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Before birth, the peripheral chemoreceptors located in the
carotid bodies (CB) are adapted to the low fetal PO2 and are
relatively insensitive to hypoxia. After birth, the sensitivity of the
CB to hypoxia is reset in response to the rise in PO2. The
mechanism underlying this resetting, which requires several days
to complete, remains unknown. We have investigated the possi-
bility that the hypoxia-inducible factors HIF-1� and HIF-2�,
which are activated by oxygen deprivation, are involved in this
resetting process. Accordingly, we used immunostaining and
densitometry to quantitate the levels of the HIF-1� and HIF-2�
proteins in the rat CB during early perinatal life and after
exposure to in vivo hypoxia during adolescence. Tyrosine hy-
droxylase (TH) was used as a marker for catecholaminergic
neurons and oxygen-sensitive cells in the CB. Double-
immunostaining revealed constitutive expression of HIF-1� in
both glomus cells (TH�) and sustentacular cells (TH�) of the
CB of adolescent rats. However, immunoreactivity toward

HIF-2� was restricted to glomus cells. After exposure to hypoxia
(8% O2, 6 h), the expression of HIF-1� was selectively up-
regulated in glomus cells and apparent translocation of both
HIF-1� and HIF-2� to the nucleus was observed. Both of these
proteins were expressed constitutively in the CB during the
perinatal transition period. During the first postnatal week, the
intensity of immunostaining for HIF-1� in glomus cells de-
creased markedly, whereas the level of HIF-2� remained con-
stant. We suggest that this selective down-regulation of HIF-1�
may be involved in the postnatal maturation of CB responsive-
ness to hypoxia. (Pediatr Res 58: 53–57, 2005)

Abbreviations
CB, carotid bodies
HIF-1� or HIF-2�, hypoxia-inducible factor 1� or 2�
TH, tyrosine hydroxylase

The CB constitute the first line of defense against hypoxia in
mature mammals, triggering an increase in breathing and
arousal whenever necessary (1). Before birth, the CB are
relatively insensitive to hypoxia, being adapted to the chroni-
cally low PO2 in utero (2). The sudden rise in PO2 at the time
of birth results in a progressive increase in CB sensitivity to
hypoxia, a resetting process that takes approximately 2 wk to
complete in rodents (3). If the normal postnatal rise in PO2 is
delayed or accelerated, CB function can be significantly im-
paired (3–6).
Although the molecular mechanisms underlying this reset-

ting of the CB are still unknown, catecholamines appear to play
an important role in this process (7,8). The dopamine content

and the level of mRNA encoding TH, the rate-limiting enzyme
in catecholamine synthesis, are used as two principal indicators
of catecholamine metabolism in the rat CB. Both of these
parameters are relatively high in the fetus, but decrease rapidly
after birth (7–10). Exposure of adult rats to hypoxia enhances
the expression of TH mRNA in their CB and, therefore, it is
proposed that fetal hypoxia results in a high level of TH mRNA
in utero, which is reduced in response to the sudden rise in PO2

at birth (11,12).
The postnatal increase in PO2 and fall in the level of TH

mRNA in the CB might involve hypoxia-inducible factors
(HIF), members of the basic helix-loop-helix superfamily of
eukaryotic transcription factors (13,14). The HIF-1 het-
erodimer consists of HIF-1� and HIF-1� (ARNT) (14),
whereas HIF-2 contains HIF-2� and HIF-1� (15). The activi-
ties of these factors are regulated by the stability of their �
subunits, which function as direct sensors of intracellular
oxygen concentrations. Binding of HIF-1 or HIF-2 het-
erodimers to the hypoxia responsive element located in the
promoter of the TH gene promoter (16,17) regulates transcrip-
tion of this gene (18). Thus, there is strong evidence that
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HIF-1� plays a role in chemosensitivity in adult mice (19) and
HIF-2� and TH are co-expressed in the CB of adult mice
(20,21).
To determine whether HIF-1� or HIF-2� participate in the

perinatal resetting of the CB, we first investigated here whether
hypoxia in vivo induces expression of these proteins in the CB
of adolescent rats [postnatal d 40 (P40)]. Thereafter, we ana-
lyzed developmental changes in the expression of these two
factors in the CB of rats of different ages, ranging from
embryonic d 20 (E20) to P14.

METHODS

Animals and treatment. Male Sprague-Dawley rats (B & K Universal,
Stockholm, Sweden) were studied on E20, at the time of birth (P0), and on P2,
P7, P14, and P40, with birth occurring in all cases during the night following
the E20. At least five to six pups of each age, randomly selected from different
litters, were analyzed. All animals were housed at sea level in an air-
conditioned room at 24°C, with a 12-h light-dark cycle and access to food and
water ad libitum.

We also compared the CB parameters of five adolescent (P40) rats sub-
jected to normobaric hypoxia (8% O2/92% N2) for 6 h or to normoxic
conditions (five animals in each group). The CO2 level in the chamber was
maintained at the same level as that of room air. The regional ethical
committee for animal experimentation, which follows the regulations of the
European Community, approved this study.

Immunostaining. Pregnant rats were killed on E20 by cervical dislocation
and casarean section was performed within 2 min thereafter. To minimize the
time elapsed during removal of the pups and, thereby, the risk for alterations
in the expression of HIF-1� or HIF-2� [both of which exhibit rapid turnover
and short half-time decay (14)] due to an increase in O2 tension, only three
pups from each mother were used. The carotid bifurcations of all rat pups were
excised under deep anesthesia (50 mg pentobarbital/kg body weight) within 3
min following delivery, after which the animals were killed immediately by
decapitation.

Adolescent rats (P40) exposed to hypoxia in vivo (6 h) were subsequently
anesthetized directly with pentobarbital (50 mg/kg) and perfused transcardially
with PBS (0.1 M, pH 7.4) containing 4% paraformaldehyde for 10 min (flow
rate � 30 mL/min). To prevent reestablishment of normoxic conditions during
this period, both anesthesia and fixation were performed under 8% O2.
Subsequently, the carotid bifurcation was immediately fixed for 60 min in
ice-cold 4% paraformaldehyde in PBS, followed by immersion in 30% sucrose
overnight.

Cryosections with a thickness of 10–14 �m were prepared and allowed to
adhere to SuperFrostPlus glass slides (Menzel-Glaser, Braunschweig, Ger-
many). These sections were then permeabilized with 0.1% saponin and 0.1%
TritonX, blocked with 7% normal goat (NGS) or donkey (NDS) serum, and
incubated overnight at 4°C with the primary antibody in PBS containing 3.5%
serum, 0.1% saponin, and 0.1% Triton X. Thereafter, the sections were
washed, incubated with secondary antibody in the same PBS solution, washed
again, and examined by confocal microscopy.

This procedure was used to examine a number of different parameters. TH
immunoreactivity in the CB was used as a marker for glomus cells (22). The
cellular hypoxic response and the localization of HIF-1� and HIF-2� at
various stages of development were determined by double immunostaining
(TH/HIF-1� or TH/HIF-2�). For this purpose, HIF-1� was probed with an
affinity-purified mouse MAb (diluted 1:500) against human HIF-1� (Novus
Biologicals, Inc., Littleton, CO) (23); HIF-2� with an affinity-purified goat
polyclonal antibody (1:400) against human HIF-2� (sc-8712, Santa Cruz
Biotechnology, Santa Cruz, CA) (24); and tyrosine hydroxylase with poly-
clonal sheep antibody (1:500) against rat tyrosine hydroxylase (Calbiochem-
Novabiochem San Diego, CA) (25). Goat-anti-mouse Alexa 546 (1:200),
rabbit-anti-goat Alexa 546 (1:200), and donkey-anti-sheep Alexa 488 (1:200)
(all from Molecular Probes, Eugene, OR) were used as the secondary
antibodies.

These same conditions were used to characterize the nuclear translocation
of HIF-1� and HIF-2� following hypoxia in vivo in adolescent rats, except that
in this case freshly prepared hydrogen peroxide (3%, 37°C, 10 min) was first
used to block endogenous peroxidase activity. Exposure to the primary anti-
bodies was followed by incubation with mouse anti-goat (Goat ExtrAvidin
Peroxidase EXTRA-1 kit, Sigma Chemical Co., St. Louis, MO) or goat
anti-mouse (Mouse ExtrAvidin Peroxidase EXTRA-2 kit; Sigma Chemical
Co.) antibodies that had been biotinylated (1:15) for 1 h at room temperature.

The tissue sections were incubated with ExtrAvidin-peroxidase (1:15) for 30
min at room temperature, after which sites of antigen-antibody interaction were
visualized with diaminobenzidine tetrahydrochloride and 0.01% H2O2 in 2.5
mM Tris-Cl (pH 7.6) for 10 min (Fast DAB Kit; Sigma Chemical Co.). The
slides were subsequently mounted in ProLong Antifade (Molecular Probes).

Controls in which the primary antibody was omitted were run for each
immunocytochemical procedure to ensure that there was no unspecific immu-
noreactivity originating from the secondary antibodies. In the case of the
double immunostaining, we carefully tested the level of cross-reactivity by
performing two single immunostainings, switching the secondary antibodies,
which clearly revealed that staining due to cross-reactivity was negligible (8%
of the total staining). As an additional control, we omitted the secondary
antibodies to determine the background level of autofluorescence.

Analysis. The immunolabeled tissues were scanned with a Zeiss LSM410
or a Leica TCS SP inverted confocal scanning laser microscope using 63�/1.4
N.A. and 20�/0.75 N.A. objectives. Green fluorescence was produced by
excitation at 488 nm and detected with a 515–540 nm band-pass filter. In the
case of red fluorescence, excitation was at 543 nm and a 570 nm long-pass
filter was used for detection.

Because of the small size of the CB, standard approaches to quantify the
levels of different proteins in this organ are problematic. Therefore, we used
immunoquantification of the HIF proteins. Densitometric analysis of the
staining for HIF-1� and -2� was performed applying ImageJ software from the
National Institutes of Health Internet site (http://rsb.info.nih.gov) to 15–30
TH� cells in one image from each section. From each image, we also analyzed
15–30 TH� cells to determine the background level of staining, as well as
staining for HIF-1� or HIF-2� in sustentacular cells (TH�). For each age and
mode of treatment (normoxia/hypoxia), the mean level of staining for five or
six sections from each of two or three CB was determined.

During perinatal maturation, the diameter and volume of the CB may
increase, which would affect our calculations. However, our estimates of the
diameter (122 � 15.4 �m at E20 versus 146 � 44.3 �m at P14), as well as of
the volume (10.1 � 1.25 � 104 mm3 at E20 versus 16.3 � 2.56 � 104 mm3

at P14) of this organ indicated no significant alteration in these macroscopic
parameters during the perinatal period investigated.

Statistical analysis. To determine whether the responses varied with age or
treatment (hypoxia/normoxia), the data were analyzed using one-way
ANOVA. In cases where the difference was thus found to be significant,
modified t tests with the Bonferroni correction were applied a priori for
comparison of pairs of responses. A p value �0.05 was considered to be
statistically significant.

RESULTS

HIF-1� and HIF-2� are induced in adolescent rats in
response to hypoxia in vivo. On P40, HIF-1� and HIF-2�
were found to be expressed constitutively in the CB of rats
maintained under normoxic conditions. When rats of the same
age were exposed to 8% O2 for 6 h, immunostaining of the CB
for HIF-1� was elevated 7-fold (Fig. 1). Intense nuclear and
cytoplasmic immunostaining was observed, primarily in the
glomus cells (as indicated by co-localization with the neural-
specific marker TH) (Fig. 1). The level of HIF-1� staining in
TH� cells was only half of that in TH� cells. In addition,
immunopositive, flat nuclei, most likely localized in endothe-
lial cells, were observed in some of the blood vessels.
In addition, expression of HIF-2� was strongly up-regulated

in these hypoxic CB, as indicated by strong and specific
nuclear and cytoplasmic immunostaining (Fig. 2). This immu-
noreactivity was observed in numerous cells arranged in clus-
ters. No immunoreactivity was detected in CB sections pro-
cessed in the same manner except for omission of the primary
antibodies against HIF-1�, HIF-2�, or TH (not shown).
Expression of HIF-1� and HIF-2� in the rat CB at

different stages of development. TH immunoquantification
was performed during the CB development (E20, 62.01 �
10.6; P0, 71.97 � 6.3; P2, 53.9 � 4.21; P7, 55.68 � 11.80;
P14, 48.62 � 8.30; P40, 45.8 � 8.8). There was a general

54 ROUX ET AL.



tendency (p � 0.07) for a general decrease in TH immuno-
quantification with age (regression: y � –0.4161x � 60.628).
Immunostaining for HIF-1� was also present at all stages
investigated, from E20 to P40. On E20, P0, and P2, this protein
was shown using double-immunostaining (HIF-1�/TH) to be
present in both glomus (TH�) and sustentacular cells (TH�).
However, subsequent to the perinatal period (i.e. at P7 and
P14), HIF-1� was still expressed in sustentacular cells, but
deeply decreased from glomus cells (Fig. 3). Quantitation of
these morphologic changes by densitometry confirmed that the
levels of HIF-1� in TH� and TH� cells were similar (with a
ratio of approximately 1) at early developmental stages (E20,
P0, and P2), but that this ratio was significantly lower (around
0.35) on P7 and P14 (Fig. 3).
Immunoreactivity toward HIF-2� was present and of similar

intensity in CB of all ages and was restricted to cells arranged
in clusters. Double immunostaining (HIF-2�/TH) revealed that
this protein was expressed in glomus cells (TH�) only and not
in sustentacular cells (TH�) (Fig. 4). Indeed, all cells express-
ing HIF-2� also expressed TH.

DISCUSSION

Our major finding in the present investigation is that immu-
noreactivity toward HIF-1� is relatively high in the fetal CB
and decreases substantially several days after birth. Moreover,
we show that hypoxia in vivo induces the expression of both
HIF-1� and HIF-2� in the CB of adolescent rats.
The high level of HIF-1� in the fetal CB is remarkable,

because HIF are not usually expressed under normal conditions
in healthy organs (26–28). Although the fetus is not regarded
as being hypoxic, it is well known that the PO2 in utero is
relatively low, which may explain our finding that HIF are
constitutively expressed during this period.
Here, we demonstrate that severe hypoxia (8% O2) induces

expression of both HIF-1� and HIF-2� in the CB of adolescent
rats, relative to their basal levels of expression. Exposure to
this degree of hypoxia represents a strong but tolerable chal-
lenge, which can be observed under certain physiologic or
pathophysiological situations. Furthermore, we found a signif-
icant reduction in the intensity of immunostaining for HIF-1�,
but not in HIF-2� during the first week of postnatal life.
This decrease in HIF-1� immunoreactivity was restricted to

glomus cells, without any change with respect to sustentacular
cells. The glomus cells are situated in the vicinity of capillaries
and are thereby particularly sensitive to changers in blood
parameters such as PO2, pH, CO2, and endocrine factors.
Moreover, increased mitochondrial production of reactive ox-
ygen species is required for stabilization of HIF-1� and such
production may vary in different cell types (29). Indeed, large
mitochondria with numerous cristae and a matrix of relatively
low density are typically seen in glomus cells, whereas the
mitochondria in sustentacular cells appear to be denser and
smaller and to contain fewer cristae (30,31). This difference
might also contribute to the difference in the levels of HIF-1�
immunostaining in these two cell types.
Immunoreactivity toward HIF-1� was seen to decrease rel-

atively slowly after birth, in contradiction to the suggestion that
this decrease is a response to the immediate increase in PO2

experienced after birth. However, other factors related to the
stress of being born, e.g. changes in the circulating levels of
hormones such as angiotensin and insulin (32–35), might play

Figure 2. Photomicrographs depicting the expression and localization of the
HIF-2� protein in the carotid bodies of adolescent rats (P40) exposed to
normoxia (n � 3) or sustained hypoxia (6 h at 8% O2; n � 5) in vivo. (A)
Immunostaining for HIF-2� in the carotid bodies of rats maintained under
normoxic conditions (�10). (B) After sustained hypoxia, the carotid body
exhibits strong immunostaining for HIF-2� (�10). (C) The arrows indicate
nuclear and cytoplasmic immunostaining for HIF-2� in response to hypoxia
(�100).

Figure 1. Expression of HIF-1� in the carotid body of adolescent rats after
exposure to hypoxia (6 h, 8% O2) in vivo. (A) These photomicrographs (�10)
illustrate the immunolocalization of the HIF-1� protein in a whole carotid
body of adolescent rats (P40) after sustained hypoxia. We observed staining for
HIF-1� in cell clusters and flat nuclei associated with blood vessels, probably
located in endothelial cells (circle). (B) The arrows indicate strong nuclear and
cytoplasmic immunostaining for HIF-1� under hypoxic conditions (�100).
(C) Immunostaining for HIF-1� in normoxic and hypoxic carotid bodies. The
bar indicates a distance of 100 �m. (D) Densitometric quantitation of the
immunostaining for HIF-1� in hypoxic (n � 5) and normoxic (n � 5) CB,
revealing a higher level in the hypoxic organ. *Statistically significant differ-
ence. (E) Double immunolabeling for HIL-1� and TH in the CB of adolescent
rats (P40) exposed to hypoxia (6 h at 8% O2) in vivo. The localization of TH
is depicted in green and that of HIF-1� in red. In the overlaid image,
HIF-1�-positive cells appear red, TH-positive cells green, and cells expressing
both of these markers yellow. Hypoxia induces the expression of HIF-1�
primarily in TH� cells. Internal scale bars � 100 �m.
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a role in this context. For example, the levels of angiotensin
and IGF1 in the blood of rat and human babies are very high
during the first two postnatal days, after which they fall
markedly (36,37). We propose that these high levels may
compensate for the sudden loss of hypoxic stimulus and sustain
a high level of HIF-1� expression during the first 2 d of
postnatal life. In contrast, endocrine factors that influence the
expression of HIF-2� have yet to be identified.
In adolescent rats, we found that severe and prolonged

hypoxia stimulates the expression of both HIF-1� and HIF-2�
in the CB, resulting in pronounced nuclear staining. The reason
why such a decrease in oxygen tension up-regulates both of
these factors in adolescent rats, whereas only the level of
HIF-2� expression is maintained during perinatal transition is
not presently clear. The stage of maturation is the major
difference between these experimental protocols and represents
an obvious possible answer. We can also speculate that expres-
sion of HIF-1� may be more responsive to hormones (see also
above) and moderate changes in PO2, whereas HIF-2� may be

up-regulated in the CB only by severe hypoxia. Therefore, we
hypothesize that adaptation of the CB to prolonged hypoxia
may be mediated in part either by HIF-1� and/or HIF-2�.
Indeed, it has been established that HIF-1� and HIF-2� acti-
vate the transcription of genes whose products mediate adap-
tive responses to hypoxia. To date, more than 30 such HIF-
1�-responsive genes have been identified (38).

The perinatal decrease in the level of HIF-1� in the CB
during the critical period of resetting, suggests a possible
coupling between HIF and dopaminergic mechanisms. An
HIF-1/O2-responsive element has been detected in the pro-
moter of the TH gene. Indeed, hypoxia in vitro can regulate TH
promoter activity through the binding of HIF-1� or HIF-2�
(18). Furthermore, prolonged exposure of rats to hypoxia
results in adaptation and up-regulation of the level of TH
mRNA and dopamine content of the CB (11,39). Earlier
studies have also demonstrated an inverse relationship between
the decrease in dopamine metabolism (as reflected in the
dopamine content and level of TH mRNA) and the increase in
chemoreceptor activity during the first week of postnatal life
(7–10).
In our investigation, the level of TH immunoreactivity

tended to decrease during this critical period. However, we also
observed a fall in the level of immunostaining for HIF-1� in
glomus cells during the first postnatal week, i.e. during the
same period as the decreases in dopamine content and TH
mRNA reported by others (8,10). These results provide evi-
dence that HIF-1� and, possibly, HIF-2� as well participate in
activation of the catecholaminergic pathway.
Our present findings are also consistent with reports dem-

onstrating that chronic hypoxia results in up-regulation of the
HIF-1� protein in catecholaminergic neurons of the brainstem
(40). Moreover, carotid body function in adult HIF-1� �/�
heterozygous mice is abnormal (19). However, several other
putative targets for HIF-1� and HIF-2� could also be involved
in the adaptation of the CB to hypoxia. For instance, in the CB
of adult rats exposed to 4 wk of hypoxia, HIF-1� up-regulates
the expression of VEGF and VEGFR-1 (41). Furthermore,
HIF-1� might also up-regulate the expression of the inducible
nitric oxide synthase and thus increase the local level of NO,

Figure 3. Immunostaining for HIF-1� and TH during maturation of the rat
carotid body, i.e. at E20, birth (P0), and P2, P7, and P14 (A) and after hypoxia
in vivo (P40) (B). In the overlaid images, cells that are only positive for HIF-1�
appear red, TH-positive (TH�) cells appear green, and cells expressing both
of these markers appear yellow. In early stages of development (i.e. E20, P0,
and P7; n � 5 or 6), HIF-1� is expressed by both TH� and TH� cells. At later
stages (P7 and P14; n � 5 or 6), staining for HIF-1� and TH is present in
different cells. (B) This graph depicts the ratio of HIF-1 staining (as quantified
by densitometry) in TH� vs TH� cells. At early stages (E20, P0, and P2; n �
5 or 6), HIF-1� staining in TH� and TH� cells is of the same intensity;
whereas at later stages [P7, P14, and P40 normoxic (NX) rats; n � 5 or 6],
HIF-1� is expressed primarily in the TH� cells. After exposure of P40 rats (n
� 5) to hypoxia (HX) in vivo, expression of HIF-1� was strongly enhanced in
TH� cells. *Statistically significant difference compared with the ratio at E20.
†Statistically significant difference compared with P40 rats exposed to nor-
moxic conditions.

Figure 4. Immunostaining for HIF-2� and TH during maturation of the rat
carotid body, i.e. at E20, birth (P0), and P2, P7, and P14. In the overlaid
images, cells expressing both of these markers appear yellow. During this time
period, expression of HIF-2� and TH is entirely co-localized.
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which has been described as a key factor in the chemosensitive
process (42,43). Finally, HIF-1� plays a key role(s) in the
regulation of glucose and overall cell metabolism (44) and
metabolic adaptation is a necessary part of the response of any
tissue to chronic hypoxia. Thus, HIF-1� could play an impor-
tant role in the metabolic adaptation of both glomus and
sustentacular cells in the CB to chronic hypoxia.
In conclusion, the level of the HIF-1� protein in the CB is

selectively regulated during the perinatal transition period. In
contrast, sustained hypoxia induces both HIF-1� and HIF-2�
in the CB of the adolescent rat. These processes might be
associated with trophic adjustments and remodeling of the CB,
which occur during acclimatization to hypoxia.
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