worsens the
physiologic/clinical response to resuscitation in lambs with
CDH�TO. However, our results do suggest that surfactant
treatment does marginally improve the response to respiratory
gas exchange in lambs with CDH.

We have shown previously that fetal TO induces lung
growth that reverses pulmonary hypoplasia associated with
CDH (4). In addition, TO prevents excess pulmonary muscu-
larization, which is associated with pulmonary hypertension at
birth (7). The combination of these effects on lung growth and
vascular remodeling leads to improved gas exchange and
ventilation (28).

Unfortunately, TO accelerates lung growth at the expense of
type II cell accumulation (8–11). We have shown that release
of TO combined with antenatal steroid treatment can prevent
this decrease in type II pneumocyte density in fetal lambs with
normal lungs (46,47). However, the situation with hypoplastic
lungs in CDH cases is more complex. These lungs have a
higher density of type II pneumocytes, even though the phos-
pholipid content of the BAL or levels of surfactant proteins and
mRNA expression in lung tissue are decreased at birth (4,15).
In CDH lambs, TO decreases the density of type II pneumo-
cytes to control levels (intact fetuses) but worsens the abnor-
malities in surfactant production despite the use of antenatal
steroids (4). However, after short-term resuscitation, recovery
of mRNA expression of surfactant proteins B and C was
observed in lambs with CDH and CDH�TO with release of
tracheal (TR) occlusion 1 wk before delivery, but not in lambs
with CDH�TO only (without release) (28,29). However, in
our previous study, the CDH�TO group did significantly
better for the VEI and AaDO2 than the CDH�TO�TR in spite
of similar lung growths (28). In fact, the CDH�TO lambs did
as well as the controls for those parameters. However, all of the
lambs were delivered at 137 d gestation (term � 145 d) and,
therefore, even the control lambs may have had insufficient
surfactant to cope with air breathing because of their relatively
young gestational age. Indeed, a relatively elevated AaDO2

gradient in the control group was observed.
In the present investigation, we have demonstrated that

prophylactic surfactant fails to improve both gas exchange and
ventilation over an 8-h resuscitation period in CDH lambs with
TO. In fact, by 240 min, marked improvement of the VEI was
observed in the CDH�TO group and in untouched control
lambs, whereas the CDH�TO�SURF group fared as badly as
the CDH alone. This may be a consequence of both the volume
of surfactant given and its method of administration. The
second dose of surfactant was calculated based on lamb body
weight rather than on lung weight and, thus, was an overesti-
mation of the amount of surfactant required. Consequently, this
second dose may have “drowned” the lungs, rendering gas
exchange and ventilation more difficult. In addition, the latter
dose of surfactant required manual bagging and changing the

Table 1. Survival and Barotrauma

Experimental Group
Survived
8 hours

Age at death
(hours) Chest tube

CDH 3/5 5, 7 5/5
CDH � SURF 4/4 n/a 3/4
CDH � TO 5/5 n/a 3/5
CDH � TO � SURF 6/6 n/a 2/6
Control 4/4 n/a 0/4

p � 0.05 for all comparisons, n/a: not applicable.
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position of the animal. Even though this dose was administered
rapidly over 3–5 min, the lungs of these CDH lambs may be
very sensitive to any manipulation. CDH�TO�SURF lambs
continued to demonstrate high PaCO2 levels for the remaining
4 h of resuscitation whereas the control group showed marked
improvement. In contrast, the CDH�TO group had a notable
decrease of PaCO2 levels after 240 min, similar to the one
observed in control lambs (28). Thus, the addition of exoge-
nous surfactant to TO appeared detrimental with regard to
hypercarbia in this model.

Our study failed to demonstrate significant positive effects of
surfactant treatment on the compliance. The absence of signif-
icant differences could be explained by the relatively small
groups and the high variation of the measured values within
each group (SEM). In addition, the total respiratory compliance
measurements may underestimate changes in lung compliance
due to interference with other elements of the respiratory
system, such as thoracic rigidity and the presence of intestines
in the thoracic cavity. However, the apparent reduction in the
mortality rate and the decreased incidence of pneumothoraces

in the CDH�SURF group versus CDH lambs, even though not
statistically significant, suggests that exogenous surfactant may
have some beneficial effects on CDH.

Our results are in accordance with a previous study that
examined the role of surfactant supplementation in CDH (30)
even though the beneficial effects appear modest when com-
pared with the effects of tracheal occlusion. As published
previously, pH is improved significantly by surfactant treat-
ment at birth in the CDH lamb model (30). Our inability to
demonstrate a decrease in PCO2 after exogenous surfactant may
be related to a different ventilation strategy. In addition, Wil-
cox’s study had a resuscitation period of only 4 h, and no
control groups were used for comparison (30). Our study
shows that the limited effect of exogenous surfactant failed to
translate into significant beneficial effects with respect to ease
of ventilation or oxygen diffusion over 8 h. It is possible that a
longer observation period is needed to show any beneficial
effect.

Overall, the current data suggest that fetal TO continues to
yield the best results in terms of overall postnatal lung func-
tion. The data further support the notion that this outcome is
likely due to surfactant independent mechanisms. These mech-
anisms include reversal of pulmonary hypoplasia along with
lung and pulmonary artery remodeling. The associated lung
remodeling, by altering the collagen:elastin ratio and decreas-
ing alveolar wall thickness, results in greater alveolar disten-
sion, which leads to increased lung compliance. In addition, the
decreased area of the media of small arteries observed in
CDH�TO (7) may decrease the ventilation/perfusion mismatch.
In this study, accelerated prenatal lung growth, along with lung
and artery remodeling, rather than repletion of surfactant levels at
birth, appears more important in improving postnatal lung func-
tion in lambs with a surgically created CDH.

Fetal intervention is not without risk for either the fetus or
mother (35,48). The rationale for any prenatal intervention for
a fetus with CDH is to improve postnatal outcome with the
respect to the present success of conservative management
(49). This can potentially be achieved either by selecting a

Figure 1. Lung weight/body weight. Five groups were compared: congenital
diaphragmatic hernia (CDH, n � 5), CDH�surfactant (CDH�SURF, n � 4),
CDH�tracheal occlusion (CDH�TO, n � 5), CDH�TO�SURF n � 6), and
non-operated controls (Control, n � 4). Data is presented as mean � SEM
where * � different from CDH�SURF (p � 0.05).

Figure 2. Response of pCO2, pH, AaDO2 and VEI to resuscitation over an 8
hours period. Evolution of the A) arterial partial pressure of CO2 (pCO2, B)
pH, C) AaDO2 and D) ventilation efficient index (VEI). Five groups were
compared: congenital diaphragmatic hernia (CDH, �, n � 5),
CDH�surfactant (CDH�SURF, —, n � 4), CDH�tracheal occlusion
(CDH�TO, Œ, n � 5), CDH�TO�SURF (●, n � 6), and non-operated
controls (Cont, s, n � 4). Data is presented as mean � SEM where * �
different from controls over time, # � different from CDH�TO over time and
� � different from CDH over time (p � 0.05).

Figure 3. Response of compliance to resuscitation over an 8 hours period.
Five groups were compared: congenital diaphragmatic hernia (CDH, n � 3),
CDH�surfactant (CDH�SURF, n � 4), CDH�tracheal occlusion
(CDH�TO, n � 5), CDH�TO�SURF (n � 6), and non-operated controls
(Cont, n � 3). Data is presented as mean � SEM. Differences are not
statistically significant.
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subgroup with an extremely high risk of mortality (50,51)
and/or by improving the technical aspects of the proposed
intervention. Given the nature of this disease and the complex-
ity of its treatment, it is essential to pursue studies in animal
models to assess both the short-term mortality and the long-
term morbidity.
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