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Unresolved pulmonary inflammation in hyaline membrane
disease (HMD) may be a precursor to the development of chronic
lung disease of early infancy. We investigated whether nuclear
factor �B (NF-�B), a transcription factor that regulates the
inflammatory process, is activated in pulmonary leukocytes in
tracheal aspirates from premature infants with HMD. A total of
172 samples were obtained from 59 infants, two thirds of whom
showed NF-�B activation in lung neutrophils and macrophages
on at least one occasion. Infants who had activated NF-�B
showed elevated tumor necrosis factor-� concentrations in their
tracheal aspirates. These infants also required a longer period of
mechanical ventilation support. Almost half of the infants with
HMD had antenatal exposure to chorioamnionitis on the basis of
placental histopathologic examination. These infants had evi-
dence of activated NF-�B and elevated cytokines and were more

likely to have Ureaplasma urealyticum colonization in their
airways. Together, these observations suggest that NF-�B acti-
vation in pulmonary leukocytes may be involved in the lung
inflammatory process in infants with HMD. (Pediatr Res 57:
616–623, 2005)

Abbreviations
CLD, chronic lung disease
DART, Dexamethasone (postnatal) in tiny babies, A
Randomised Trial
FIO2, fractional inspired oxygen
HMD, hyaline membrane disease
I�B, inhibitor of �B
NF-�B, nuclear factor �B
TNF-�, tumor necrosis factor-�

Pulmonary inflammation in hyaline membrane disease
(HMD) is characterized by the presence of neutrophils and
macrophages and elevated levels of various proinflammatory
cytokines in airway samples from affected infants (1–3). The
leukocytes have the ability to sustain and amplify an inflam-
matory reaction (4) and release a variety of mediators, includ-
ing cytokines, proteases, and reactive oxidants, that may injure
normal lung tissue (5–7). Current evidence also suggests that a
perpetuated inflammatory reaction may result in unresolved

HMD and the subsequent development of chronic lung disease
(CLD) (5,6,8–12). The inflammatory response is induced by
multiple risk factors, such as the initiation of mechanical
ventilation, oxygen toxicity, and intrauterine inflammation,
which has been implicated in the evolution of the “new” CLD
seen in infants who increasingly are born prematurely and
characterized by alveolar simplification (13). To date, how this
pulmonary inflammatory process is regulated is still largely
unknown.
Nuclear factor �B (NF-�B) is a transcription factor that

governs the expression of a range of gene products that are
central to the inflammatory process (14). This transcription
factor consists of homodimers or heterodimers of the Rel
family proteins p50 and p65. In its inactive state, NF-�B exists
in the cell cytoplasm bound to the inhibitor �B (I�B) (15).
Upon stimulation of the cell by specific triggers such as tumor
necrosis factor-� (TNF-�), a cascade of events leads to disso-
ciation of this complex with translocation of the NF-�B dimer
(p50/p50 or p50/p65) into the nucleus, producing a state of
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NF-�B activation. This activation results in transcription of an
array of genes, including those for proinflammatory cytokines
and chemotactic factors that drive and amplify the inflamma-
tory response (16). NF-�B activation resulting in an amplified
immune response has been shown in laboratory studies to
occur in a variety of cell types, including blood lymphocytes,
neutrophils, monocytes, and macrophages that were exposed to
stimuli such as bacterial lipopolysaccharide and TNF-� (17).
Information on the NF-�B status of cells obtained from in-
flamed sites is much more limited, but activation of NF-�B
associated with indicators of enhanced inflammation has been
observed (18,19). As an increase in inflammatory markers is
associated with the development of CLD (8,12,20), it is pos-
sible that NF-�B activation in pulmonary leukocytes may
influence the extent of lung injury and disease outcome. How-
ever, the NF-�B status in lung neutrophils and macrophages
from infants with HMD has not yet been characterized.
As the NF-�B pathway is crucial in regulating an inflam-

matory response, we investigated whether NF-�B activation
occurs in infants with HMD. We focused on pulmonary in-
flammatory cells and related NF-�B activation to TNF-� and
IL-8 levels in tracheal aspirates from these infants. Perinatal
factors that may contribute to lung inflammation include cho-
rioamnionitis (21,22) and Ureaplasma urealyticum coloniza-
tion/infection of the airway (23–27). We determined whether
these conditions are also associated with evidence of NF-�B
activation in the infant lung.

METHODS

Patients. Successive premature infants (�37 wk gestation) who had a
diagnosis of HMD and were mechanically ventilated in the neonatal intensive
care unit at Christchurch Women’s Hospital from February to July 2001 and
from November 2001 to November 2002 were enrolled into this study. Infants
received a diagnosis of HMD on the basis of the clinical features of respiratory
distress by the attending neonatologist, and all were given exogenous surfac-
tant therapy (Survanta; Abbott NZ, Lower Hutt, New Zealand) within the first
24 h of life. The infants also possessed characteristic chest radiographic
evidence of HMD with reticulogranular opacities, as reported by the pediatric
radiologist. Infants with septicemia (e.g. early-onset group B Streptococcus
sepsis) or clinical and radiologic evidence of congenital pneumonia were
excluded. Before enrollment, parental informed written consent was obtained.
This study was approved by the Canterbury Ethics Committee.

Tracheal aspirate samples. Endotracheal suctioning was performed only
when clinically indicated. All samples were collected, and those that could be
processed within 12 h were used in the study. The procedure for suctioning of
the endotracheal tube and sample collection was according to the method
described previously (28). Briefly, the tip of the suction catheter is advanced
just past the tip of the endotracheal tube and then withdrawn slightly before a
set suction pressure is applied. Either “dry” suctioning or suction after instil-
lation of 0.5 mL of saline was used. Most of the secretions were trapped within
the hub at the proximal end of each suction catheter. The suction catheters with
the secretions were stored at 4°C before being processed.

Secretions were removed by repetitive gentle flushing of the suction
catheters using 1 mL of PBS. The cells in this suspension were separated by
centrifugation at 3000 rpm for 5 min, and the supernatant was frozen at
�80°C. The cell pellet was resuspended in 500 �L of PBS and filtered through
a 50-�m mesh to remove mucus. Cells were counted using a hemocytometer
and resuspended in PBS at a final concentration of 5–10 � 105/mL, and
100-�L samples were cytospun at 250 rpm over 5 min onto high binding glass
slides (SuperfrostPlus; Mendel-Glaser, Germany).

Immunofluorescent staining and assessment of NF-�B activation. Cyto-
spun cells were fixed with 4% (wt/vol) buffered paraformaldehyde (pH 7.4) for
20–30 min. After three rinses with PBS, the cells were further fixed and
permeabilized with chilled (�20°C) 100% methanol for 15 min. The slides
were blocked for 1 h in PBS with 1% (wt/vol) BSA at room temperature,
before immunocytochemical staining. The presence of NF-�B in the cytoplasm

or nucleus was assessed in the cells by immunolocalization, using an antibody
that targeted the p65 subunit of this protein as previously described (29,30).
Each cytospin spot was covered with 100 �L of rabbit anti-human p65
polyclonal antibody diluted to 2.5 �g/mL (Santa Cruz Biotechnology, Santa
Cruz, CA) and incubated at 4°C overnight. This was followed by incubation
with Cy3-conjugated goat anti-rabbit IgG (0.2 �g/mL) for 2 h at room
temperature in the dark and finally with Hoechst 33342 (10 �g/mL) for 5 min
at room temperature. In initial experiments, slides then were treated with
mouse anti-human CD14-FITC–conjugated antibody (DAKO, Glostrup, Den-
mark) before Hoechst staining to distinguish macrophages from other mono-
nuclear cells. Subsequently, it was possible to identify macrophages on the
basis of morphology, and this step was omitted. The slides were air-dried and
examined by fluorescence microscopy. Fluorescent images of the cells were
captured at selected bandwidths to a computer using an Aristoplan microscope
(Leitz, Germany) fitted with a Photometrics KAF1400 CCD camera and
QUIPS Smartcapture software (version 1.3; Vysis, Downers Grove, IL).

The activation state of NF-�B was determined by either nuclear or cyto-
plasmic localization of its p65 subunit by immunofluorescence. NF-�B was
activated when there was intense red fluorescence located in the cell nucleus,
as opposed to only cytoplasmic red fluorescence in a nonactivated state. The
positions of the cell nuclei were identified by Hoechst staining (blue fluores-
cence). Neutrophils were identified by their typical multilobed nuclear mor-
phology that was easily visible with the Hoechst dye. Two investigators
(F.-C.C. and M.C.M.V.) examined the slides independently. An average of 100
cells were assessed per slide under a �40 objective lens, and the proportions
of neutrophils and macrophages that showed nuclear staining of NF-�B were
determined. A sample was considered positive for NF-�B activation when at
least two cells, neutrophils or macrophages or both, showed intense nuclear
fluorescence.

Cytokine assay. Supernatants that were collected from the tracheal aspirate
samples were assayed for TNF-� and IL-8 by ELISA (antibodies from R&D
Systems, Minneapolis, MN). IL-6 in cord blood, measured as an inflammatory
marker for chorioamnionitis (31–33), was assayed using the same ELISA
technique. Each sample (50 �L) was analyzed in duplicate. The wells of each
microtiter plate were coated overnight with monoclonal mouse anti-human
cytokine antibody. Samples were added and incubated at room temperature for
2 h. Biotinylated goat anti-human cytokine then was added followed by
streptavidin-horseradish peroxidase cytokine and DAKO TMB one-step sub-
strate system (DAKO, Carpinteria, CA). Results were read against standard
curves constructed over the range of 0–1000 pg/mL for each cytokine assay.
The correlation coefficients were �0.99, and the intra- and interassay coeffi-
cients of variation for each assay were �10%. The lower detection limits for
the TNF-�, IL-8, and IL-6 assays were 7.5, 4.7, and 3.7 pg/mL, respectively.
Results for aspirate samples are expressed as pg/mg protein to account for
variable dilution from the process of removing and pooling of tracheal
secretions from suction catheters. Protein concentration was measured using
the Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA). Tracheal
aspirates with �0.1 mg/mL protein were excluded from analysis.

Assessment and definitions for chorioamnionitis. Intrauterine exposure to
chorioamnionitis was determined by placental histopathologic examination.
The criteria for diagnosis were based on �10 neutrophils seen per high-power
field (�40 objective lens) in the chorion and amnion or when there was
neutrophil infiltration into the umbilical vessels in the cord (funisitis). Clinical
chorioamnionitis was diagnosed on the basis of the presence of maternal
pyrexia (temperature �37.7°C), uterine tenderness, malodorous vaginal dis-
charge, maternal leukocytosis �15,000 cells/mm3, and fetal tachycardia �160
beats/min (34). Prolonged rupture of membranes was defined as ruptured
membranes of longer than 18 h duration before delivery of the infant. Other
clinical data collected include maternal genital tract colonization by Urea-
plasma urealyticum and the administration of antimicrobial therapy within 7 d
before delivery.

Detection of airway colonization by Ureaplasma urealyticum. Tracheal
aspirate samples from ventilated premature infants who were �32 wk gesta-
tion were tested for Ureaplasma urealyticum using the Mycoplasma Duo
detection kit (Bio-Rad, Marnes La Coquette, France), which is based on the
specific metabolic properties of Ureaplasma urealyticum to hydrolyze urea
with release of ammonia and/or by PCR analysis. For the PCR analysis, DNA
was extracted using the QIAamp DNA mini kit (Qiagen, Valencia, CA) for
Ureaplasma urealyticum (35). The specific primer sequences used were UuF
5'-CAATCTGCTCGTGAAGTATTAC-3' and UuR 5'-ACGACGTCCATA-
AGCAACT-3' (coding for a 429-bp urease gene product). An infant was
considered to have airway colonization by Ureaplasma urealyticum when a
tracheal aspirate sample was positive by either test. A comparative analysis of
72 tracheal aspirate samples from 60 infants using both the Mycoplasma Duo
and PCR assays showed agreement in the results for all but three samples
(96%).
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Statistical analyses. T test or paired t test was used to compare differences
between two groups of data that were normally distributed with equal vari-
ances. ANOVA was used to compare more than two groups of data. The
Mann-Whitney U rank sum test or Wilcoxon signed rank test was used to
compare nonparametric data and data that were not normally distributed. The
�2 test was used to examine differences between groups of ordinal data with the
Fisher exact test used if an expected frequency was less than five. Stratified
analysis was performed using the Mantel-Haenszel �2 procedure to control for
confounding factors. Results were expressed as mean � SEM or median with
the range from minimum to maximum values. The differences were statisti-
cally significant at p � 0.05. Analysis of data was performed using SigmaStat
version 1 (Jandel Corp., San Rafael, CA).

RESULTS

Clinical features of infants and sample characteristics.
Fifty-nine infants were enrolled into this study from 98 eligible
infants who met the inclusion criteria. Of the infants who were
excluded, 14 had no parental consent, 18 were ventilated for
�24 h with no available tracheal aspirate sample, and seven
had samples that contained too few cells for analysis. The
median gestational age of the 59 infants was 27 wk (range,
23–36 wk), and their median birth weight was 855 g (range,
500–3200 g). All but five infants were �1500 g. The median
duration for ventilation was 5 d (range, 1–45 d). The mothers
of 31 infants received complete courses of antenatal cortico-
steroid, and 16 infants received a partial course. Nine infants
received postnatal corticosteroid, and three infants were en-
rolled into the DART [Dexamethasone (postnatal) in tiny
babies, A Randomised Trial] study at the age of 1 mo because
of deteriorating respiratory status with increasing ventilator
and oxygen requirement.
A total of 172 tracheal aspirate samples from the 59 infants

had sufficient cells for microscopic analysis; 114 (70%) of
these were obtained within the first week of life. The median
number of samples per infant was two, and the median age at
sampling was day 4 of life. The median tracheal aspirate
storage time before the samples were processed was 3.7 h.
More than 95% of the cells in the samples remained viable as
shown by the trypan blue exclusion test.
NF-�B status of inflammatory cells in tracheal aspirate

samples. The cells seen in the tracheal aspirate samples were
almost entirely neutrophils (Fig. 1A) and macrophages (Fig.
1B). Epithelial cells, eosinophils, and lymphocytes were rarely
encountered. The median number of cells in a sample was 106
(range, 10–367), with the median number of neutrophils and
macrophages being 57 (range, 0–217) and 33 (range, 0–267),
respectively. Ten samples had only neutrophils, and eight
samples contained solely macrophages. In two thirds of the
samples that contained a mixture of cells, neutrophils predom-
inated over macrophages, irrespective of whether the samples
were obtained during the first week of life or the second week
onward (medians of 61 and 63% neutrophils, respectively; p �
0.49).
Immunostaining with an antibody to the p65 subunit showed

the presence of NF-�B in both neutrophils and macrophages.
In some cells, the immunofluorescence was confined to the
cytoplasm (as in Fig. 1C and D for neutrophils and G and H for
macrophages), indicating that NF-�B was not activated. In
others, red fluorescence was present in the nucleus, co-
localizing with the Hoescht stain to give a pink hue (as in Fig.

Figure 1. The NF-�B status of pulmonary leukocytes as demonstrated by
immunofluorescent localization. The nucleus is identified as fluorescing blue
with Hoechst 33342 stain (A and right panels). NF-�B activation status was
established by staining the cells with an antibody against the p65 subunit
followed by counterstaining with Cy3-conjugated IgG, which fluoresces red. If
NF-�B is not activated, then the red fluorescence is localized in the cytoplasm.
When activated, translocation of the p65 subunit gives intense red fluorescence
in the nucleus. Hence, co-localization of the red and blue fluorescence in the
nucleus (appears pink) indicates NF-�B activation. (A) A neutrophil identified by
its multilobed nuclear morphology. (B) A macrophage identified by the green
fluorescence in its cytoplasm when stained with anti–CD14-FITC–conjugated
antibody. (C andD) A single neutrophil without activation. (E and F) A neutrophil
showing NF-�B activation as evidenced by the intense red fluorescence in its
nucleus. (G and H) A group of macrophages without NF-�B activation showing
more intense red fluorescence in their cytoplasm. (I and J) NF-�B activation in two
macrophages as shown by the intensely red fluorescence in their nuclei, with pink
staining in J confirming nuclear location. Bars � 5 �m.
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1E and F for neutrophils and I and J for macrophages). This is
evidence of translocation of NF-�� from the cytoplasm into
the nucleus associated with activation of the transcription
factor (15).
Of the 172 aspirate samples that were examined, 66 (40%)

contained cells that were positive for NF-�B activation. In 35
of these aspirates, NF-�B activation was detected in both
neutrophils and macrophages. In 19 samples, NF-�B activation
was seen only in neutrophils, whereas 12 samples showed
activation only in macrophages. In samples in which NF-�B
was activated, an average of 22 � 2.4% (SEM) of the neutro-
phils and 21 � 3.4% of the macrophages showed activity. The
range of neutrophils that showed activated NF-�B was 2–100%
(median, 16%), whereas the range of macrophages that showed
NF-�B activation was 1–100% (median, 7%). Three tracheal
aspirates had 100% of neutrophils or macrophages that were
positive for NF-�B activation.

NF-�B status and the time of sample collection. NF-�B
activation was seen soon after birth and after several weeks of
ventilation. Forty percent of the 114 samples collected in the
first week showed activity compared with 33% of the 58
samples collected at later times. The times between sampling
and processing for tracheal aspirates that were positive and
negative for NF-�B activation (median, 4.5 and 4.6 h, respec-
tively) were not different, indicating that activation is unlikely
to be an artifact of processing. The median day of sampling for
positive or negative samples was the same (day 4). There was
no difference in the proportion of leukocytes between the
positive and negative samples (median, 61 and 62% neutro-
phils, respectively). NF-�B activation was seen in both neu-
trophils and macrophages in early as well as later samples.
There was also no significant difference in the proportions of
NF-�B–activated leukocytes in aspirates that were obtained
during the first week (median: neutrophils, 12%; macrophages,
7%) and later periods of mechanical ventilation (median: neu-
trophils, 19%; macrophages, 7%; p � 0.70).
Characteristics of infants with or without evidence of

NF-�B activation. Of the 59 infants investigated, 36 had at
least one tracheal aspirate sample that was positive for NF-�B
activation. These have been designated as “positive” infants,
with a total of 66 aspirates obtained from these infants that
were categorized as positive samples for NF-�B activation
(Table 1). All but four of these infants showed activation
during the first week of life. The “positive” infants also had
aspirates that did not show NF-�B activation and were cate-
gorized as negative samples (Table 1). Twenty-three infants
were designated as “negative” as all of their tracheal aspirates
(n � 51) were negative samples, showing no evidence of
NF-�B activation (Table 1). Although the “negative” infants
produced fewer samples per infant, 80% of their samples (1.7
per infant) were obtained during the first week of life. The
“positive” infants produced 2.1 samples per infant during the
same period, 64% of which were positive. It is unlikely,
therefore, that the “negative” group is a result of a sampling
bias.
There was no difference in the gestational age, birth weight, or

maternal antenatal steroid status between the groups of infants
who were positive or negative for NF-�B activation (Table 2).

Infants who were positive for NF-�B activation required sig-
nificantly longer mechanical ventilation than infants with no
activation. All nine infants who were ventilator dependent at
~4 wk of age and given corticosteroid therapy or enrolled into
the DART study had evidence of NF-�B activation, with seven
of these infants demonstrating the activity within the first week
of life. There were no significant differences in the numbers of
infants who developed CLD or who died from complications
relating to extreme prematurity between the NF-�B–positive
and –negative groups (Table 2).
NF-�B activation and fractional inspired oxygen levels.

Because NF-�B can be activated by hyperoxia in cultured
cells, we analyzed our data with respect to the infant fractional
inspired oxygen (FIO2) levels at the time of sampling. A total of
105 of the 172 tracheal aspirates had FIO2 data. In this group,
the median FIO2 of the NF-�B–positive samples was 39%
(range, 21–99), compared with 31% (range, 21–99) for the
NF-�B–negative samples. This difference was significant (p �
0.02) and was largely due to the FIO2 levels’ being higher from
the second week onward. When the first-week samples were
considered, 27 NF-�B–positive samples had a median FIO2 of
34% compared with 28% in 54 NF-�B–negative samples. This
difference was not significant (p � 0.133). From the second
week onward, FIO2 levels were increased overall (median, 51%;
range, 21–99) and were generally higher in the NF-�B–
positive samples (15 NF-�B–negative samples had median
FIO2 of 41%, compared with nine NF-�B–positive samples
with median FIO2 of 68%; p � 0.001).
NF-�B activation and cytokines in tracheal aspirate sam-

ples. Concentrations of TNF-� and IL-8 were measured in each
sample and related to NF-�B activation status. Samples were
grouped as in Table 1, without consideration of collection time.
Both the positive and the negative samples from the “positive”
infants had significantly higher median TNF-� levels (25 and
33 pg/mg protein, respectively) than “negative” infants, more
than half of whom had undetectable levels (Fig. 2). There was
no difference in TNF-� levels between the positive or negative
samples from the “positive” infants. Tracheal aspirate IL-8
concentrations were not different among the three groups of
samples (mean: 4.2, 4.5, and 4.1 ng/mg protein; entire range:
4–322 ng/mg protein; sample numbers as in Fig. 2).
Relationship between NF-�B status and exposure to cho-

rioamnionitis. A subgroup of 45 infants with gestation �32

Table 1. Distribution of samples on the basis of their NF-�B status
obtained from “positive” and “negative” infants

36 “positive” infants
23 “negative”

infants

Positive
samples*

Negative
samples

Negative
samples

No. of samples 66 55 51
Obtained in first week 47 27 40
Obtained in second week
and later

19 28 11

* Tracheal aspirates with neutrophils and/or macrophages showing activated
NF-�B. An infant was designated as “positive” when at least one tracheal
aspirate showed this activity. “Positive” infants also had a number of samples
that did not show activated NF-�B (negative samples). “Negative” infants had
only tracheal aspirate samples that did not show evidence of activated NF-�B.
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wk had placentas sent for histopathologic examination. A total
of 18 infants had evidence of histologic chorioamnionitis. The
mothers of six of these also had suspected clinical chorioam-
nionitis, and five were treated with a course of antibiotics
during the week before delivery. These infants showed asso-
ciations with expected risk factors, including lower gestational
age, maternal prolonged rupture of membranes, higher white
blood cell count, proportions of immature blood neutrophils,
and C-reactive protein levels on day 1. For the 26 infants from
whom cord blood was available, the infants with exposure to
chorioamnionitis had significantly higher IL-6 (median, 237
versus 6 pg/mL; p � 0.001). None of the infants had proven
evidence of early-onset sepsis. Five infants with chorioamnio-
nitis exposure died, as opposed to none from the group without
chorioamnionitis. The proportion of infants who developed
CLD was similar between the two groups.

NF-�B status was considered for samples that were collected
in the first week, as earlier samples are more likely to be
influenced by events that occur before birth. Relationships with
chorioamnionitis were considered on the basis of whether the
infant was classified as “positive” or “negative” for NF-�B
activation, as well as with all the samples being regarded
independently. A significantly greater number of infants who
were exposed to chorioamnionitis and their tracheal aspirates
had evidence of NF-�B activation in lung inflammatory cells
(Fig. 3A). The activation was seen as early as day 1, with the
median detection being day 3. TNF-� and IL-8 concentrations,
measured in tracheal aspirates that were collected within the
first 48 h of life, were significantly higher in the infants who
were exposed to chorioamnionitis (Table 3).
Ureaplasma urealyticum colonization of airways. A total

of 55 infants (�32 wk gestation) were screened for Urea-
plasma urealyticum in tracheal aspirate samples collected at a
median age of day 2. The 11 (20%) infants who were desig-
nated as positive had significantly lower gestation (median, 24
versus 27 wk; p � 0.002) and birth weight (median, 680 versus
867 g; p � 0.045). A higher proportion of infants who had
Ureaplasma urealyticum colonization were associated with
evidence of histologic chorioamnionitis than those who did not
have colonization (70 versus 30%). This almost reached sta-
tistical significance (p � 0.064). There was no difference in the
proportion of infants who developed CLD or who died between
the two groups.
A significantly higher proportion of infants with Urea-

plasma urealyticum had lung inflammatory cells expressing
NF-�B activation during the first week of life (Fig. 3B). There
was also a trend in more aspirate samples showing NF-�B
activation from colonized infants than noncolonized infants.
As Ureaplasma urealyticum is associated with chorioamnioni-
tis, stratified analysis to control for confounding factors was
performed to identify whether both are independent risk factors
for NF-�B activation. This showed that an association with
chorioamnionitis could account for the relationship with
NF-�B activation, and there was no independent association
with Ureaplasma urealyticum colonization alone (Mantel-

Figure 2. TNF-� levels in tracheal aspirate samples from infants with or
without NF-�B activation. Positive samples contained neutrophils and/or
macrophages with activated NF-�B. Sample designation is as in Table 1. The
vertical box plots depict the median and 25th and 75th percentiles with the
error bars at the 5th and 95th percentiles.

Table 2. Clinical features of infants grouped as positive or negative for NF-�B activation

Positive Negative

No. of infants 36 23
No. of infants with activation in first week 32 0
Age when activation was detected [median (range)] 4 (0–39) NA
Gestational age [wk; median (range)] 26 (23–36) 27 (23–31)
Birth weight [g; median (range)] 803 (500–3200) 1030 (530–1730)
Antenatal corticosteroid
Complete course (%) 19 (50) 12 (50)
Partial course (%) 10 (30) 6 (30)
None (%) 7 (20) 5 (20)

Duration of ventilation [d*, median (range)] 8.5 (2–45) 4.0 (1–15)
Remained on ventilation at 4 wk† [n (%)] 9 (25) 0 (0)
CLD‡/surviving infants§ 15/31 9/20
Infants who died before 36 wk corrected age 5 3

NA, not applicable.
* p � 0.001.
† Treated with dexamethasone or entered into DART study with the intention to treat with dexamethasone; p � 0.009.
‡ Oxygen requirement at 36 wk postconceptional age.
§ Of those with birth weight �1500 g: positive group (n � 3), negative group (n � 2); none of these developed CLD.
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Haenszel weighted odds ratio, 3.79; 95% confidence interval,
0.5–33.9; p � 0.272). No significant differences in tracheal
aspirate TNF-� or IL-8 concentrations were seen between
infants with or without Ureaplasma urealyticum colonization
(Table 3).

DISCUSSION

We have shown that NF-�B activation is detectable in the
tracheal aspirate neutrophils and macrophages from premature
infants with HMD. Although NF-�B activation has been im-
plicated in the process of lung injury (36), we believe that this
is the first demonstration of leukocyte activation from the lungs
of infants. Many of the infants with HMD and NF-�B activa-
tion also had exposure to chorioamnionitis and airway coloni-
zation by Ureaplasma urealyticum, in association with ele-
vated tracheal aspirate cytokines. NF-�B activation was not a
predictive marker for the development of CLD but may be an
indicator of enhanced or protracted lung inflammation, as
reflected by the increased duration of ventilation and likelihood
of receiving postnatal steroids.
The presence of NF-�B activation was assessed using im-

munofluorescence to detect nuclear translocation of the p65
subunit. This was found to be a convenient method that was
particularly advantageous for tracheal aspirate samples. The
small number of cells collected was seldom a limitation, and it
also had the advantage of allowing us to identify the cell type
in which activation occurred. In contrast, this information
would not be available if a technique such as the electro-
phoretic mobility shift assay were used, as the distribution of
the cells varies between samples. Like the electrophoretic
mobility shift assay, nuclear translocation could not determine
whether NF-�B–dependent genes are up-regulated, but this is
not readily detectable in cells from clinical samples when
analyzed ex vivo. A possibility was raised recently that I�B is
present in the nucleus of neutrophils and may prevent NF-�B
binding to DNA (37,38). However, the evidence for this is
indirect and requires further substantiation before discounting
the prevailing view that NF-�B is transcriptionally active
(15,17).
The tracheal aspirate samples contained almost exclusively

inflammatory cells, with epithelial cells seen only rarely. The
majority of samples contained predominantly neutrophils. This

is in agreement with other studies (1,39) that have shown that
the cellular composition in tracheobronchial aspirates from
infants with HMD was initially mostly neutrophils, followed
by macrophages during the resolution phase. A continuous or
prolonged presence of neutrophils has been associated with a
poor outcome and higher risk for developing CLD (1,40).
A majority of infants showed NF-�B activation in at least

one sample (“positive” infants), and this was most commonly
seen in tracheal aspirates that were obtained during the first
week, when the infants were most likely to be on ventilators
and when more aspirate samples were available. However, a
higher proportion of the samples that were collected in the first
week were positive. The percentage of cells that showed
activation was similar for positive samples that were obtained
early and later in life. Even though the “positive” infants did
not show activity in all of their samples and at any one time
only a fraction of the cells were activated, there was a smaller
population of infants in whom no activation was detectable
(“negative” infants) over a similar period. These two popula-
tions seemed to be distinct and not a result of sampling artifact.
We saw a significant positive association between NF-�B

activation and the concentration of TNF-� in tracheal aspirates.
The median TNF-� concentration was significantly elevated
for all samples from infants who were categorized as having
NF-�B activation, but there was no difference between samples
that were positive and negative for activated NF-�B for this
group of infants. As such, this did not reflect the dynamic
nature of the activation but suggests a persistent proinflamma-
tory lung environment. TNF-� is a well-known activator of
NF-�B (16,17), and this could explain the observed association
between the two parameters. However, other stimuli that could
be relevant in HMD, including hyperoxia and other cytokines,
are also able to activate NF-�B (41,42). Therefore, variations
in inspired oxygen may influence activation patterns. We found
an overall increase in FIO2 over time, which may reflect the
increased likelihood of developing CLD with increased venti-
lation time. Although a lower proportion of samples that were
collected after the first week showed NF-�B activation, those
that did had higher FIO2 values. In the first-week samples, there
was no difference in the FIO2 levels between NF-�B–positive or
–negative samples, suggesting that activation was not mediated

Figure 3. NF-�B status in relation to chorioamnionitis exposure and airway
colonization by Ureaplasma urealyticum. (A) Infants and their tracheal aspirate
samples grouped according to exposure to chorioamnionitis. (B) Infants and
their tracheal aspirate samples grouped according to airway colonization with
Ureaplasma urealyticum. �, proportion with NF-�B activation; □, proportion
without NF-�B activation.

Table 3. TNF-� and IL-8 concentrations in tracheal aspirate
samples from infants grouped according to chorioamnionitis
exposure and Ureaplasma urealyticum airway colonization

Positive Negative p value

Chorioamnionitis
No. of infants* 14 19 –
TNF-� (pg/mg protein) 72 (0–276) 0 (0–110) 0.002
IL-8 (�102 pg/mg protein) 69 (8.4–274) 23 (0.4–111) 0.002

Ureaplasma urealyticum
No. of infants 11 44 –
Available samples for analysis† 17 62 –
TNF-� (pg/mg protein) 30 (0–280) 5 (0–506) 0.226
IL-8 (�102 pg/mg protein) 44 (7–322) 40 (1–218) 0.825

Values shown are median (range) unless otherwise specified.
* One sample for each infant that was available within the first 48 h of life.
† Up to two samples for each infant that were obtained within the first week

of life.

621ACTIVATED NF-�B IN LUNG LEUKOCYTES



by inspired oxygen. The multiple mechanisms of activating
NF-�B, as well as its ability to respond rapidly and transiently
to different stimuli, could also explain why NF-�B activation
was not present in every sample from “positive” infants.
Many of the cytokine genes (e.g. for TNF-�, IL-6, and IL-8)

are regulated by NF-�B (43). Thus, NF-�B can amplify re-
sponses to TNF-� by promoting its synthesis, and both pro-
cesses could contribute to the association that we observed
between the two. In contrast, we saw no association with IL-8
even though its synthesis is regulated by NF-�B. This may be
because IL-8 can originate from a variety of cell types and not
just the inflammatory cells present in tracheal aspirate samples
(44). In the lung, alveolar macrophages are better known as a
source of cytokines, but neutrophils have been recognized as
another source (45,46). Increased cytokine expression has been
shown to be associated with increased lung injury (2,3,11), and
Munshi et al. (47) reported that elevation of IL-8 and IL-6
preceded neutrophil influx in infants who developed CLD.
Taken together, our results provide compelling evidence that
there is a proinflammatory milieu in HMD with increased
cytokine production that may be propagated by the activation
of NF-�B.
Our results showed that NF-�B activation was associated

with a higher likelihood of an infant’s receiving postnatal
corticosteroids or being enrolled into the DART study with the
intention to treat with dexamethasone. The need for steroids
may be indirect evidence of ongoing robust pulmonary inflam-
mation, which contributed to the infant’s continuing to need
respiratory support. The samples all were taken before treat-
ment, so we were unable to assess whether the inhibitory action
of steroids on NF-�B activation seen with isolated cells (48,49)
also occurs in the infant lungs. With the proviso that only 20%
of the mothers did not receive steroids, no difference in ante-
natal corticosteroid doses was observed between infants with
and without NF-�B activation.
Current evidence suggests that fetal exposure to chorioam-

nionitis could induce the onset of airway inflammation even
before birth (50–53). Up to 40% of the infants in our study had
histologic evidence of chorioamnionitis. Many of these infants
were born to mothers who also had Ureaplasma urealyticum
colonization in the genital tract. Significantly higher levels of
TNF-� and IL-8 were found in the tracheal aspirates of this
group, suggesting increased severity of inflammation in this
group. This extends the work of Watterberg et al. (21), who
showed elevation of IL-1� in first-day aspirates from infants
who were exposed to intrauterine inflammation, and is also
consistent with recently published evidence for IL-8 being an
accurate indicator of histologic chorioamnionitis (54). A nota-
ble finding in our study is that significantly more infants with
chorioamnionitis had lung neutrophils and macrophages ex-
pressing NF-�B activation in the first week of life. The acti-
vation of this transcription factor in pulmonary leukocytes and
the elevated TNF-� and IL-8 shortly after birth in these infants
could potentially exacerbate lung injury and may provide a
mechanism for the link between chorioamnionitis and the
development of CLD.
In our study, 20% of infants had evidence of airway colo-

nization with Ureaplasma urealyticum. Similar incidences

have been reported previously (23). These infants were signif-
icantly lower in birth weight and gestation than those who were
not colonized. The ability of Ureaplasma urealyticum to stim-
ulate the production of various proinflammatory mediators has
been reported, with elevated neutrophil numbers (55) and
concentrations of TNF-� (56) and IL-8 (57) seen in tracheal
aspirates from colonized infants. In our study, there were no
significant differences in TNF-� and IL-8 in relation to airway
colonization status, although the median TNF-� was six times
higher in infants who were positive for Ureaplasma urealyti-
cum. A small sample size and various factors such as gestation,
birth weight, chorioamnionitis, and the severity of lung disease
may have influenced these outcomes. Alternatively, as sug-
gested by Groneck et al. (55), the secretion of only certain
cytokines (e.g. IL-1, not IL-8) is amplified by the presence of
this organism in the respiratory tract. The mechanism by which
Ureaplasma urealyticum stimulates the release of proinflam-
matory mediators in the respiratory tract is still not fully
elucidated, although an in vitro study showed involvement of
NF-�B (26). Our results revealed that a higher proportion of
infants who had Ureaplasma urealyticum colonization had
early evidence of NF-�B activation in their lung neutrophils
and macrophages. Although this relationship may be attributed
to exposure to chorioamnionitis rather than colonization by
Ureaplasma urealyticum per se, it suggests that NF-�B acti-
vation resulting from associated chorioamnionitis may be a
mechanism by which Ureaplasma urealyticum incites pulmo-
nary inflammation.

CONCLUSION

In conclusion, our results suggest that NF-�B activation is
common in lung neutrophils and macrophages from infants
with HMD and seems to be an indicator of enhanced and
protracted lung inflammation. The duration of ventilation and
need to administer postnatal steroids were significantly greater
in infants with previous evidence of NF-�B activation, and the
activation was also associated with several risk factors for the
development of CLD, such as chorioamnionitis and Urea-
plasma urealyticum. Activation of this transcription factor in
lung neutrophils and macrophages could provide a link be-
tween such inflammatory conditions and the pulmonary injury
sequence in HMD.
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