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The factors that mediate the postnatal fall in pulmonary
vascular resistance, which is crucial for normal gas exchange, are
not fully understood. The endothelium has been implicated in
this phenomenon, through the release of vasorelaxant factors
such as nitric oxide (NO). Human pulmonary expression of
endothelial NO synthase increases up to 31 wk of gestation,
together with vascular endothelial growth factor (VEGF), and
both factors potently mediate pulmonary angiogenesis and va-
sorelaxation. During the perinatal period, when pulmonary va-
sodilatation is maximal, endothelial NO synthase and VEGF are
weakly expressed. This raises the involvement of vasorelaxant
factors other than NO at birth. One candidate is endothelial-
derived hyperpolarizing factor, which induces smooth muscle
cell hyperpolarization by activating KATP channels. The marked
vasorelaxation induced by activation of these channels in new-
born animals, and their strong perinatal expression in the human
lung, suggest their involvement during this phase. Another can-
didate is endothelin (ET)-1, together with its receptors ET-A and
ET-B. ET-A receptors are located exclusively on smooth muscle
cells and mediate vasoconstriction, whereas ET-B receptors me-
diate vasoconstriction when located on smooth muscle cells and

vasodilatation when located on endothelial cells. ET-B receptors,
which are strongly expressed in the human fetal lung both at the end
of gestation and after birth, may be involved in perinatal pulmonary
vasodilatation. Thus, in human fetal lung, KATP channels and ET-B
receptors could be important in mediating the perinatal pulmonary
vasodilatation crucial for adapting the pulmonary circulation to
extrauterine life. (Pediatr Res 57: 21R–25R, 2005)
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FGF, fibroblast growth factor
KATP, ATP-sensitive potassium channel
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PPHN, persistent pulmonary hypertension of the neonate
TGF, transforming growth factor
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Fetal pulmonary circulation is characterized by high vascu-
lar resistance: �10% of ventricular output enters the lungs (1).
The underlying mechanisms likely involve physical factors
such as the lack of ventilation and low oxygen tension. An
imbalance between vasorelaxant and vasoconstrictor mediators
(2–4) (Fig. 1) is also likely. These mediators, derived from the
endothelium, have either vasorelaxant effects (NO, prostacy-
clin, and EDHF) or vasoconstrictive effects (e.g. ET-1) (5–7).

VEGF, crucial for endothelial growth and angiogenesis, also
exerts a potent vasorelaxant effect by interacting with the NO
pathway (8). Although these endothelial vasoactive factors and
growth factors appear to be involved in regulating pulmonary
vascular tone during fetal life and after birth, human data are
scarce and conflicting data have been obtained in animal
models.

THE FETAL PULMONARY CIRCULATION

Fetal lung development is classically classified into five
stages (9), namely embryonic (up to 7 wk), pseudoglandular
(7–16 wk), canalicular (16–24 wk), saccular (24–35 wk), and
alveolar (�35 wk).
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The lungs originate from the foregut endoderm. These
endodermal buds branch and differentiate within the surround-
ing mesoderm, giving rise to the airways, blood vessels, and
alveoli. Cross-talk between epithelial and mesenchymal cells is
crucial for lung differentiation. Factors involved in this cross-
talk include TGF-�, BMP-4, IGF, FGF, and fibronectin (9,10).
The lung vasculature develops through two processes, namely
vasculogenesis, in which new blood vessels form in situ from
angioblasts, and angiogenesis, in which new vessels sprout
from existing ones (11). Vessel development begins at the
outset of lung development, requires epithelial-mesenchymal
cross-talk, and is inextricably linked to airway development
(11–13). In the fetus, the bulk of right ventricular output is
diverted away from the lungs through the patent ductus arte-
riosus to the aorta (6), as gas exchange occurs in the placenta.
The involvement of endothelial factors in this high fetal pul-
monary vascular resistance has been widely studied in animals
(6,7), but their ontogeny is poorly documented in the human
fetal lung.

In fetal lambs, ET-1 appears to be involved in pulmonary
vasoconstriction (14,15). In this model, pulmonary ET-1 levels
fall markedly before birth, yet pulmonary vascular resistance
remains high. This points to the involvement of factors other
than ET-1. In addition, the role of ET-1 depends on which of
its receptors is activated (16–19). ET-A activation induces
vasoconstriction, whereas ET-B activation induces vasocon-
striction when the receptors are located on smooth muscle cells
and vasodilatation when they are located on endothelial cells.
In fetal lambs, ET-B receptors are strongly expressed in the
perinatal period and their blockade attenuates O2-induced va-
sodilatation (15,18,19), whereas in newborn piglets ET-B re-
ceptor activation induces pulmonary vasodilatation (20). These
data strongly support a vasodilatory role of ET-B receptors in
the perinatal period. As regards the human fetal lung, we have
found that the expression of both ET-1 and ET-A is stable
throughout gestation, whereas ET-B expression increases in
mid-term and remains high until birth (21). ET-B receptors
may thus have an important role in perinatal vasodilation.
Prostaglandin I2 is synthesized primarily in vascular endothe-
lial cells and exerts its vasodilatory action by activating adenyl
cyclase through receptor G protein-coupled mechanisms. PGI2

production increases gradually throughout gestation, but its
inhibition does not markedly change resting pulmonary vascu-
lar resistance (6). In addition, the ductus arteriosus is particu-

larly sensitive to PGE2 at mid-term and less so at the end of
gestation, suggesting only a modest effect on vascular tone in
the perinatal period (22). This increased sensitivity during fetal
life could explain the high incidence of patent ductus arteriosus
in preterm infants.

NO is synthesized by endothelial cells after eNOS activa-
tion. In fetal lambs, inhibition of NO synthesis increases
resting pulmonary vascular resistance, strongly pointing to NO
involvement in maintaining low pulmonary vascular tone in
basal conditions (7,23,24). In this model, eNOS expression
peaks three-quarters of the way through gestation and falls
before birth, whereas it peaks at birth in piglets and after birth
in rats (24–27). Differences in the chronology of lung paren-
chymal and vascular development between species may ac-
count for these differences in eNOS expression kinetics (28–
30). The temporal relationship between airway and pulmonary
vasculature development is firmly established in animals (24)
and was recently confirmed in humans (9,12). In human fetal
lung, the concomitance of the increase in eNOS expression and
the onset of alveolarization points to an important role of eNOS
in airway maturation (31). Indeed, in addition to its vasorelax-
ant effect, the NO pathway is involved in both angiogenesis
and lung development (31–33). However, eNOS-null mice
have abnormal lung development but a functional pulmonary
circulation in adulthood, suggesting that eNOS is not vital for
angiogenesis, at least in this model (33,34). No data are
available on human eNOS ontogeny. We recently observed a
gradual increase in eNOS expression in the human fetal lung
until 31 wk of gestation, followed by a sharp decrease close to
birth (21). As in other animals, peak eNOS expression matches
the onset of alveolarization in humans. This, together with very
weak eNOS expression at birth, suggests a role in lung matu-
ration rather than in neonatal vasodilatation. It is noteworthy in
this respect that prenatal glucocorticoid administration, while
activating lung maturation, also increases pulmonary eNOS
expression in fetal lambs (35) through an unknown
mechanism.

VEGF potently induces endothelial cell growth in vitro and
angiogenesis in vivo (36–39). VEGF expression is stimulated
by TGF-�, hypoxia, and shear stress (39,40). Recent studies
indicate that VEGF acts as a paracrine mediator of angiogen-
esis in the developing lung (36,41,42), whereas abundant
growth of intra-acinar capillaries coincides with alveolar de-
velopment in lambs and humans (12,30). VEGF is also in-
volved in epithelial cell proliferation in human fetal lung,
highlighting its role as both an autocrine and a paracrine
growth factor (41,43,44). VEGF is detected in endothelial and
bronchial epithelial cells of the fetal and mature human lung,
but only in bronchial epithelial cells of term infants, indicating
a paracrine role after birth (41). Although the role of VEGF in
lung development appears to be crucial, little is known of its
human ontogeny. In the above-mentioned study, we found that
VEGF expression followed the same pattern as eNOS, with an
increase between the canalicular and saccular stages, then a
sharp decrease at the alveolar stage (21). A number of studies
have described parallel effects of NO and VEGF, which both
have vasodilative and angiogenic properties (31–33). Their
peak expression in the human lung at 31 wk of gestation, just

Figure 1. Diagram showing the different pathways involved in neonatal
pulmonary vascular tone.
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before the alveolar stage, suggests their possible involvement
in alveolar development. This is in keeping with the fact that
premature infants born after this time point do not usually
require mechanical ventilation (45,46).

THE NEONATAL CIRCULATION

The mechanisms underlying the fall in pulmonary vascular
resistance and the immediate increase in pulmonary blood flow
at birth are unclear. The decrease in pulmonary vascular resis-
tance is tightly regulated by an interplay between metabolic
and mechanical factors triggered by the ventilatory and circu-
latory changes that occur at birth, including closure of the
ductus arteriosus through decreased sensitivity to prostaglan-
dins (22). The initial rapid vasodilatation is at least partly
stimulated mechanically by lung inflation and by the increase
in oxygen tension, but endothelial factors also play a critical
role.
Animal studies. Physical expansion of the fetal lamb lung,

with no concurrent change in oxygen tension, induces a modest
decrease in pulmonary vascular resistance, partly due to pros-
taglandin synthesis (6,47–49). Ventilation of near-term lambs
with air or oxygen induces marked pulmonary vasodilatation,
possibly through the release of NO, prostaglandins, bradykinin,
or EDHF. Prostaglandin inhibition attenuates the fall in pul-
monary vascular resistance induced by lung inflation but not
that induced by oxygenation, suggesting only minor involve-
ment of prostaglandins in neonatal pulmonary vasodilatation
(6). NO appears to be more important, as eNOS inhibition in
lambs attenuates the increase in pulmonary blood flow at birth
(21,47). In newborn piglets, however, NO-dependent vasodi-
latation in response to acetylcholine is totally absent at birth
and only appears at 3 d of age, even though eNOS expression
increases after 1 d of age, suggesting a dysregulation of NO
pathway rather than absence of eNOS (20,50,51). Vasorelaxant
factors other than NO, such as prostacyclins, bradykinin, and
K� channel openers, might therefore be involved during the
first hours of life in this model. Inhibition of these factors in
fetal lambs reduces the pulmonary blood flow induced by lung
expansion but not that induced by oxygenation (48). Bradyki-
nin blockade, on the other hand, has no effect on the fall in
pulmonary vascular resistance (52). Hyperpolarization of
smooth muscle cells through potassium channel activation is
therefore likely to be involved. Various types of K� channels
have been described in vascular smooth muscle, including
voltage-activated K� channels (Kv), Ca2�-activated K�
channels (Kca), pH-sensitive K� channels (TASK), and ATP-
sensitive K� channels (KATP) (53). The respective roles of
these K� channels is controversial, although oxygen-induced
pulmonary vasodilatation is markedly inhibited by blocking
KCA and KATP channels in near-term fetal lambs (54). K�
channel expression is controversial in experimental pulmonary
hypertension of newborn animals, and appears to be strongly
dependent on the model used. Indeed, Kv and Kca expression
is reduced in the rat model of nitrofen-induced congenital
diaphragmatic hernia (55), Kv expression is not modified in
shunted lambs, and KCa expression fell in some studies and
rose in others (56–58). The role of KATP channels in neonatal

pulmonary vasodilation is poorly documented. KATP channel
openers induce strong vasorelaxation in both newborn lambs
and piglets, and this effect is partly inhibited by the endothe-
lium, as we and others have shown (20,59,60). This effect was
initially attributed partly due to a lack of NO activity (61),
although one alternative is an excess of ET-1. Indeed, plasma
levels and pulmonary expression of ET-1 are high in the
newborn piglet then fall to adult levels after 3 d (20,61).
Furthermore, we have found that the vascular relaxation in-
duced by KATP openers is potentiated by specific ET-A recep-
tor blockade (20,60), an effect that had previously only been
reported in cerebral arteries and the heart (62,63). ET-1,
strongly expressed in both normal and hypertensive lungs,
might therefore inhibit neonatal pulmonary vasodilation via its
ET-A receptors.
Human studies. Published data on the ontogeny of vasoac-

tive factors and growth factors in the human lung are scarce.
We have shown that eNOS and VEGF, both involved in
pulmonary angiogenesis and vasorelaxation, are weakly ex-
pressed in the perinatal period (21). These data suggest the
involvement of vasorelaxant factors other than NO in human
neonatal pulmonary vasodilatation. Potassium channels are
good candidates, but pharmacological and functional studies of
human fetal lungs are difficult, for obvious reasons. In a search
for indirect evidence, we examined KATP channel subunit Kir
6.1 expression in lung tissues from aborted human fetuses.
Interestingly, the subunit was strongly expressed on vascular
smooth muscle cells in both near-term fetuses and newborns
(Fig. 2) (64). These are the first data pointing to a crucial role
of KATP channels in human pulmonary vascular adaptation at
birth.

THERAPEUTIC IMPLICATIONS

PPHN is a severe disorder, for which current treatments are
disappointing. Inhaled NO is a selective pulmonary vasodilator
with a short half-life. necessitating continuous administration
(65,66). Inhaled NO has improved the prognosis of PPHN, but
some patients are resistant and others remain dependent (67).
Continuous prostacyclin infusion attenuates the clinical symp-
toms and reduces pulmonary pressure but has troublesome
systemic effects (68). Bosentan, a drug antagonizing the effects
of ET-1, appears to be as effective as prostacyclin in adults and
is also better tolerated (69). However, bosentan is a nonselec-

Figure 2. Immunostaining for Kir 6.1 in lungs of fetuses at 31 wk (A) and
neonate (B). Kir 6.1 subunit of KATP channels is expressed by smooth muscle
cells and epithelial cells. Magnification is �250.
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tive endothelin antagonist blocking both ET-A and ET-B re-
ceptors (70). It has been suggested that ET-B receptors, which
are strongly expressed in the human neonatal lung, might have
a vasorelaxant effect (18,19). The use of selective ET-A block-
ers might therefore be preferable in PPHN. The phosphodies-
terase V inhibitor sildenafil, which acts by promoting cGMP
accumulation in smooth muscle cells, facilitates NO weaning
of patients with PPHN and is also effective on adult pulmonary
hypertension (71,72). Trials of this drug are now underway in
infants. Finally, KATP channel openers, currently used in cor-
onary heart disease (73), have never been tested in pulmonary
hypertension. Their enhanced vasorelaxant effects in experi-
mental models of PPHN call for clinical trials in human PPHN
(59,60).

SUMMARY

The mechanisms underlying pulmonary vasodilatation at
birth are poorly understood in humans. Expression of eNOS
and VEGF peaks just before the alveolar stage of lung devel-
opment, indicating a key role of these two mediators in pul-
monary maturation. In the perinatal period, when pulmonary
vasodilatation is maximal, eNOS and VEGF expression is very
low and ET-1 and ET-1 receptor expression is very high. This
suggests that mediators other than NO participate in the
marked pulmonary vasodilatation occurring in human new-
borns. ET-B receptors, strongly expressed in the human lung
from mid-gestation until birth, might have potent vasodilatory
effects in the newborn. KATP channels mediate vasorelaxation
in newborn animals and are strongly expressed throughout
human lung development, but their role in the adaptation of
pulmonary vascular resistance at birth remains to be
established.
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