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The safety of dexamethasone for neonates has been ques-
tioned, partly because of its multiple unspecific effects on the
immune system. Specific effects of dexamethasone on co-
stimulatory and immune suppressive functions of neonatal com-
pared with adult macrophages (M�) are not known. We evalu-
ated the effect of dexamethasone on the expression and
regulation of M� B7 family receptors (B7-1, CD80; B7-2,
CD86) and on their ability to co-stimulate T cells. Cord blood
macrophages (CBM�) and M� from healthy adults (PBM�)
were isolated, and cell surface markers were phenotyped by flow
cytometry. In tissue culture, cells were exposed to dexametha-
sone, interferon-� (IFN-�), cAMP, or a T cell mitogen (�CD3)
and examined for their capacity to activate or destroy T cells.
CBM� were less able to up-regulate CD80 and CD86 than
PBM� (p � 0.05). Dexamethasone inhibited the up-regulation
of CD80, CD86, and HLA-DR on PBM� and even more so on
CBM� (p � 0.05 versus PBM� for CD80 and CD86). In the
presence of dexamethasone, stimulation with �CD3 MAb en-
hanced cytotoxic functions of PMBM� and CB�� with an
increase in deleted T cells, a reduced fraction of enlarged T cells,

and an inhibition of T cell CD28 up-regulation, which again were
more pronounced with CBM� (p � 0.05 versus PBM�). In
conclusion, neonatal M� are exquisitely sensitive to the inhibi-
tory effects of dexamethasone on B7 expression. Although per-
haps producing the desired therapeutic effect, dexamethasone
may do so in newborns at the expense of a near complete
paralysis of M�-dependent T cell function. (Pediatr Res 57:
656–661, 2005)

Abbreviations
APC, antigen presenting cell
BPD, bronchopulmonary dysplasia
�CD3 Mab, anti-CD3 monoclonal antibody
CBM�, cord blood monocyte-derived macrophages
CBMNC, cord blood mononuclear cells
IFN-�, interferon-�
M�, monocyte-derived macrophages
PBM�, peripheral blood monocyte-derived macrophages
PBMNC, peripheral blood mononuclear cells

Preterm newborns have been exposed to dexamethasone for
the prevention or treatment of bronchopulmonary dysplasia
(BPD) for many years (1,2). Dexamethasone is a synthetic
glucocorticoid that reduces the recruitment of inflammatory
cells (3,4) and thereby is thought to inhibit the development of
BPD. Its effects on other developing organs such as the CNS
were only recognized much later. Because follow up-studies
provided evidence of abnormal neurodevelopment, early post-
natal use of dexamethasone is not recommended any more (2).
Nevertheless, glucocorticoids continue to be given to pregnant
women to accelerate fetal lung development.

Besides the endocrinium, the primary target of dexametha-
sone is the immune system, which is incompletely developed
in neonates. Evidence that the immunosuppressive effects of
dexamethasone are primarily mediated via an inhibition of
cytokine production has been produced. Mononuclear cells
from adults and neonates respond differently to treatment with
dexamethasone. With respect to proinflammatory cytokines,
cord blood cells show an increased sensitivity toward the
inhibitory action of dexamethasone compared with cells from
adult donors, resulting in a more pronounced inhibition of
IL-1�, IL-6, tumor necrosis factor-�, IL-12, IL-2, and IL-3
production (5,6).

Dexamethasone may directly inhibit T cell proliferation (7),
induce apoptosis (8), promote long-lasting changes in the T
cell receptor v� repertoire (9), or decrease the CD4/CD8 ratio
in infants with BPD (10). Dexamethasone also influences gene
expression of cytokines and various functions of antigen pre-
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senting cells (APC), including B cells, dendritic cells, and
monocytes/macrophages (11–13).

T cell activation in the neonate is impaired (7). Beside
intrinsic T cell deficiencies, their reduced capacity to become
activated largely results from an impaired function of and
interaction with APC (14–16). The ability of APC, including
monocyte-derived macrophages (M�), to induce co-
stimulatory signals in T cells by engaging their CD28 receptors
is critically important for the T cell response. The lack of
co-stimulation leads to anergy or apoptosis of antigen-reactive
T cells (17,18). The CD28 ligands are expressed on M� and
belong to the B7 receptor family. Beyond controlling T cell
activation and cell death, B7 ligation influences T cell differ-
entiation and cytokine production (19).

In humans, the B7 family consists of at least two molecules,
B7-1 (CD80) and B7-2 (CD86), which belong to the immuno-
globulin superfamily (20). Both bind to ligands on T cells,
CD28, and CTLA4 (CD152) (21,22). The B7/CD28 family
consists of additional receptors, each of which may promote
activating or terminating signals (reviewed in 22).

CD86 (B7-2) is constitutively expressed on M� (21). The
up-regulation of CD80 and CD86 occurs after contact with
nominal antigen, IFN-� (23), lipopolysaccharide (24), or mi-
togen-activated T cells (25) with different kinetics (26). In
adult donors, glucocorticoids were found to inhibit the activa-
tion-induced expression of B7 receptors in M� (27).

Cord blood macrophages (CBM�) per se exhibit a reduced
co-stimulatory potential: CD80 and CD86 expression and up-
regulation are significantly inhibited in CBM� compared with
M� from adult donors (16). Consistent with this observation,
M�-dependent T cell activation is reduced in neonates, and
CBM� preferentially deliver negative signals to T cells (16).

In view of the immaturity of the neonatal immune system,
we were interested in investigating the capacity of neonatal
M� to respond to dexamethasone. To our knowledge, its
impact on neonatal M� and on M�-dependent T cell reactions
has not yet been studied. Because mechanisms that control B7
receptors bear large consequence for the T cell response, we
tested the hypothesis that CBM� would exhibit an increased
sensitivity toward dexamethasone-induced inhibition of B7
expression and on T cell proliferation compared with PBM�.

METHODS

Patients. The study protocol was approved by the Ethics Committee of the
University of Tuebingen. All mothers gave written consent before they went
into labor. Randomly selected, unrelated adult healthy volunteers donated
blood and served as control subjects. All term neonates were delivered
spontaneously and did not exhibit signs of infection, as defined by the clinical
status, white blood cell count, and C-reactive protein. Mothers with amnion
infections and prolonged labor were excluded. Umbilical cord blood was
drawn from the fetal side of the placenta by puncture with a sterile needle,
attached to a syringe without suction, and placed in heparin-coated tubes (100
IE/mL blood) immediately after ligation of the cord.

Cell cultures. Peripheral blood (PBMCs) and cord blood mononuclear cells
(CBMNC) were isolated by Ficoll-Hypaque (Pharmacia LKB, Uppsala, Swe-
den) density gradient centrifugation. Washed cells were resuspended in RPMI
1640 (Sigma Chemical Co., St. Louis, MO) that contained 10% FCS (Sigma
Chemical Co.) and incubated at 37°C in a humidified incubator with a 5% CO2

atmosphere.
Preparation of mononuclear cell subsets. Unseparated mononuclear cells

were placed at 3 � 105 cells/0.1 mL in flat-bottom 96-well microtiter plates
(Falcon, Bedford, MA). For separating macrophages from lymphocytes, cells

were plated at 3 � 106 cells per 1.5 mL in 60 � 15-mm culture vessels
(NoK4-3802-4; Becton Dickinson, Mountain View, CA) in the incubator and
allowed to adhere for 60 min. Nonadherent cells were gently removed by
repeatedly pipetting 500 �L of RPMI buffer into the cultures. Remaining
adherent cells were washed thoroughly twice and used as a source of macro-
phages. Usually, 85% of adherent cells expressed CD14.

For further eliminating contaminating nonadherent macrophages, the pro-
cedure above described was repeated with the fraction of nonadherent cells.
Usually, �1% CD14� macrophages were found in the nonadherent fraction
after this adherence cycle, as determined by FACS analysis.

Co-culture Experiments. Macrophage-enriched adherent cells (1 � 105/
0.05 mL) and macrophage-depleted nonadherent cells were mixed (2 �
105/0.05 mL). Nonadherent cell fractions were not pooled from different
donors. For equalizing allogeneic effects, CBM� and PBM� of one adult
donor were co-cultured with nonadherent cells of a second adult donor.

Flow cytometry. A daily calibrated FACScan flow cytometer (Becton
Dickinson) was used to perform phenotypic analysis. For preventing nonspe-
cific binding, cells were incubated with 10% human serum on ice for 10 min
before staining with FITC-, phycoerythrin-, or isotype-specific Ig-labeled MAb
for 20 min over ice in the dark. M� were gated by forward, side scatter, and
CD14 expression. For ensuring that larger cells were M� recently migrated
and not lymphoblasts, a parallel analysis was performed with the MAb
anti-CD3 (SK7). Dead lymphocytes were discriminated by propidium iodide
(Molecular Probes, Eugene, OR; 5 �g/mL, 5 min). Propidium iodide–negative
cells were counted and analyzed for expression of CD4 and CD8. T cell blasts
were detected as CD4� or CD8hi� cells with enlarged size in the forward
scatter as previously described (28).

Reagents. Human recombinant IFN-�, a potent inducer of CD80 and CD86
(15), was purchased from R&D Systems (Minneapolis, MN). Cell-permeable
dibutyryl-cAMP, up-regulating the expression of CD86 but not of CD80 on
M� (27), was obtained from Sigma Chemical Co.

Fresh dilutions of dexamethasone (Sigma Chemical Co.) in PBS solutions
were prepared for each experiment and added at concentrations from 10�9 to
10�4 mol shortly before addition of B7-inducing substances. Serum concen-
trations to 10�5 mol may be reached pharmacologically (5). Cultures that were
incubated in the absence of dexamethasone served as controls. The T cell
mitogen anti-CD3 MAb (OKT3, 1 �g/mL) was purchased from Ortho Diag-
nostics (Raritan, NJ).

Antibodies to CD14 (M�P9), CD80 (L307.4), CD86 (IT2.2), HLA-DR
(L243), CD3 (SK7), CD4 (SK3), CD8 (SK1), and CD28 (L293) and Ig-
matched controls (IgG1, IgG2b) were purchased from Becton Dickinson
(Heidelberg, Germany). Tissue culture experiments were repeated at least three
times. Results are expressed in mean � SD.

Data display and statistical analysis. Fluorescence intensities were deter-
mined, and the nonspecific background staining was subtracted. Statistical
analysis was performed by using the decadic logarithm of the values of CD80,
CD86, HLA-DR, and CD28. Using an ANOVA, we examined whether the
variables were influenced by dexamethasone and age (both nominal effects).
The variable “patient” (nominal) was nested under “age,” and the nested
variables were modeled as a random effect. Furthermore, an interaction
between “age” and “dexamethasone” was considered.

Using an analysis of covariance (ANCOVA), we examined whether the
decadic logarithm of numbers of resting or blast-forming T cells were influ-
enced by time, the origin of the blood, and dexamethasone. The variable
“patient” was nested and modeled as a random effect. Furthermore, an inter-
action between “patient” and “day” was considered. Values of p � 0.05 were
considered statistically significant. Statistical analysis was performed using the
Sigmaplot 2000 software for Windows (SPSS, Chicago, IL).

RESULTS

Effect of dexamethasone on CD80, CD86, and HLA-DR
expression. CBM� and PBM� were incubated for 48 h with
and without various concentrations of dexamethasone. Spon-
taneous and IFN-�–induced CD80 and CD86 expressions were
determined. For examining whether the IFN-�–induced effect
was specific for CD80 and CD86, HLA-DR densities were also
detected. Representative histograms for CD80 expression on
PBM� (left) and CBM� (right) are depicted in Fig. 1.

CBM� spontaneously expressed CD80, CD86, and
HLA-DR in lower densities than PBM� (p � 0.05; Fig. 2).
Dexamethasone further decreased CD80 and CD86 expression
in both groups (p � 0.05 versus unstimulated control) but did
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not influence the spontaneous HLA-DR expression. IFN-�
caused an up-regulation of all three receptors and was more
pronounced on PBM� (p � 0.05 versus CBM�).

Dexamethasone inhibited the IFN-�–mediated up-regulation
of CD80, CD86, and HLA-DR. On PBM�, this inhibitory
effect on CD80 and in both M� populations the inhibition of
HLA-DR expression were dose dependent. Dexamethasone-
induced CD80- and CD86-related effects were stronger on
CBM� (p � 0.01 versus PBM�); the inhibition of HLA-DR
up-regulation did not differ significantly (p � 0.11). Survival,
as detected by propidium iodide staining, was not affected by
the drug (data not shown).

To investigate whether dexamethasone-mediated effects on
CD80 and CD86 were restricted to IFN-�, we used different B7
inducers (Fig. 3). Stimulation with cAMP did not affect CD80
expression (Fig. 3A) but resulted in increased CD86 receptor
densities in both groups (Fig. 3B), with CBM� being less
receptive (p � 0.05 versus PBM�). The addition of dexameth-
asone to this group inhibited CD86 up-regulation, again more
pronounced on CBM� (p � 0.05 versus PBM�). The pattern
seen with �CD3 was similar to IFN-� stimulation with both: an
impairment of CBM� to up-regulate CD80 and CD86 and a
stronger inhibitory effect of dexamethasone (p � 0.05 versus
PBM�).

Effect of dexamethasone on M�-dependent �CD3-
mediated T cell reactions. In the presence or absence of
dexamethasone, mononuclear cells from adults (PBMNC) or
cord blood (CBMNC) were incubated with �CD3. The fre-
quencies of enlarged T cells (Fig. 4A) as a parameter of T cell
activation, and the absolute numbers of viable T cells, a
parameter of T cell survival (Fig. 4B), were assayed daily.

The fraction of enlarged T cells was increased in PBMNC
(p � 0.05 after 48 and 72 h versus CBMNC; Fig. 4A). In
contrast, the fraction of T lymphocytes that were deleted before
cells had a chance to divide was higher in CBMNC (p � 0.05
versus PBMNC after 72 h).

Dexamethasone enhanced the fraction of initially deleted T
cells in cord blood (p � 0.05 versus �CD3 and versus PBMNC)
and inhibited T cell blast transformation in both groups (p � 0.05)
but to a higher extent in CBMNC (p � 0.05 versus PBMNC after
72 h), consistent with the finding that the number of remaining T
cells in this group was constantly decreasing.

For eliminating innate differences between neonatal and
adult T cells, in particular their potentially different sensitivity

toward dexamethasone, purified PBM� of one healthy adult
donor, or CBM�, were co-cultured with M�-depleted nonad-
herent mononuclear cells of a second, unrelated healthy adult
donor as a source of enriched T cells (Fig. 5).

CBM� diminished the fraction of proliferating T cells (p �
0.05 versus PBM� after 48 and 72 h; Fig. 5A) and enhanced
the �CD3-mediated deletion of adult T cells (p � 0.05 versus
PBM� after 72 h; Fig. 5B). Treatment with dexamethasone
essentially showed findings identical to those depicted in Fig.
4. In the presence of CBM�, we found a significant impact on
the decrease of remaining T cells and an almost abolished blast
transformation (p � 0.05 versus PBM� after 48 and 72 h).
Neither M�-depleted enriched T cells nor M�-enriched ad-
herent cells showed significant proliferation or deletion in the
presence of �CD3 (1 �g/mL; data not shown). In the described
interval, we found no differences with regard to proliferation
between PBM� that were co-cultured with autologous or
allogeneic T cells (data not shown). Co-incubation of lower
numbers of M� (5 � 10�4 M�) with T cells had less effect in
both cord and peripheral blood (data not shown), indicating the
importance of the local tissue environment and M�:T cell ratio
in vivo.

In the �CD3-mediated reaction, engagement of B7 receptors
with corresponding receptors on T cells leads to CD28 up-
regulation on T cells, which undergo blast transformation
(29,30). Using CBM� as a source of co-stimulatory receptors,
�CD3-mediated CD28 up-regulation on T cells from healthy
adult donors was impaired (p � 0.05 versus PBM�). Dexa-
methasone inhibited this �CD3-mediated CD28 up-regulation
in both groups but significantly more so in the presence of
CBM� (p � 0.05 versus PBM�; Table 1), further indicating
the T cell inhibiting impact of the drug to be mediated via
co-stimulatory molecules on APC.

DISCUSSION

Our data identify the CD80 and CD86 receptors as targets of
dexamethasone-induced immune suppression and show that
neonatal M� exhibit an increased sensitivity toward this drug-
induced receptor inhibition. Functionally, this negatively influ-
ences the M�-dependent T cell activation (Figs. 4 and 5, Table
1). In addition and in contrast to PBM�, CD86 expression on
neonatal M� is partially inhibited by the drug (Fig. 2B).
Effects of dexamethasone on M� are not restricted to CD80
and CD86, because HLA-DR expression is inhibited as well
(Fig. 2B). Compared with M� from adults, neonatal M�
already show a reduced potential to up-regulate CD80, CD86,
and HLA-DR (16) (Figs. 2 and 3). Thereby, M�-dependent T
cell proliferation is inhibited in cord blood, and activation-
induced cell death is promoted (Figs. 4 and 5).

M� possess the capacity to regulate the T cell response
positively and negatively. We distinguished two principal cy-
tokine-induced M� subsets. One, referred to as cytotoxic M�
(Mc) (31), lacks B7 expression (32) and is induced by IL-10
(33). The second subset, referred to as helper M� (Mh) (31),
is induced by IFN-� and expresses CD80, CD86, or both.
Disturbances in the Mh/Mc balance have been reported in
various diseases (34–38). M� that express B7 family mole-

Figure 1. Dexamethasone inhibits IFN-�–mediated CD80 up-regulation.
PBM� (left) and CBM� (right) were cultured for 48 h in the absence or the
presence of dexamethasone (10�6 mol) and/or IFN-� (500 U/mL). Histograms
of one experiment were overlain; background staining was �101 MFI (data not
shown).
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cules induce neither T cell anergy nor T cell destruction by
apoptosis, because both reactions are blocked in the presence
of co-stimulation (28–30,39–41). M� that lack CD80 and
CD86 expression are incapable of preventing the induction of
anergy or apoptosis in conjugated T cells and act as negative
immune regulators (42–44). In addition, M� have the capacity
to actively destroy T cells that they target for conjugate for-
mation (44). M� may express CD95 ligand in high concen-
tration, engaging the T cell CD95 receptor in the apoptotic
destruction of the T cell (45).

The Mh/Mc balance reveals itself in the polyclonal �CD3-
mediated stimulation of T cells in our experimental setting: T
cell reactivity depends on the number of M� and their capacity
to up-regulate co-stimulatory molecules (28,30). When ex-

posed to �CD3 MAb, T cells mount a biphasic immune
response, characterized by an initial decline in their number
and a subsequent clonal expansion (Figs. 4 and 5). Only the
fraction of T cells that manages to block apoptosis by engage-
ment of CD28 co-stimulatory molecules gets properly acti-
vated by �CD3 MAb (39) (Table 1). Other T cells remain
anergic or become deleted (39).

The presence of neonatal M�, which were impaired to
up-regulate CD80 and CD86 after challenge with �CD3 MAb
(16) (Fig. 3), led to a strong decline in remaining T cells and
a reduction in proliferating cells (Figs. 4 and 5). Enhancing B7

Figure 2. Inhibition of spontaneous and IFN-�–induced expression of CD80 and CD86 by dexamethasone. PBM� (�) and CBM� (u) were cultured for 48 h
in the presence or absence of dexamethasone (concentrations as indicated in mol; �10�6 mol) and/or IFN-� (500 U/mL). Dexamethasone was added 1 h before
IFN-�. Cells were harvested and phenotyped for CD80 (A), CD86 (B), or HLA-DR (C). Mean fluorescence intensities are depicted; five experiments are shown
(mean � SD); *p � 0.05 PBM� vs corresponding CBM�; �p � 0.05 dexamethasone-mediated inhibition across different dexamethasone concentrations PBM�
vs CBM�.

Figure 3. Dexamethasone-induced inhibition of cAMP- and �CD3-induced
B7 expression. Mononuclear cells (2 � 105/0.1 mL) from healthy adults (�)
and cord blood (t) were cultured for 48 h alone or in the presence of cAMP
(10�3 mol) or �CD3 (1 �g/mL). Three groups received dexamethasone (10�6

mol). Cells were harvested and phenotyped in triplicate for the mean fluores-
cence expression of CD80 (A) or CD86 (B). Five experiments are shown (mean
� SD). *p � 0.05 PBM� vs corresponding CBM�; �p � 0.05 dexametha-
sone-mediated inhibition PBM� vs CBM�.

Figure 4. Dexamethasone inhibits �CD3-mediated T cell blast transforma-
tion and promotes cell death. Unseparated PBMNC of healthy adults (circles)
and cord blood (triangles), each containing comparable amounts of M�, were
stimulated with �CD3 (1 �g/mL). Dexamethasone (10�6 mol; open symbols)
was added before �CD3. Cells were counted and phenotyped for CD4 and
CD8 expression daily. T cell blasts (A) and remaining T cells (B) were
detected. Three experiments are shown (mean � SD); *p � 0.05 vs �CD3-
treated PBMNC; �p � 0.05 dexamethasone-mediated effect CBMNC vs
PBMNC.
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expression either via exchange of a M� type (Fig. 5) or by
addition of IFN-�, was associated with increased T cell blast
formation and a decline in the fraction of deleted T cells
(25,30,39). These results underscore the observation that the
neonatal T cell response can be turned on to almost adult-like
levels by immunocompetent APC (14,16).

Deficiencies in IFN-� production and effect by neonatal
monocytes, which partially are attributed to their immaturity
(46), are well documented (47). Marodi (48) identified a
deficient cytokine receptor signaling pathway via signal trans-
ducer and activator of transcription-1 phosphorylation in re-
sponse to IFN-�, which may help to explain functional conse-
quences. Reduced basal and IFN-�–induced HLA-DR
expression and up-regulation on CBM� underscore earlier
reports (47,49 –51). Dexamethasone additionally inhibits
IFN-� transcription (52). In accordance with our results, dexa-

methasone inhibits IFN-�–induced HLA-DR expression on
human monocytic cell lines (50); however, in contrast to CD80
and CD86, our results suggest no significant differences in the
dexamethasone-mediated inhibition of HLA-DR up-regulation
between PBM� and CBM� (Fig. 2C). Whether the drug
affects the HLA-DR–mediated antigen-presenting capacity
of CBM� in particular remains the subject of further
investigation.

Dexamethasone inhibited the activation-induced up-
regulation of CD86 on CBM� and to a lesser extent on PBM�
(Fig. 3). In contrast to Girndt (27), who found no drug-related
influence on the CD86 regulation in M� from adults, we used
unpurified mononuclear cells for stimulation with IFN-� and
cAMP, suggesting additional indirect effects of dexametha-
sone, e.g. via T cells.

Although we tried to minimize potentially different effects
of dexamethasone on neonatal versus adult T cells by
co-culture, our experimental setup neither excludes drug-
related effects on �CD3-stimulated T cells, which may
influence M� secondarily, nor rules out allogeneic factors
that may influence the �CD3 reaction in long-term cultures.
Memory T cells, which are characterized by the membrane
determinant CD45RO, are virtually absent in cord blood (7)
and might account for the increased dexamethasone sensi-
tivity of CBMNC. However, addition of identical amounts
of CD45RO cells by co-incubating T cells of adult donors
with CBM� or PBM� (Fig. 5) indicates a drug-mediated
effect on M�.

The effects of dexamethasone on CD80 receptor inhibition
in adults were found to be transmitted via the cytoplasmic
glucocorticoid receptor, because it could be abrogated by the
addition of the glucocorticoid receptor antagonist RU38486
(27). The CD80 up-regulation was similarly inhibited by equi-
potent doses of hydrocortisone and prednisolone (27). Com-
pared with adults, neonatal adrenals are functionally immature,
as reflected by decreased neonatal plasma cortisol concentra-
tions (53) and a decreased density of glucocorticoid receptors
in the hippocampus (54). The increased sensitivity of CBM�
to dexamethasone therefore may reflect an immunologic com-
pensation for the low levels of glucocorticoids in newborn
plasma, so the neonatal immune system may be functionally
balanced in vivo.

Here we confirm earlier observations (16) that the new-
born macrophage system emphasizes negative rather than
positive immune regulation, which may be prudent because
in establishing an immune repertoire, the newborn must
guard him- or herself most diligently against autoimmune
reactions. Our data show that although dexamethasone tilts
the Mh/Mc balance of both adult and neonatal M� toward
Mc dominance, neonatal M� are significantly more sensi-
tive to this effect of dexamethasone. The drug nearly abro-
gates the expression of co-stimulatory molecules and
strongly enforces Mc activities. Therefore, although the
neonatal lung may well respond to dexamethasone, the price
that the neonate pays in excessively suppressed immune
function may prove prohibitive.

Figure 5. CBM� are more sensitive toward dexamethasone-mediated inhi-
bition of �CD3-mediated T cell activation than PBM�. M�-depleted PBMNC
(2 � 105) from one healthy adult donor were co-cultured with PBM� (1 �
105) from a second adult donor (circles) or 1 � 105 CBM� (triangles) and
�CD3 (1 �g/mL) was added. Two groups received dexamethasone (10�6 mol)
2 h before addition of �CD3 (open symbols). Samples were taken daily,
counted, and phenotyped for CD4 and CD8 expression. T cell blasts (A) and
remaining T cells (B) were depicted. No differences were seen in the non-
stimulated groups (data not shown). Four experiments are shown (mean �
SD); *p � 0.05 vs �CD3-treated group with PBM�; �p � 0.05 dexametha-
sone-mediated effect CBM� vs PBM�.

Table 1. CD28 expression on T cells from adult healthy donors
after stimulation with �CD3

Control
(mean � SD)

�CD3
(mean � SD)

�CD3 � Dexa
(mean � SD)

PBM� 75 � 22 175 � 31* 134 � 17*
CBM� 83 � 18 117 � 10* 80 � 11†

M�-depleted PBMNC (2 � 105) from one healthy adult donor were
co-cultured with PBM� (1 � 105) from a second adult donor or CBM�.
Dexamethasone (10�6 mol) was added before addition of �CD3 (1 �g/mL).
Samples were phenotyped for CD28 expression after 48 h. Five experiments
are shown (mean � SD). * p � 0.05 vs corresponding unstimulated control;
† p � 0.05 dexamethasone-mediated inhibition vs PBM�. No significant
differences were seen in the nonstimulated dexamethasone groups (data not
shown).
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