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Bronchopulmonary dysplasia (BPD) is a chronic lung disease
that occurs in very premature infants and is characterized by
impaired alveologenesis. This ultimate phase of lung develop-
ment is mostly postnatal and allows growth of gas-exchange
surface area to meet the needs of the organism. Alveologenesis is
a highly integrated process that implies cooperative interactions
between interstitial, epithelial, and vascular compartments of the
lung. Understanding of its underlying mechanisms has consider-
ably progressed recently with identification of structural, signal-
ing, or remodeling molecules that are crucial in the process.
Thus, the pivotal role of elastin deposition in lung walls has been
demonstrated, and many key control-molecules have been iden-
tified, including various transcription factors, growth factors such
as platelet-derived growth factor, fibroblast growth factors, and
vascular endothelial growth factor, matrix-remodeling enzymes,
and retinoids. BPD-associated changes in lung expression/
content have been evidenced for most of these molecules, espe-
cially for signaling pathways, through both clinical investigations
in premature infants and the use of animal models, including the

premature baboon or lamb, neonatal exposure to hyperoxia in
rodents, and maternal-fetal infection. These findings open ther-
apeutic perspectives to correct imbalanced signaling. Unraveling
the intimate molecular mechanisms of alveolar building appears
as a prerequisite to define new strategies for the prevention and
care of BPD. (Pediatr Res 57: 38R–46R, 2005)

Abbreviations
BPD, bronchopulmonary dysplasia
ECM, extracellular matrix
EMAP II, endothelial-monocyte activating polypeptide II
FGF, fibroblast growth factor
GC, glucocorticoids
MMP, matrix metalloproteinase
PDGF, platelet-derived growth factor
RA, retinoic acid
TGF, transforming growth factor
VEGF, vascular endothelial growth factor
TIMP, tissue inhibitor of metalloproteinases

BPD was initially defined as a disorder occurring in infants
ventilated for neonatal respiratory distress; the described fea-
tures included mucosal metaplasia of airways, emphysema, and
widespread interstitial fibrosis (1). Over the years, probably as
a consequence of both progress in therapeutic strategies and
survival in greater proportion of highly premature infants, BPD
has been characterized by a reduced frequency of airway
injury, but an increase in alveolar growth disorders (2,3). This
led to a “new” definition of BPD in which impairment of
alveolar formation is the prominent feature, leading to long-
term global reduction in alveolar number and gas-exchange
surface area (4,5). BPD is now considered as resulting from the
impact of injury, including oxygen toxicity, barotrauma/
volutrauma, and infection, on a very immature lung, which
leads in turn to arrest of normal maturation (6), with possible
variable susceptibility due to some gene polymorphisms. Pre-

natal injury consecutive to glucocorticoid exposure or chorio-
amnionitis may also be involved (7). Unlike injury to the adult
lung that is essentially growth arrested, BPD indeed occurs in
a growing lung with uncompleted morphogenesis. The forma-
tion of definitive alveoli by secondary septation of primitive
saccules is effectively an essentially postnatal event: if the
alveolar phase of human lung development extends from about
36 wk gestation to 18 mo postnatally, the majority of alveolo-
genesis (various synonym terms have been used to designate
the process, including alveogenesis, alveologenesis, alveoliza-
tion, and alveolarization, of which alveologenesis and alveol-
ization are the most correct etymologically) occurs within 5–6
mo of term birth (8). Infants susceptible to develop BPD are
therefore born in the early saccular phase, or even in the
canalicular phase of lung development for the most premature
of them (8). The pathophysiological mechanisms leading to
BPD have been appraised at a variety of levels including cell
proliferation (9), inflammation and fibrotic process (10), oxi-
dative stress (11), infection (12), or microvascular develop-
ment (13). The purpose of the present review is to focus on
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recent knowledge about the control mechanisms of alveolar
septa formation and their impairments in BPD and its animal
models. Much information has effectively been gained from in
vivo models that reproduce abnormalities encountered in BPD.
The closest model to the human condition is probably the
prematurely delivered, ventilated baboon (14). In rodents that
present totally postnatal alveologenesis (between d 4 and 20),
neonatal exposure to hyperoxia that inhibits septal formation
and affects alveologenesis (15, 16) has been widely used for
more than 20 years as a model to study associated cell and
molecular alterations. Experimental chorioamnionitis has also
been developed (17), although used to a lesser extent.
Complexity in studying alveologenesis arises from the fact

that the process is coordinated by multiple interactions through
paracrine mechanisms between the fibroblastic, epithelial, and
microvascular lung components, and with extracellular matrix
(ECM). Defects in one of these components have repercussions
on the whole alveolar development. The basis for intervention
to prevent or reverse impaired alveologenesis depends on
clarification of these complex interrelationships that are oper-
ative during normal lung development.

ELASTOGENESIS IS ESSENTIAL TO ALVEOLAR
SEPTATION

To provide gas-exchange efficiently in the postnatal organ-
ism, the lung undergoes dramatic tissue growth and remodeling.
The formation of new interalveolar walls known as alveolar
septation is a necessary step to increase blood-gas interface and
meet the respiratory requirements of the growing organism.
Among the variety of factors that participate in the control of
budding of secondary septa, elastin deposition in the thickness of
primary septa appears to have a spatially instructive role inasmuch
as the specific sites of elastic fiber formation correspond precisely
to the location of future buds. New septa then extend that are
composed of a double capillary layer, and elastin localizes at their
tip (8). Later in development, microvascular maturation takes
place with fusion of the double capillary layer into a single medial
layer facing both alveolar lumens of the septum (8), and alveolar
walls become thinner by apoptosis (18). Elastin is elaborated by
cross-linking of a soluble precursor, tropoelastin, under the action
of lysyl oxidase. Septal tropoelastin is produced by interstitial
cells that express smooth-muscle actin, and are designated
myofibroblasts.
The essential role of elastin for distal lung development was

evidenced by different approaches. Although the lungs of mice
devoid of elastin gene developed until the saccular stage, they
displayed fewer, dilated distal air sacs with attenuated tissue
septa, a condition reminiscent of emphysema (19). However,
evaluating the consequences for secondary septation was not
possible using this model, inasmuch as elastin null mice did not
survive beyond the 4th postnatal day. The requirement for
elastin deposition was indirectly evidenced by invalidation of
platelet-derived growth factor A (PDGFA) gene. In this model,
a profound deficiency in alveolar myofibroblasts and associ-
ated bundles of elastin fibers resulted in absence of secondary
septa and definitive alveoli (20,21). Importantly, the loss of
myofibroblast staining and elastin was limited to the lung

parenchyma, whereas vascular and bronchial smooth muscle
cells with accompanying elastin deposition were clearly ob-
served, which emphasizes the specificity of septal elastogen-
esis blockade (20,21). It seems that this was due to a failure of
myofibroblasts or their precursors to migrate from more prox-
imal to the peripheral sites of the lung where alveolar elastin
deposits should occur. These observations evidence a crucial
role of PDGFA, which is produced by epithelial cells, as a
chemoattractant for fibroblasts before the onset of septation
(21). It has been suggested that this migration to sites of septal
budding is not a random phenomenon, but conversely, that a
morphogen gradient would provide instruction for the precise
and specific localization of septa (22). Retinoic acid (see
“Alveolar Formation Is Antagonistically Influenced by RA and
GC”) and sonic hedgehog have been proposed as candidate
molecules for establishing such a gradient that would in turn
lead to precise regulation of PDGFA production to provide
appropriate guidance to myofibroblasts (22). These interrela-
tionships are depicted in Figure 1, which tentatively summa-
rizes the various cell–cell and cell–matrix interactions in-
volved in the control of alveolization process.
Elastin was found to be increased in ventilated infants who

died of BPD (23). Elastin deposition and expression were also
enhanced in a ventilated preterm lamb model (24). These
findings, however, may relate to the fibrotic repair process
prominent in “old” BPD. Some confusion may effectively arise
from the fact that myofibroblasts are essential as a unique
source of connective tissue material in the normal process of
septa formation but are also involved in the fibrotic process that
often occurs in the reparative phase of lung injury. Further-
more, increased elastin turnover (25) and paucity of elastic
fibers in alveolar walls because of destruction consecutive to
imbalance between protease and antiprotease activities (26)
have also been reported in BPD. In rat pups exposed to
hyperoxia during alveologenesis, disruption of elastin fibers
was also found (27), but this went along with decreased
tropoelastin expression (28). Whether changes in septal elastin
deposition occur in early stages of BPD is unknown and calls
for further investigation.
FGF signaling is also critical for alveologenesis. FGF recep-

tors (FGFR) 1–4 are expressed in the developing lung with
specific spatial and temporal profiles. Alveolar formation co-

Figure 1. Principal cell–cell and cell–matrix interrelationships at work
during alveologenesis that are targets of disturbances in BPD.
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incides with increased expression of FGFR3 and 4 (29). Mice
devoid of both FGFR3 and 4 manifest a failure of secondary
septation not observed in either single mutant (30). The under-
lying mechanisms have not yet been cleared up. FGF18, which
is produced by fibroblasts (Fig. 1), may represent one of the
implicated ligands acting in an autocrine manner, because, on
the one hand, its expression is markedly increased concomi-
tantly with alveolar septation, and, on the other hand, FGF18
enhanced myofibroblast growth and expression of tropoelastin
and lysyl oxidase (31). Moreover, elastogenesis also involves
the synthesis of microfibril proteins such as fibrillins and
fibulins that act as scaffold for elastin assembly and are essen-
tial to the process (32,33). Their pulmonary expression is
up-regulated during alveologenesis (34), and FGF18 stimu-
lated expression of fibulins 1 and 5 in myofibroblasts (31).
Nevertheless, elastin deposition in primary septa occurred in
the FGFR3/4 null mice and even failed to cease with aging
(30). Therefore, other FGF-driven mechanisms must occur that
i) condition septal surge and ii) stop elastogenesis. FGF2 might
constitute an attractive candidate for the latter process, based
on its negative effect on tropoelastin production in neonatal
lung fibroblasts in vitro (35). Because no lung abnormality was
reported in FGF2 null mice, the involvement of other media-
tors is, however, likely.
Little is known about the status of peptide factors that

control alveolar septation and/or elastogenesis in BPD and its
models. Delayed expression of PDGFA (36) and reduced
expression of FGFR4 (37) were observed in the lung of rat
neonates exposed to hyperoxia, but these molecules have thus
far not been explored in infants with BPD. Although FGF2 was
found to be elevated in tracheal aspirates of preterm neonates
who died or developed BPD and to correlate with apoptosis
(38), it is not known whether this participated to the outcome
of BPD. By contrast, a decrease of FGF2 followed by an
increase under recovery in air were observed in neonatal rats
exposed to 95% oxygen, and, interestingly, intraperitoneal
injection of soluble inactive FGFR1, which is a receptor of
FGF2, arrested compensatory lung growth and secondary sep-
tation in recovering animals (39). These findings suggest a role
of FGF2 in repair process.

OTHER ECM COMPONENTS, ECM REMODELING,
AND INTERACTIONS WITH MEDIATORS

Alveolar septation also implies the deposition of other ECM
components, including collagens and proteoglycans (Fig. 1), as
well as activity of enzymes that elaborate the carbohydrate
components of the latter. Their gene expression is up-regulated
in the lung postnatally (34). Moreover, the relative lung con-
tents of collagen and fibronectin markedly increase coinciden-
tally with alveolar septation (40,41). Collagen architecture was
markedly distorted in infants with BPD, with thickened, tortu-
ous, and disorganized fibers (40). Fibronectin mRNA and
protein were increased and decreased in early acute and
chronic phases of BPD, respectively (42), but the specimens in
this study were characteristic of “old” BPD.
ECM remodeling is an important parameter of harmonious

pulmonary development. MMP2, also designated gelatinase A,
appears to play particularly important role in the postnatal

lung. In the rat, MMP2 activity was maximal in the first 11 d,
and the major part of the enzyme was present in the active form
(43). In addition to defects in branching morphogenesis,
MMP2 null mice exhibited abnormal saccular development,
and similar features were found to be associated with low
expression of MT1-MMP, an activator of MMP2, in mice
lacking EGF receptor (44). Moreover, the dynamic induction
of MMP2 seen in neonatal lungs during the first days of life
was significantly impacted by hyperoxia (45). Consistent with
the assumption of a major role of MMP2 in septation process,
lowered MMP2 activity appears as a characteristic feature of
infants who develop BPD, during the initial, acute phase of the
disease (46–48). Elevated levels of the other gelatinase,
MMP9, and high MMP9/TIMP1 ratio rather appear to be
associated with the later, regenerative and chronic phases of
the disease, and with fibrosis (48,49). A similar pattern was
found in the extremely premature ventilated baboon (50).
Lastly, ECM has not only structural properties, but functions

as a dynamic modulator through the selective sequestration and
subsequent release of growth factors and cytokines. A striking
example of the importance of this function for alveologenesis
is given by disturbance of alveolar septation despite normal
lung cell differentiation, including myofibroblasts, in mice
deficient in fibrillin-1 (51). This appears likely to result from
enhanced proportion of active TGF-� through greater local
activation (51). Imbalanced production of this cytokine effec-
tively appears as a major mechanism in the pathogenesis of
BPD. Increased levels of TGF-� have been detected in airway
secretions of preterm infants with BPD (52). In animal models
developed to enhance endogenous production of TGF-� (53),
or to induce TGF-� overexpression (54,55), pulmonary mor-
phologic changes consistent with those seen in human BPD
have been observed, including enlarged alveolar sacs, poor
secondary septation, thick and hypercellular septa, and de-
creased platelet endothelial cell adhesion molecule (PECAM)
expression indicative of abnormal capillary development. The
adverse effects of TGF-� on septation appear paradoxical
inasmuch as TGF-� is known to up-regulate elastin production
and gene expression in alveolar fibroblasts (56,57). Possibly,
myofibroblast proliferative effects and defects in angiogenesis
may be determinant (see “Vascular Growth Is Required for
Normal Alveolar Development”).

DEFECTS IN ALVEOLAR DEVELOPMENT CAN
RESULT FROM ALTERED RESPIRATORY

EPITHELIAL CELL GROWTH AND
DIFFERENTIATION

Alveologenesis is characterized by an extensive proliferation
of alveolar type II (ATII) cells. Sufficient ATII cell number is
important because they serve as stem cells for alveolar type I
(ATI) cells that line most of the alveolar surface and form
air-blood barriers, and because they ensure adequate surfactant
production around birth. Conditional deletion of the winged
helix transcription factor Foxa2 (or HNF3�) has evidenced its
requirement for ATII cell differentiation (58). Moreover, when
Foxa2 was deleted in late gestation, extensive airspace enlarge-
ment and altered septation were displayed (59). Full ATII cell
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differentiation therefore appears to be required for alveolar
septation, illustrating the concept that epithelial signals are
essential to the interstitial events of alveologenesis. The zinc-
finger transcription factor GATA6 is also necessary to fetal
lung maturation, including differentiation of both ATI and
ATII cells (60), but, paradoxically, maintenance of elevated
transcription of GATA6 in mice during the postnatal period
impaired alveolar septation (61). Control of Foxa2 and GATA6
expression levels appears essential for regulating the expres-
sion of genes involved in lung development both through up
and down transcriptional regulations. Last, it is worth mention-
ing that in mice null for T1�, an ATI cell surface marker,
abnormal distal lung cell proliferation, and narrower and irreg-
ular air spaces were observed at birth (62). However, the
underlying mechanism is unknown.
Among growth factors acting on alveolar epithelial cells,

FGF7 (or keratinocyte growth factor), whoch is released by
lung fibroblasts (Fig. 1) has early been recognized as a potent
proliferation stimulus for adult ATII (63). This mediator has
also a potent stimulatory effect on proliferation and maturation
of developing ATII cells (64). In tracheal aspirates from pre-
mature neonates within 5 d after birth, FGF7 was found to be
significantly higher in survivors without BPD than in those
with BPD; a concentration higher than 110 pg/mL had a
positive predictive value of 95% for absence of BPD (65).
FGF7 has also been shown to prevent lung epithelial injury
induced by different forms of aggressions, including oxidative
stress (66–68), mechanical ventilation (69), and infection (70),
which emphasizes its key regulatory role for the alveolar
epithelial compartment. Consistently, transgenesis of a soluble
FGF receptor that bound FGF7 rendered mice more susceptible
to hyperoxia (71). However, FGF7 failed to protect against
hyperoxic inhibition of postnatal alveolar formation and early
pulmonary fibrosis in newborn rats (67). Because altered cyclin
and Cdk expression consistent with G1 or G2 arrest has been
reported in epithelial cells in the premature baboon model of
BPD (72), FGF7 might reveal useful to enhance ATII prolif-
eration. Interestingly, FGF7 induced new alveolar formation
after pneumonectomy in adult lungs (73). Taken together, these
investigations not only suggest that FGF7 determination may
help evaluating the risk for BPD in preemies but that supplying
exogenous FGF7 may protect the alveolar epithelium from
BPD-associated injuries.
Another aspect of epithelial-interstitial cell interactions in

alveologenesis and BPD is the involvement of IGFs. Lepre-
chaunism, a disease caused by a defect of IGF-I receptor
(IGF-IR), is associated with reduced lung surface area and
larger, less numerous alveoli (74). Consistently, it has recently
been reported that alveolar development correlates with IGF-I
level: comparison between normal and dexamethasone- or
retinoic-acid-treated neonatal rats indicated that the stronger
the IGF-I and -II expression, the better the alveolar develop-
ment (75). Moreover, IGF-I produced by epithelial cells (Fig.
1) stimulated in vitro migration and proliferation of lung
fibroblasts (76). However, hyperoxia enhanced IGF-I and -II
expression in neonatal rat lung in vivo (77) and in explant
cultures (78). Simultaneously, IGF-IR were increased in fibro-
blasts (78). IGF-I in epithelium and IGF-IR in myofibroblasts

were also intensely increased in the lung of patients with BPD
(79). The significance of these findings is therefore not fully
clear. Presumably, IGF-I is a positive enhancer of alveolar
development, and its increase in BPD is associated with repair
process rather than with pathogenesis of the disease.

VASCULAR GROWTH IS REQUIRED FOR NORMAL
ALVEOLAR DEVELOPMENT

VEGF signaling plays a major role for microvascular lung
development (13). VEGF is released principally by respiratory
epithelial cells and enhances migration, proliferation, and dif-
ferentiation of adjacent endothelial cells via paracrine signaling
to receptors Flt-1 and Flk-1 (Fig. 1). The requirement of
normal angiogenesis for alveologenesis has been demonstrated
by the use in the developing rat of angiogenesis inhibitors,
including VEGF receptor inhibitor of neutralizing antibody
(80,81,81a). These inhibitors not only impaired pulmonary
vascular growth, but also reduced septation and final alveolar
number. Nitric oxide (NO) is a downstream regulator of
VEGF, and, interestingly, NO synthase was considerably re-
duced after treatment with VEGF receptor inhibitor, whereas
inhaled NO corrected alveolar disorders in this model (82). The
heparan-sulfate-binding isoform VEGF188, which strongly in-
creases its expression shortly before birth (83,84), appears
especially important inasmuch as mice only expressing the
freely diffusible VEGF120 isoform presented at birth reduced
peripheral airspaces and microvasculature, with fewer air-
blood barriers (85) The essential role of VEGF signaling for
the maintenance of alveolar structure was also evidenced by
occurrence of emphysema in adult rats treated with VEGF
receptor inhibitor (86), and in adult mice with lung-targeted
VEGF inactivation (87). However, VEGF overexpression in
neonatal mouse lung increased mortality and caused pulmo-
nary hemorrhage, hemosiderosis, alveolar remodeling, and in-
flammation (88), which indicates that, although being neces-
sary for postnatal lung development, VEGF expression must be
strictly controlled.
Impairments of growth, structure, and function of the devel-

oping pulmonary vessels in BPD and models have been exten-
sively reviewed recently (13). Recent quantitative analysis has
showed that infants with BPD present fewer air-blood barriers,
less capillary loading, and more distant capillaries from the air
surface than controls (89). Over time, however, primary septal
walls adapt by thinning and increasing the number of air-blood
barriers, thereby taking on the function of secondary septa (89).
It is clear that vascular disorders result at least partly from
altered signaling of angiogenic factors, their receptors, and NO
synthase, as evidenced in human infants (90,91), in prema-
turely delivered baboons (92), in lambs exposed to intra-
amniotic endotoxin (93) and in hyperoxia-exposed rat neonates
(37). It is worth emphasizing that VEGF signaling was primar-
ily affected, whereas angiopoietin–1, another angiogenic
growth factor, and its receptor Tie2 were unchanged in the
baboon model (92). Decreased Tie2 was observed in human
infants with BPD, however (90). Similarly, hyperoxic lung
injury in newborn rats reduced expression of VEGF, VEGF
receptors, and HIF2�, a transcription factor involved in the
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control of VEGF expression (94). It also reduced the VEGF188
isoform in newborn rabbits (83). Last, providing inhaled NO to
premature infants slightly decreased the incidence of BPD and
death (95), presumably through VEGF production by epithelial
cells and subsequent protection of lung vascular development.
On the other hand, EMAP II, an anti-angiogenic protein

distributed to regions of epithelial-mesenchymal interactions
(Fig. 1), may play a functional role during alveolar develop-
ment as a putative negative regulator of vessel formation (96).
Importantly, EMAP II is maintained at low expression level
throughout postnatal life and in the adult, with the exception of a
surge that correlates with microvascular maturation (96), which
suggests that vascular growth must be down-regulated when
fusion of the double capillary network into a single one occurs.
Recently, it was reported that EMAP II abundance is elevated in
the lung tissue of infants with BPD as well as in the premature
baboon model (97), suggesting that this protein may contribute to
the interruption of vascular development seen in BPD.

ALVEOLAR FORMATION IS ANTAGONISTICALLY
INFLUENCED BY RA AND GC

Before septation, the lung contains a relatively large supply
of vitamin A under the form of retinyl esters. These precursors
are stored in lipid interstitial cells, a subset of fibroblasts
concentrated at sites of alveolus formation, which convert them
into RA (Fig. 1) (98). The RA-synthesizing enzymes aldehyde
dehydrogenase 1 (Aldh-1) and retinaldehyde dehydrogenase 2
(Raldh-2) are up-regulated during the period of maximal alve-
olar-wall cell proliferation (99). RA enhances tropoelastin gene
expression (100), and using inhibitors of Aldh-1, Raldh-2, and
retinyl ester hydrolases, it has been demonstrated that endog-
enous retinoids increase the steady state level of tropoelastin
transcripts in rat lung fibroblasts and fetal lung explants (101).
Retinoid involvement in the control of septation was evidenced
by several experimental approaches. In neonatal rat pups, RA
enhanced ongoing alveologenesis by increasing the total num-
ber of alveoli (102), whereas vitamin A deficiency led to
delayed alveolar development (103). Furthermore, simulta-
neous deletion of two RA receptors, RAR� and RXR� (104),
or overexpression of dominant negative RAR� (105) reduced
alveolar number, whereas RAR� knockout mice exhibited
higher alveolar number (106). These findings support the
concept that endocrine RA and its receptors RARs/RXRs play
a complex and critical role in alveolization during the neonatal
period of the lung, including both stimulatory and inhibitory
influences. In addition to elastin, RA or retinol have been
shown to stimulate the expression of PDGFA/PDGFR�
(107,108) and FGF18 (31). Finally, RA abrogated key features
of emphysema in an elastase-generated model of the disease
(109) that highlights the regenerative properties of RA and
suggests that developmental and repair processes share com-
mon regulatory mechanisms.
Blood retinol concentration has early been recognized to be

lower in prematurely born than in full-term infants (110), and
in those who develop BPD than in those who do not (111,112).
In trials of vitamin A supplementation, reduced need for
supplemental oxygen and mechanical ventilation was observed

(113), but whether the incidence of BPD was reduced remains
controversial with either no change (114) or slight decrease
(115). As regards direct administration of RA, only experimen-
tal approaches in the hyperoxic rat model have been per-
formed. RA treatment of rats exposed to hyperoxia from
postnatal d 3 increased collagen in airspace walls and mean
alveolar area, but neither improved septal formation and mi-
crovessel count, nor decreased airspace size on d 14 or 18
(116,117). By contrast, on d 45, lungs were no longer different
from those in controls, indicating complete recovery, whereas
deficient alveologenesis remained obvious in hyperoxia-
exposed rats that were not RA treated (118).
Although GC hormones are widely used in preemies to

accelerate maturation and surfactant synthesis and to prevent
inflammatory process, they appear to exert deleterious effects
on alveologenesis. The postnatal formation of alveoli is largely
prevented by GC treatment, which accelerates alveolar wall
thinning, fusion of the two capillary layers, and inhibits out-
growth of new septa leading to early termination of the septa-
tion process as shown in monkeys (119), rats (120,121) or
lambs (122,123). Importantly, RA treatment antagonized GC
effects and partially rescued failed septation induced by a GC
hormone in mice and rats (102,124). The underlying mecha-
nisms of these antagonistic effects are not completely under-
stood. GC stimulate developing-lung elastogenesis (125),
which may appear paradoxical in view of their effects on
septation. However, this stimulation is unlikely to relate to
alveolar-wall elastin inasmuch as dexamethasone was reported
to prevent alveolar elastin deposition (126). GC-induced inhi-
bition of septation in mice was shown to be associated with a
block in angiogenesis due to down-regulation of VEGFR2, and
this down-regulation was prevented by RA treatment (127).
Recent observations indicated that RA enhanced and dexa-
methasone decreased IGF-I (75) and midkine (128) in rat lung.
In addition, midkine expression was suppressed in neonatal
mice exposed to hyperoxia (129). Taken together with the
above-reported probable importance of IGF-I in alveologen-
esis, and with the influence of midkine on pulmonary vascular
gene expression (130), these findings indicate possible links
between GC and RA accounting for their antagonism.
Balance between RA and GC occurs in the course of normal

lung development, and disturbances in this equilibrium may
lead to abnormal alveolization (7). However, survival was
enhanced in oxygen-exposed newborn rats by simultaneous
treatment with RA and dexamethasone (116), which suggests
possible complementary effects also. RA may compensate the
accelerating effects of GC on septal maturation while keeping
the benefit of GC treatment for lung epithelial maturation and
for lowering inflammation. Consistent with this assumption, it
was observed that blood vitamin A level was higher in prema-
ture ventilated infants whom respiratory function positively
responded to GC as compared with those who displayed no
respiratory improvement (131).

CONCLUSION AND PERSPECTIVES

The spotlight focusing on impaired septation as a prominent
feature of BPD prompts the neonatologist to question about
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disorders in the underlying molecular mechanisms. Although
numerous elements in the process of alveolization have prob-
ably still to be determined, key control factors have already
been identified during the last 10 years that indeed exhibit
expression disturbances in BPD and/or models. Table 1 reca-
pitulates the principal factors involved. Genes that regulate
alveolar morphogenesis must be differentially expressed during
periods of active and inactive alveolar formation. Global anal-
yses of lung transcriptome or proteome that are increasingly
developing in this field should therefore offer new prospects in
the identification of candidate genes and help reaching a more
comprehensive view of the process. Restoring balanced levels
through supply of insufficient factors and inhibition of exces-
sive factors appears as a promising clinical approach for
prevention or treatment of the disease. However, it should be
stressed that alveolization, like other developmental processes,
undoubtedly depends on complex interactions that are nor-
mally tightly controlled and balanced in time and space. The
antagonistic effects of glucocorticoids and retinoids and the
possible harmful consequences of incautious use of glucocor-
ticoids are especially illustrative in this respect. Future at-
tempts to intervene in these processes must take into account
not only the potential benefit of supplementing the immature
organism with exogenous factors but also the serious potential
for unanticipated adverse effects on both the lung and other
organ systems.
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