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We have previously demonstrated that restricting intrauterine
food by 50% in 3-mo-old rats produced lower nephron numbers and
early-onset hypertension, the latter being normalized by L-arginine
administration. In 18-mo-old rats, such restriction increased glomer-
ulosclerosis. In this study, we expanded our investigation, evaluat-
ing functional, morphologic, and immunohistochemical parameters
in intrauterine-food-restricted 18-mo-old rats, either receiving L-
arginine (RA18) or not (R18). Age-matched, non-food-restricted
controls were assigned to similar groups with L-arginine (CA18) and
without (C18). After weaning, L-arginine was given daily for 17 mo.
No functional or morphologic changes were observed in C18 rats.
The R18 rats developed early-onset hypertension, which persisted
throughout the observation period, as well as significant proteinuria
from 12 mo on. In RA18 rats, L-arginine decreased both blood
pressure levels and proteinuria, and glomerular diameter was sig-
nificantly smaller than in R18 rats (115.63 � 2.2 versus 134.8 � 1.0
�m, p � 0.05). However, in RA18 rats, glomerular filtration rate

remained depressed. Although L-arginine prevented glomeruloscle-
rosis (R18 � 14%, RA18 � 4%; p � 0.05), glomerular expression
of fibronectin and desmin was still greater in RA18 rats than in
controls. Our data show that, although L-arginine prevented hyper-
tension and proteinuria, glomerular injury still occurred, suggesting
that intrauterine food restriction may be one of the leading causes of
impaired renal function in adult life. (Pediatr Res 57: 724–731,
2005)

Abbreviations
GFR, glomerular filtration rate
L-Arg, L-arginine
NOS, nitric oxide synthase
PAH, para-aminohippurate
RPF, renal plasma flow
SHR, spontaneously hypertensive rat

Maternal undernutrition during gestation may affect var-
ious physiologic functions in the newborn infant. Human
studies have shown correlations between intrauterine growth
restriction and susceptibility to a number of chronic diseases
in adulthood, including coronary heart disease, stroke, and
hypertension (1– 4). Several studies have demonstrated that
intrauterine food restriction derives from alterations in qual-
ity or quantity of diet, resulting in hypertension and a
significant reduction in nephron number in the offspring

(5– 8). According to the “fetal programming” hypothesis,
these disorders may be caused by in utero fetal adaptations to
maternal undernutrition, which permanently changes postnatal
metabolism and growth characteristics (9–11). On the other
hand, aging is associated with loss of renal mass, which, by
itself, has little impact on overall renal function but may
increase the vulnerability of the kidney to other injuries (12,
13). Functional changes include increased renal vascular resis-
tance, a lower GFR, and a higher filtration fraction. In humans,
structural changes include progressive renal sclerosis, com-
bined with glomerulosclerosis and interstitial fibrosis (13). In
aging rats, proteinuria is often observed concomitantly with
focal and segmental glomerular sclerosis (14), features not
found in human renal senescence (13). Although differences
among species have been reported with regard to the aging
process, in vivo accumulation of oxidative end products and
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advanced glycation end products is common in the tissues of
mammalian species (13).

In a previous study involving 3-mo-old rats, we demon-
strated that intrauterine food restriction causes significant renal
function impairment and also provokes hypertrophy in the
remaining glomeruli and decreases absolute nephron numbers
(5, 6). In subsequent studies, we showed that intrauterine food
restriction could also be a determinant of early-onset protein-
uria and glomerulosclerosis in aged rats (15). Oral administra-
tion of L-Arg, given to intrauterine-food-restricted rats at 8 or
12 wk after weaning, prevented hypertension, although renal
function parameters remained low (16). Oral administration of
L-Arg, the natural precursor of nitric oxide (NO), has been
shown to protect against renal injury in several experimental
models, including a model of age-related reduction in renal
function and a model of hypercholesterolemia (17–20). In the
present study involving 18-mo-old rats from dams subjected to
50% food restriction throughout pregnancy, we extended our
investigation, supplementing postweaning diets with oral L-Arg
and performing functional, morphologic, and immunohisto-
chemical evaluations. Because hypertension alone plays an
important role in the development of renal disease (21–24),
reduced availability of NO could be involved both in the
endothelial dysfunction observed in some models of hyperten-
sion and in the progression of glomerulosclerosis. This study
aimed to investigate the extent of vascular involvement in the
development of kidney disease in this experimental model. Our
data demonstrate that, although L-Arg prevents hypertension
and proteinuria, glomerular injury and reduction in renal func-
tion still occur, indicating that intrauterine food restriction can
be a significant cause of impaired renal function and nephro-
sclerosis later in life.

MATERIALS AND METHODS

Experimental model. Male Wistar rats, obtained from Escola Paulista de
Medicina (EPM) were studied. The groups comprised the offspring of dams who
were given food ad libitum and those of dams who were subjected to (50%) food
restriction throughout pregnancy. The groups of dams and offspring were desig-
nated group C (control) and group R (restricted). The 50% dietary restriction of the
dams was determined on a daily basis, according to the amount eaten by the
control group. All dams were housed and fed individually. After giving birth, all
dams were given free access to food and water, and each litter, consisting of six
male rats, was allowed to remain with the dam for 28 d. To maintain litters of six,
females were included when there was an insufficient number of males, although
the females were excluded at weaning. After weaning, the rats were placed in
individual cages, with free access to food and water, until they reached 18 mo of
age. All experimental procedures were conducted in accordance with our institu-
tional guidelines for animal handling.

The rats were divided into four subgroups: group C18 (controls), group R18
(intrauterine-food-restricted), group CA18 (controls receiving 2% L-Arg solu-
tion dissolved in 2% sucrose in drinking water), and group RA18 (intrauterine-
food-restricted and receiving L-Arg solution dissolved in sucrose in drinking
water). Rats in the C18 and R18 groups received a 2% sucrose-only solution.
The L-Arg dose was similar to that used by Reckelhoff et al. (19), and the
sucrose solution was used as a vehicle to improve L-Arg ingestion. Supple-
mentation with the L-Arg solution or the sucrose-only solution began imme-
diately after weaning and was continued until the rats reached the age of 18 mo
(study duration, 17 mo). Sucrose solution intake was measured daily to
minimize differences between groups regarding L-Arg intake. Study rats
received �1.2 g L-Arg/kg body weight/d. Arterial pressure was evaluated
monthly, from 2 mo of age, by tail plethysmography.

Renal function studies. The animals were anesthetized with sodium thio-
pental (30 mg/kg) and placed on a heated table to maintain body temperature
at 37°C. After tracheotomy, polyethylene catheters were placed in the jugular

vein (for infusions) and the carotid artery (for blood sampling). Urine was
collected from a catheter inserted into the bladder. After a 1-h period of
stabilization, the first of three collection periods was initiated. The animals
were each primed with 1 mL of saline containing inulin (300 mg/kg) and
sodium PAH (2 mg). They were then submitted to continuous infusion of
saline solution containing inulin (15 g/L) and PAH (4 mg/L) at 0.08 mL/min.
Concentrations of inulin and PAH were measured colorimetrically in plasma,
as well as in urine, for estimation of GFR (25) and RPF (26). Blood and urine
Na� were measured using an ion selective electrode (Ciba-Corning 614 Na/K
analyzer Bayer/Ciba-Corning, USA). Net acid excretion (NAE) was calculated
using the formula NAE � TA � NH4 � HCO3, where TA is titratable acidity
in urine (measured by microtitration of 0.01 M sodium hydroxide), NH4 is the
amount of ammonium excreted (evaluated by colorimetry) (27), and HCO3 is
the net bicarbonate excretion (calculated using a model 248 Ciba-Corning
pH/blood gas analyzer Bayer/Ciba-Corning, USA). For determination of pro-
tein excretion, rats were placed in metabolic cages and 24-h urine samples
were collected. Proteinuria was measured every 4 wk, starting at 2 mo and
continuing throughout the study period. Protein concentration was measured
by precipitation with 3% sulfosalicylic acid.

Light microscopy. The kidneys of 20 18-mo-old rats (6 from group CA18,
9 from group R18, and 5 from group RA18) were fixed in Bouin’s solution and
processed for paraffin embedding. Histologic sections (3 �m thick) were
stained with Masson trichrome, and examined under light microscopy. The
percentage of glomeruli exhibiting focal or global glomerulosclerosis, which
was evidenced by segmental increases in the glomerular matrix, segmental
collapse, obliteration of capillary lumina, and hyaline accumulation was
determined. Tubulointerstitial injury was defined as inflammatory cell infil-
trates and tubular dilatation, accompanied by atrophy or interstitial fibrosis.
Injury was graded according to Shih et al. (28) on a scale of 0 to 4: none (score,
0); small focal areas (score, 0.5); involvement of �10% (score, 1); involve-
ment of 10–25% (score, 2); involvement of 25–75% (score, 3); extensive
damage involving �75% (score, 4).

Morphometric study. Morphologic evaluation was performed as follows:
both kidneys of six rats from each group were rapidly dissected out, cleaned of
connective tissue, and weighed. Renal tissue samples were embedded in
paraffin and sectioned into 3-�m parallel slices. The average glomerular
diameter was measured using a calibrated eyepiece, each value being the result
of the arithmetic mean of two measures taken along two perpendicular axes.

Immunohistochemical studies. Twenty-two animals (4 from group C18, 4
from group CA18, 9 from group R18, and 5 from group RA18) were studied.
When the animals reached 18 mo of age, the kidneys were dissected out and
immediately weighed. Tissue samples were embedded in paraffin, sectioned
into 3-�m slices, deparaffinized, and subjected to immunohistochemical stain-
ing (29).

The sections were incubated overnight at 4°C with either 1/1000 anti-�-
smooth muscle actin MAb or 1/500 anti-rat fibronectin antibody. Alternatively,
they were incubated for 1 h at room temperature with either a 1/100 anti-
desmin MAb or a 1/1500 anti-vimentin MAb. The reaction product was
detected using avidin-biotin-peroxidase complex (Vector Laboratories, Bur-
lingame, CA). The color reaction was developed with 3, 3-diamino-benzidine
(Sigma Chemical, St. Louis, MO), and the material was counterstained with
methyl green, dehydrated, and mounted. For all biopsies, negative controls
consisted of substitution of the primary antibody with an equivalent concen-
tration of normal murine or rabbit IgG.

Immunoperoxidase staining for �-smooth muscle actin, as well as fibronec-
tin, desmin, and vimentin were performed in either the glomerular or the
tubulointerstitial area. Subsequently, either the tubulointerstitial area grid field
or the glomerular tuft area was graded semiquantitatively and the mean score
per biopsy calculated, on a blinded basis. Each score mainly reflects changes
in extent rather than intensity of staining, and depended on the percentage of
the glomerular tuft area or grid field showing positive staining: from 0% to 5%
(score, 0); 5 to 25% (score, I); 25 to 50% (score, II); 50 to 75% (score, III);
�75% (score, IV) (30). It has been stated that data obtained using the
semiquantitative scoring system are not only reproducible among different
observers but are also are highly correlated with those generated by comput-
erized morphometry (30, 31).

Antibodies. Primary antibodies included a) 1A4, a murine MAb to NH2-
terminal synthetic decapeptide of �-smooth muscle actin (DAKO, Glostrup,
Denmark); b) a purified IgG fraction of polyclonal rabbit anti-rat fibronectin
(Chemicon International, Temecula, CA); c) D33, a murine monoclonal IgG1

antibody against human desmin (DAKO); and d) V9, a murine monoclonal
IgG1 antibody against human vimentin (DAKO).

Statistical analysis. Statistical analysis was performed by unpaired t test,
Mann-Whitney U test, or by ANOVA, followed by the Scheffé test, where
appropriate. Values that were not normally distributed were subjected to the
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Kruskal-Wallis test, followed by Dunn’s posttest, when necessary. Statistical
significance was defined as p � 0.05. The results are expressed as mean � SEM.

RESULTS

Renal function. Food ingestion and final body weights were
comparable among the groups. Glycemia remained at normal
levels in all groups studied. As shown in Figure 1, L-Arg
administration did not change the mean blood pressure (BP)
levels in control rats. By 8 wk of age, intrauterine-food-
restricted animals had developed significantly higher pressures
than the respective controls. This hypertension was stable and
persisted until the end of the observation period. In RA rats, BP
remained depressed throughout the experimental period.

As shown in Figure 2, the onset of progressive proteinuria
was observed in group R at 9 mo of age. By 18 mo, it had
increased nearly 2-fold compared with that of age-matched
control rats. In control rats, L-Arg administration did not
change the protein excretion profile. However, in restricted
rats, proteinuria was absent. In fact, even in 18-mo-old rats,
low protein excretion levels were observed (9.86 in RA versus
21.98 mg/24 h in R), indicating that some protection against
glomerular injury had been attained.

As shown in Table 1, mean values for GFR in 18-mo-old rats
in group R (R18) and RA (RA18) were significantly decreased
when compared with those of 18-mo-old rats in groups C (C18)
and CA (CA18). Supplementation with L-Arg did not change GFR
in either control or restricted rats, but caused a decrease in RPF,
leading to higher filtration fractions (�30%) that in the respective
nonsupplemented rats. These results suggest that in this reduced
nephron number model, hemodynamic response to L-Arg admin-
istration remains similar to that seen in controls.

As shown in Table 2, all aged animals maintained normal
acid-base equilibrium, confirming that aging, per se, does not
induce changes in this aspect of homeostasis. As also shown in
this table, fractional excretion of Na was adequate in all studied
groups, indicating that even in aged intrauterine-food-restricted
rats, with or without L-Arg supplementation, tubular ion handling
was preserved. Table 3 shows that administration of L-Arg did not
interfere with the ability to excrete acid in either control or
restricted animals. These results reinforce the concept that even

older animals, in which nephron numbers are decreased, are able
to maintain acid-base status. Moreover, our results suggest that, in
this intake regime, L-Arg administration does not affect acid-base
status or extracellular volume regulation.
Morphometric and histologic studies. The mean glomerular

diameter was significantly greater in R18 rats than in C18 rats.
On the other hand, in RA18 rats, mean glomerular diameter
was comparable to that seen in C18 and CA18 rats (Fig. 3).
These results suggest that L-Arg was able to suppress local or
systemic factors that trigger hypertrophic stimuli.
Immunohistochemical and light microscopy studies. Treat-

ment of the control rats with L-Arg did not affect any structural
parameter investigated (data not shown).

Glomerular lesions were observed in the R18 group and not
in the C18 group (p � 0.05). However, the higher percentage
of glomeruli exhibiting focal or global glomerulosclerosis, as
characterized by segmental increases in the glomerular matrix,
segmental collapse and obliteration of capillary lumina, as well
as by hyaline accumulation, was prevented by administration
of L-Arg in group RA18 (p � 0.05). The tubulointerstitial
compartment showed focal areas of tubular atrophy and/or
dilatation with intraluminal casts, as well as interstitial mono-
nuclear cell infiltration and fibrosis in the renal cortex of the
intrauterine-food-restricted animals when compared with con-
trols (p � 0.05). These alterations were not significant in the
RA18 rats when compared with age-matched controls (Fig. 4).

The results of the immunohistochemical studies revealed
that glomerular and cortical tubulointerstitial expression of
fibronectin was higher in R18 rats (p � 0.05) (Figs. 5–7). In
these animals, we also observed several foci of expanded
interstitial and glomerular staining for fibronectin. Administra-
tion of and L-Arg reduced this alteration, although it did not
prevent it. The RA18 animals presented greater fibronectin
expression in the renal cortex and glomeruli than did the
age-matched controls, CA18 (p � 0.01).

Immunohistochemical analysis also showed that R18 ex-
pressed higher levels of vimentin and �-smooth muscle actin in
the tubulointerstitial areas compared with control rats at the
same age (p � 0.05; Figs. 5, 7, and 8). It has been previously
described that, in normal rats, �-smooth muscle actin was
restricted to arterial smooth muscle cells. However, in the R18

Figure 2. Effect of L-Arg on 24-h protein excretion of control and intrauter-
ine-food-restricted rats. L-Arg administration promoted a significant decrease
in proteinuria in aged intrauterine-food-restricted animals. Comparisons were
made among animals of the same age. Significance level: p � 0.05 (* � C vs
R; � � R vs RA); number of measurements, n � 12 for all groups.

Figure 1. Effect of L-Arg on blood pressure (BP) in control (C) and
intrauterine-food-restricted (R) rats at different ages. Administration of L-Arg
did not change the BP of C rats but promoted a significant decrease in the BP
of R rats. Comparisons were made among animals of the same age. Signifi-
cance level: p � 0.05 (* � C vs R; � � R vs RA; ø � CA vs RA); number
of measurements, n � 12 for all the groups.
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group, we observed that there was also immunostaining for
vimentin and �-smooth actin in several tubular and interstitial
areas, suggesting tubulointerstitial damage. Vimentin is an indi-
cator of tubular cell regeneration, which is suggestive of recent
injury (32). Administration of L-Arg prevented these increases
(Fig. 5). In the diseased kidney, the de novo expression of
�-smooth muscle actin has been demonstrated to specifically label
activated mesangial cells and interstitial myofibroblasts (33, 34).
The results of our studies indicated the presence of glomerular and
interstitial myofibroblasts in the kidneys of R18 rats. Administra-
tion of L-Arg prevented this alteration.

The animals submitted to intrauterine food restriction also
had higher expression of desmin at the glomerular edge com-
pared with age-matched controls (p � 0.05) (Fig. 6). Typically,
glomerular desmin expression is restricted to mesangial cells,
being present in podocytes only following injury (31, 35, 36).
Several studies have shown that desmin expression at the
glomerular edge was associated with podocyte damage (31, 35,

36). Desmin expression at the glomerular edge was not mod-
ified by administration of L-Arg (Figs. 6 and 8).

DISCUSSION

It has long been recognized that nephron injury and hyper-
tension are closely related. However, complex mechanisms
control both the degree of renal involvement in the develop-
ment of hypertension and the impact of hypertension on the
development of renal injury. Some experimental models have
indicated that reduced nephron number is a common denomi-
nator of hypertensive states, although unilateral nephrectomy
may or may not be accompanied by hypertension (37, 38). In
the present study, renal function in the aged rat was monitored
in an experimental model (intrauterine food restriction) in
which a known reduction in nephron number is observed. This
was done in an attempt to characterize the physiopathology of
accelerated glomerulosclerosis in the absence of systemic hy-

Table 2. Acid-base data for control (C) rats and intrauterine-food-restricted (R) rats, receiving or not receiving L-arginine (A)
supplementation

Group
(n) Blood pH PCO2

Blood HCO3

(mEq/L) Urinary pH
Urinary HCO3

(mEq/L)
FENa

(%)

C18 (16) 7.39 � 0.006 40.1 � 1.1 23.15 � 0.63 6.29 � 0.30 1.62 � 0.13 0.57
CA18 (18) 7.38 � 0.003 36.7 � 2.5 21.32 � 2.99 6.64 � 0.06 0.64 � 0.03* 0.51
R18 (18) 7.35 � 0.006 42.7 � 0.95 21.83 � 1.09 6.31 � 0.04 1.34 � 0.09 0.71
RA18 (16) 7.39 � 0.01 32.5 � 1.3† 19.6 � 0.56 6.35 � 0.06 1.93 � 0.32† 0.24

* p � 0.05 vs C18; † p � 0.05 vs R18.
PCO2, arterial carbon dioxide tension; HCO3, bicarbonate; FENa, fractional excretion of sodium; C18, 18-mo-old control rats; CA18, 18-mo-old control rats

with L-arginine supplementation; R-18, 18-mo-old intrauterine-food-restricted rats; RA18, 18-mo-old intrauterine-food-restricted rats with L-arginine supple-
mentation.

Data expressed as mean � SEM; number (n) of experiments given in parentheses.

Table 3. Urinary acid excretion in control (C) rats and intrauterine-food-restricted (R) rats, receiving or not receiving L-arginine (A)
supplementation

Group
TA

(�Eq/min/kg)
NH4

(�Eq/min/kg)
HCO3

(�Eq/min/kg)
NAE

(�Eq/min/kg)

C18 0.78 � 0.06 (38) 1.54 � 0.06 (38) 0.121 � 0.01 (36) 2.12 � 0.096 (36)
CA18 0.49 � 0.05 (8) 1.79 � 0.37 (8) 0.023 � 0.002* (8) 1.67 � 0.21 (8)
R18 0.75 � 0.08 (24) 1.61 � 0.17 (24) 0.096 � 0.01 (20) 2.28 � 0.19 (20)
RA18 1.04 � 0.15#† (12) 1.54 � 0.77 (12) 0.057 � 0.03 (12) 2.52 � 0.24 (12)

* p � 0.05 vs C18; # p � 0.05 vs CA18; † p � 0.05 vs R18.
TA, titratable acid; NH4, ammonium excretion; HCO3, excreted bicarbonate; NAE, net acid excretion; C18, 18-mo-old control rats; CA18, 18-mo-old control

rats with L-arginine supplementation; R-18, 18-mo-old intrauterine-food-restricted rats; RA18, 18-mo-old intrauterine-food-restricted rats with L-arginine
supplementation.

Data expressed as mean � SEM; number (n) of experiments given in parentheses.

Table 1. Renal function parameters

Group
(n)

GFR
(m/min/kg)

RPF
(mL/min/kg)

V
(mL/min/kg)

FF
(%)

C18 (39) 4.19 � 0.10 20.58 � 0.63 0.079 � 0.003 20.82 � 0.59
CA18 (14) 4.79 � 0.41 14.97 � 0.88* 0.041 � 0.003* 32.49 � 2.96*
R18 (28) 2.48 � 0.15* 17.38 � 0.75* 0.075 � 0.004 14.05 � 0.72
RA18 (25) 2.44 � 0.10# 13.43 � 0.38† 0.033 � 0.001† 18.29 � 0.75#†

* p � 0.05 vs C18; # p � 0.05 vs CA18; † p � 0.05 vs R18.
V, urinary flow; FF, filtration fraction; C18, 18-mo-old control rats; CA18, 18-mo-old control rats with L-arginine supplementation; R-18, 18-mo-old

intrauterine-food-restricted rats; RA18, 18-mo-old intrauterine-food-restricted rats with L-arginine supplementation.
Data expressed as mean � SEM; number (n) of experiments given in parentheses.
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pertension. In fact, L-Arg administration was able to prevent
the hypertension observed in restricted rats throughout the
experimental period. This finding complements our previous
data (16), in which an early increase in blood pressure was
observed in this same model and was corrected by L-Arg
administration. Decreased excretion of NO2�NO3 in 3-mo-old
intrauterine-food-restricted animals was also observed (16),
suggesting endothelial dysfunction due to a decrease in NO
synthesis. The role of NO in regulating blood pressure and
glomerular hemodynamics was previously demonstrated by
Zatz and Baylis (39). These authors showed that administration
of NOS blockers to normal rats leads to changes in both
systemic blood pressure levels and glomerular hemodynamics,
stressing the role of this pathway in maintaining body ho-
meostasis. Prolonged administration of NOS blockers was also
shown to promote glomerular apoptosis in a SHR model (40).
On the other hand, Vaziri et al. (41) demonstrated up-
regulation of renal and vascular endothelial NOS. The authors
also found inducible NOS in 9-wk-old SHR rats, whereas, at 63
wk of age, SHR rats presented low urinary NOx (NO2 � NO3)
excretion and depressed renal and vascular NOS protein ex-
pression when compared with Wistar-Kyoto (WKY) rats of the
same age. These authors suggested that, in young SHR, hyper-
tension led to up-regulation of NOS, which could act as a

compensatory mechanism and attenuate the increase in blood
pressure levels. In the aged SHR model, this up-regulation was
not seen, suggesting that it could accelerate renal dysfunction.
Our results concerning regulation of blood pressure in aged
intrauterine-food-restricted rats submitted to long-term L-Arg
administration confirms that disturbances in L-Arg–NO system
are involved in the early and sustained hypertension observed
in this experimental model. Low NO levels could, theoreti-
cally, be the result of L-Arg insufficiency, altered NO synthase
activity or even decreased superoxide-dismutase (SOD) activ-
ity. Changes in SOD and increases in reactive oxygen species
(ROS) have already been confirmed in this same model of
intrauterine food restriction in 3-mo-old rats (42, 43). Reduced
activity of NOS has also been described in aortas isolated from
intrauterine-food-restricted rats (44). Although we did not mea-
sure urinary NOx and NOS protein expression in the present
study, L-Arg supplementation corrected both hypertension and
proteinuria, suggesting that this maneuver attenuates the vascular
release of superoxide anions and restores NO production, as has
been previously demonstrated in hypercholesterolemic rabbits
(20). By stimulating NO production, L-Arg supplementation may
also act as a vasodilator in arteriolar resistance, leading to a
decrease in renal blood flow but maintaining GFR unchanged.

In this study, L-Arg supplementation began after weaning, in
a time when nephrogenesis is complete and new nephron
formation is therefore not expected (45). In several models of

Figure 3. Mean glomerular diameter. Data from control rats and from
intrauterine-food-restricted rats (R) supplemented or not with L-Arg (A). Both
kidneys from six rats in each group were studied. Additional data from (16)
were added to the figure. C3, 3-mo-old control rats; R3, 3-mo-old restricted
rats. Significance level: *p � 0.05 vs C of the same age; †p � 0.05 vs R18.

Figure 4. Percentage of glomeruli with glomerulosclerosis (GS) and inter-
stitial tubular lesions (ITL) in the renal cortex. Data from control rats (C18, n �
5), from intrauterine-food-restricted rats (R18, n � 9) and from intrauterine-
food restricted supplemented with L-Arg, (RA18 � 5) group. Significance
level: *p � 0.05 vs C; †p � 0.05 vs R.

Figure 5. Score for �-smooth muscle actin (ASMA), fibronectin, and vimentin
in the renal cortex. Data from control rats (C18, n � 5), from intrauterine-
food-restricted rats (R18, n � 9), and from the intrauterine-food restricted
supplemented with L-Arg group (RA18, n � 5). Significance level: *p � 0.05
vs C18; **p � 0.01 vs C18; ***p � 0.001 vs C18.

Figure 6. Score for �-smooth muscle actin (ASMA), fibronectin, and desmin
in glomeruli. Data from control rats (C18, n � 5), from intrauterine-food-
restricted rats (R18, n � 9) and from intrauterine-food restricted supplemented
with L-Arg group (RA18, n � 5). Significance level: *p � 0.05 vs C18; **p �
0.01 vs C18; ***p � 0.001 vs C18; †p � 0.01 vs R18.
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reduced nephron numbers, systemic hypertension and glomer-
uli hypertrophy have been interpreted as compensatory mech-
anisms with the purpose of maintaining adequate renal func-
tion. In a previous study (16), we observed early systemic
hypertension in intrauterine-food-restricted rats at 8 wk of age.
This hypertension normalized after L-Arg administration. Our
data show that, although L-Arg prevented hypertension, glo-
merular injury still occurred probably because all the restricted
animals present a reduced nephron numbers. Besides this, the
higher filtration fractions observed in these animals could be
reflecting an increase in the glomerular capillary pressure. An
imbalance of intraglomerular forces can results in podocyte
stretch, damage, or loss with enhancement in desmin expres-
sion at the glomerular edge. It has been shown that desmin
expression at the glomerular edge labels podocytes, which
have been damaged (31, 34, 35). There is also evidence that
mesangial stretching stimulates extracellular matrix (ECM)
production by these cells and commonly, fibronectin is the first
ECM component that may deposit (46).

As shown in our previous study, L-Arg caused a significant
increase in GFR in young animals. However, in 3-mo-old rats,
the effect of sensitivity to L-Arg administration on renal func-
tion parameters was not apparent (16). In the present study,
filtration fractions increased significantly, not only in RA18
rats but also in CA18 rats, suggesting that renal vascular
response to L-Arg is restored. This finding reinforces our
previous study (16), in which we showed that L-Arg restored
acetylcholine-induced relaxation in mesenteric arteries of in-
trauterine-food-restricted rats. According to Tan et al. (47), NO
is of fundamental importance in preserving renal functionality
in the aging rat and we have demonstrated that this dependency
is preserved even in aged intrauterine-food-restricted rats.

Our data show that proteinuria was avoided in RA18 rats,
suggesting that L-Arg exerted some protection with regard to
glomerular permeability to macromolecules. In a previous
study of 2- and 3-mo-old intrauterine-food-restricted rats, we

showed that, although 24-h protein excretion was within nor-
mal limits (below 10 mg), administration of L-Arg induced a
profound reduction in protein excretion (16). This effect was
also shown by Reckelhoff et al. (19) in 12- to 13-mo-old rats
whose diets were supplemented with L-Arg for long periods of
time. On the other hand, albuminuria was observed in a chronic
model of NO inhibition, due to functional rather than structural
disruption of the glomerular wall (48). Taken together, these
data indicate that the L-Arg-NO system can play an important
role in regulating renal handling of proteins.

It is known that hypertension alone plays an important role
in the progression of renal disease. A persistent elevation in
blood pressure can be transmitted to glomeruli and lead to
progressive injury, which can, in turn, aggravate systemic
hypertension. For example, in aging SHR rats, Tolbert et al.
(49) demonstrated that, at 9 mo of age, glomerular hyperten-
sion develops due to a slight increase in systemic blood
pressure and a decline in preglomerular vascular resistance,
allowing transmission of elevated systemic pressure to glomer-
ular capillaries. These hemodynamic changes were not a re-
sponse to injury, since vascular and glomerular morphologies
were normal at this age. The authors postulated that the late
onset of glomerular hypertension could contribute to the sub-
sequent appearance of glomerular sclerosis and progressive
renal failure in these rats. In a model of renal ablation per-
formed in newborn rats, Woods et al. (50) showed that hyper-
tension develops after 8 wk of age and proteinuria is signifi-
cantly higher at 20 wk, suggesting that hypertension precedes
glomerular damage, which is significant only in the older
group. Our data show that in RA18, glomeruli show no
changes in diameter, or, in other words, that hypertrophy was
prevented by L-Arg administration. Therefore, two important
factors that contribute to the progression of renal disease,
systemic hypertension and glomerular hypertrophy, were ab-
sent in RA18 rats. However, glomerular involvement was still
present, as evidenced by the increased desmin expression seen
at the edges of podocytes in RA18 rats, suggesting that changes

Figure 7. Immunolocalization of fibronectin (A and B) and �-smooth muscle
actin (C and D) in the renal cortex of a rat submitted to intrauterine food
restriction and supplemented with L-Arg (B and D), together with data from an
18-mo-old control rat (A and C). Note that the immunostaining for fibronectin
in glomeruli and cortical tubulointerstitium is more intense in B than in A.
Scale bars � 50 �M.

Figure 8. Immunolocalization of desmin (A and B) and vimentin (C and D)
in the renal cortex of a rat submitted to intrauterine food restriction and
supplemented with L-Arg (B and D) and of a control rat (A and C). Note that
the immunostaining for vimentin at the glomeruli edge is more intense in B
than in A. Scale bars � 50 �M.
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during renal development are fundamental in determining the
quality of kidney function later in life. Our data are similar to
the findings reported by Floege et al. (35) in Milan normoten-
sive rats, in which early podocyte damage was observed pre-
ceding glomerulosclerosis in the absence of systemic hyper-
tension, hyperglycemia, and glomerular hypertension. The
authors demonstrated significant up-regulation of desmin ex-
pression in the glomeruli of young Milan rats, and this up-
regulation preceded all other glomerular alterations.

In conclusion, our results suggest that, although hyperten-
sion occurs early in the intrauterine-food-restriction model, it is
only partially responsible for kidney involvement since nor-
malization of blood pressure levels did not completely prevent
glomerular alterations. Our data reinforce the concept that,
although the L-Arg-NO system exerts significant influence over
vascular sensitivity in the offspring of intrauterine-food-
restricted mothers, decreased nephron number remains one of
the main trigger factors for renal involvement in adulthood. On
the other hand, our data confirm the Barker hypothesis that
cardiovascular and related disorders originate from fetal adap-
tations to maternal undernutrition, which permanently alters
growth rates, as well as postnatal physiology and metabolism.
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