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Newborn piglets were submitted to normobaric hypoxia (5%
O2, 95% N2) for either 1 or 4 h. The effects of hypoxia on the
neonatal brain were characterized through a time-course analysis
of levels of various proteins such as heat shock proteins (HSP27,
70, and 90), hypoxia inducible factor-1� (HIF-1�), neuronal
nitric oxide synthase (nNOS), hemeoxygenase-2 (HO-2), and
caspase-3. The expression of these proteins was determined at
different stages of recovery up to 72 h in cerebellum, cortex, and
hippocampus by Western blot analysis in hypoxic maintained
animals that were made hypoxic at either 20 or 37°C. In all
regions of the brain, HIF-1� and HSP27 expression were
strongly increased until 22 h of recovery. No significant changes
were observed for HSP70, HSP90, and HO-2. A small elevation
of expression of nNOS was observed at early stages in the
cerebellum and the cortex with no change in the hippocampus.

Expression of caspase 3 was strongly increased in the cortex 24
and 48 h after hypoxia but unchanged in the hippocampus. These
results are presented in terms of the porcine model of nonisch-
emic hypoxia and its delayed neuronal effects on the cerebral
outcome. Because of their recently established biochemical and
functional interactions, the expression of the main HSPs, HIF-
1�, nNOS, and caspase-3 after hypoxia are delineated. (Pediatr
Res 56: 775–782, 2004)

Abbreviations
HIF-1�, hypoxia inducible factor-1�
HO, hemooxygenase
HSP, heat shock protein
nNOS, neuronal nitric oxide synthase

Perinatal asphyxia and hypoxia are common causes of neo-
natal morbidity. Among survivors, several disabilities are ob-
served, including pulmonary, renal, cardiac, and encephalo-
pathic dysfunction (1,2). Asphyxia at birth can result in severe
auditory problems for the infant (3,4) as well as increased risks
of amnesia (5) and schizophrenia presenting at different stages
(6). Outcomes of asphyxia and/or hypoxia-ischemia can also
result in cognitive impairment and developmental delay for the
infants (7). Such severe sequelae of birth hypoxia are apparent
early at the molecular level in the brain. Impairment as a result
of hypoxia includes the transient reduction of GABA receptor
numbers (8), altered expression of glutamate transporters (9),
and/or a disruption of myelin gene expression (10). Because of
the severe consequences of hypoxia at birth time on cerebral
functions, a better characterization of molecular changes
within the hypoxic neonatal brain is of crucial importance.

The study of the expression and induction of stress pro-
teins in the hypoxic brain is of particular interest because
heat shock proteins (HSPs) have cytoprotective properties
and are induced after a variety of stressors, such as elevated
temperature (11–13) or hypoxia (14). HSPs are classified in
three large families according to their molecular weights
(11–13). However, very few studies have described the
developmental changes of HSPs at the time of birth (15–17).
The protective role of HSPs against hypoxia at birth has not
been investigated, although in the brain, these proteins are
known to be cytoprotective after hypoxia-ischemia (18,19).
Other proteins induced by neonatal hypoxic stress are also
of interest. Hypoxia inducible factor-1� (HIF-1�) expres-
sion constitutes an early immediate response to oxygen
deprivation (20 –22) and triggers the induction of a number
of downstream molecules (23,24). Hypoxia induces a vari-
ety of proteins, including stress proteins. It has recently
been established that HSP90 itself is closely associated with
HIF-1� (25) and other heme proteins, such as nitric oxide
synthase (NOS) (26). NOS is reciprocally related to he-
mooxygenase-2 (HO-2), which by producing CO leads to
opposing physiologic effects (27). Thus, a study of the effect
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of hypoxia on these factors in various subregions of the
brain is important.

Our group has developed a neonatal piglet model that dis-
plays several similarities to the human infant, including alter-
ations in response to hypoxia, such as changes in glutamate
(28) or glucose transporters (29), and stress-related neurologic
outcome (2). The aim of the present study was to determine the
effect of birth hypoxia on stress proteins in the cerebellum, the
cortex, and the hippocampus of piglets. Because HSP32 (HO-
2), HSP70, and HSP90 all interact with NOS and HSP90
interacts with HIF-1�, we specifically target these proteins.

METHODS

Animals

All experimental procedures were carried out in accordance
with the French Ministry of Agriculture for the use and care of
laboratory animals. Large white piglets were born at term and
immediately placed in the hypoxia chamber. A total of 72
piglets were used. They were divided into three groups. Twen-
ty-eight animals were chosen at random as controls, separated
from their mothers, and housed at an ambient temperature of
20°C under normoxic conditions. Twenty-six animals were
chosen at random and subjected to hypoxia at 20°C under a
continuous flow of 5% O2 and 95% of N2. Eighteen animals
were chosen at random and subjected to hypoxia with their
body temperature maintained at 37 � 1°C throughout hypoxia
by infrared heating lamps.

Oxygen saturation of venous Hb was measured by a he-
moximeter (Type OSM-2; Radiometer Corp., Lyon, France) in
blood obtained from the ear. The volume of the chamber was
214 L. The complete renewal of the hypoxia chamber atmo-
sphere occurred five times per hour. The animals were kept for
4 h, 1 h, or as otherwise indicated. They were subsequently
allowed to recover in ambient atmosphere and temperature for
indicated periods. For experiments longer than 8 h, the animals
were given a maximum of 40 mL of milk, containing 40% milk
fat, every 2 h. Animals were obtained from INRA (St Gilles,
France). Two animals (of six) died between 48 and 72 h of age
in the control group. There was no mortality in the other
groups. After 5 min of inhalation of chloroform, piglets were
killed at the indicated times. The cerebellum, the cortex, and
the hippocampus were dissected according to the stereotaxic
atlas of Felix et al. (30), immediately frozen in liquid nitrogen,
and stored at �80°C for no longer than 2 wk.

Experimental Methods

Preparation of protein homogenates. For protein extrac-
tion, tissues were minced and placed in extraction buffer [TEX
buffer 1�; 60 mM Tris-base (pH 6.8), 10% glycerol, and 3%
SDS], and 5% �-mercaptoethanol and the protease inhibitor
Antagosan (Hoechst, France) were added just before use.
Tissues were immediately homogenized in Ultra Turrax at
maximum speed for 1 min on ice and centrifuged at 26,500 �
g for 15 min. Supernatants were collected in a series of
Eppendorf tubes and stored at �20°C for no longer than 1 wk
before use. Protein concentrations were measured according to

Lowry et al. (31) using an ELISA plate reader (Argus 300;
Packard, St. Cyr, France).

Equal amounts of protein were loaded on 13% SDS-
polyacrylamide gel with a 4% stacking polyacrylamide gel.
Electrophoresis was performed in a buffer that contained 25
mM Tris (pH 7.6), 0.1% SDS, and 0.2 M glycine. Proteins
were subsequently transferred to Hybond C membranes (Am-
ersham, Orsay, France) over 75 min using a buffer that con-
tained 25 mM Tris (pH 7.6), 0.1% SDS, 0.2 M glycine, and
20% methanol. Blots were washed four times with TBST [20
mM Tris-base (pH 7.6), 12.5 mM NaCl, and 0.5% Tween-20]
and dipped in rouge Ponceau stain for 1 min to reveal the
markers. The blots were washed four times in TBST buffer for
5 min each. Molecular weight markers were purchased from
Sigma Chemical Co. (L’Isle d’Abeau, France).

Membranes were blocked for 1 h at room temperature in
TBST buffer that contained 5% milk powder and then incu-
bated overnight at room temperature with the primary anti-
body. Specificity of anti-HSP27 (15), anti-HSP70 (16), and
anti-HSP90 (17) has been previously established.

The blots were subsequently washed 5 � 5 min each in
TBST buffer and 5% skim milk powder that contained the
secondary antibody at a 1:1000 dilution (anti-rabbit IgG per-
oxidase coupled from Sigma Chemical Co.). Protein bands
were visualized by using diaminobenzidine (Sigma Chemical
Co.) in 30 mL of buffer that contained 60 mM Tris (pH 6.8),
0.2% hydrogen peroxide, and 200 �L of 0.8% Ni CI2. Mem-
branes were then washed in distilled water and dried at 37°C in
an oven. Representative Western blots are shown in the figures.

For caspase-3, immunodetection was performed as de-
scribed above with the following modifications: after blocking,
membranes were incubated for 36 h at 4°C in TBST that
contained 5% skim milk and the caspase-3 primary antibody.
After three washes, membranes were incubated for 1 h at room
temperature in TBST that contained peroxidase-conjugated
secondary antibody. After rinsing, membranes were incubated
for 1 min in ECL � reagent (Amersham), and the specific
binding was detected by exposing of the membrane to autora-
diographic film (Amersham).

Standardization and Statistical Analysis

To check for equal protein loading of each lane, we exam-
ined the same membranes for �-actin protein (Sigma Chemical
Co., ref. 9044). The secondary antibody was peroxidase cou-
pled (Sigma Chemical Co.). Secondary antibodies were used at
dilution of 1:1000 and were anti-rabbit with the exception of
anti-mouse for HSP90 and �-actin. To compare densities, we
scanned in membranes using a phosphor imager (Quantum
Appligene, Illkirch, France). The density of each band of
interest was expressed as a percentage of the �-actin band
density detected in the same gel band. Statistical analysis was
performed as follows: after global ANOVA, mean values were
compared as indicated in the legends by a nonparametric
analysis for variance (Kruskal-Wallis test). When significant,
two-by-two comparisons were made according to Conover (32)
for the highly significance multiple comparison test, with p �
0.01 indicating significance.
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RESULTS

Venous Oxygen Saturation

Oxygen saturation did not vary in neonatal pigs and remained
at ~70%. Oxygen saturation in the venous blood was unchanged
after 1 h of hypoxia. However, hypoxia for 4 h reduced oxygen
saturation to very low levels in animals that were maintained at
both 20 and 37°C. Return of oxygen saturation to baseline or
control value was still incomplete after 4 h of recovery. Twenty
hours after hypoxia, no difference in oxygen saturation was de-
tected between control and hypoxic animals.

Body Temperatures

Decrease in body temperature was observed in animals that
were maintained at room temperature after 4 h of hypoxia.

Animals that Were Maintained at Room Temperature
during Hypoxia

Relative expression of HIF-1� in cerebellum, cortex, and
hippocampus after hypoxia. As depicted in Fig. 1, detectable
HIF-1� expression was observed at birth. However, more than
an 8-fold increase was observed in the cerebellum and the
cortex after 1 or 4 h of hypoxia followed by 4 h of recovery.
High levels of expression were observed in both control and
hypoxic animals until 72 h. In the hippocampus, an increased
level of HIF-1� expression was observed after the increase in
cerebellum or cortex, i.e. 4, 20, and 44 h after hypoxia.
Relative expression of HSP27 in cerebellum, cortex, and

hippocampus after hypoxia. As shown in Fig. 2, low levels of
HSP27 expression were observed in normoxic animals. In the
cerebellum, an increase in expression was observed after 1 and
4 h of hypoxia, and these increases persisted after 4 h of
recovery. In the cortex, the same change occurred and persisted
after 20 h of recovery. In the hippocampus, an increase in
HSP27 expression was observed after 1 and 4 h of hypoxia and
after 4 of hypoxia followed by 4 h of recovery.
Relative expression of HSP70 and HSP90 in cerebellum,

cortex, and hippocampus after hypoxia. As depicted in Fig. 3,
no significant change in HSP70 and HSP90 levels was ob-
served in the three brain regions after hypoxia, except for a
significant decrease in HSP90 levels in the cortex of animals
that were subjected to hypoxia for 4 h with 4 h of recovery .
Relative expression of neuronal NOS and HO-2 in cere-

bellum, cortex, and hippocampus after hypoxia. Shown in
Fig. 4 is the neuronal NOS (nNOS) and HO-2 expression in the
cerebellum, the cortex, and the hippocampus of the piglet
brain. In the cerebellum, no significant increase in nNOS
expression was observed. In the cortex, a significant difference
of expression was observed only after 1 h of hypoxia. With the
exception of 4 h of hypoxia, no difference was observed in the
hippocampus between controls and animals that were subjected
to hypoxia. No difference in the expression of HO-2 was
detected between controls and animals that were subjected to
hypoxia.

Animals that Were Maintained at 37°C during Hypoxia

Relative expression of HIF-1�, HSP27, HSP70, and nNOS
in the cerebellum of animals that were maintained at 37°C.
As depicted in Fig. 5, HIF-1� displayed maximum expression
after 1 and 4 h of hypoxia. A similar observation was made for

Figure 1. Relative expression of HIF-1� in the cerebellum, cortex, and
hippocampus after hypoxia of the piglet kept at room temperature. Lane t0
indicates newborn control; lanes t1, h1, t4, h4, t8, h4 � 4, t24, h4 � 20, t48,
h4 � 44, and t72, h4 � 68 indicate, respectively, control 1 h, hypoxia 1 h,
control 4 h, hypoxia 4 h, control 8 h, hypoxia 4 h followed by 4 h of recovery,
control 24 h, hypoxia 4 h � 20 h recovery, control 48 h, hypoxia 4 h � 44 h
recovery, control 72 h and hypoxia 4 h � 68 h recovery. Light columns are for
controls and dark columns for animals that were subjected to hypoxia. A total
of 100 �g of protein was loaded in each lane. The last representative
membrane shows the level of �-actin in the cerebellum. Values are the mean
� SEM of separate determinations; n � 4. *Significantly different from the
corresponding normoxic control (p � 0.001).
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HSP27. These results parallel the observations presented in
Figs. 1 and 2.

Identical results were observed for HSP70 and nNOS ex-
pression in the cortex of hypoxic animals that maintained at
both temperatures. This is also true for HSP90 and HO-2 (data
not shown).
Induction of Caspase 3 after Hypoxia. As shown in Fig. 6,

increased levels of caspase 3 expression were observed in the
cerebellum after 4 h of hypoxia followed by 4, 20, or 44 h of
recovery. An important increase was also observed in the

cortex after 4 h of hypoxia and 20 h of recovery. No significant
differences were observed in the hippocampus (data not
shown).

DISCUSSION

Hypoxia associated with reoxygenation or ischemia can
cause extensive neurologic deficits in immature animals (2,33–
35). Physiologic consequences of hypoxia have been well
documented in mammals. Basically, after hypoxia, four differ-

Figure 2. Relative expression of HSP27 in the cerebellum, cortex, and
hippocampus after hypoxia of the piglet kept at room temperature. Lanes are
as described in the legend of Fig. 1. A total of 100 �g of protein was used for
each lane. The level of �-actin in the cortex is shown in a representative
membrane. Values are the mean � SEM of separate determinations; n � 4.
*Significantly different from the corresponding normoxic control (p � 0.001).

Figure 3. Relative expression of HSP70 and HSP90 in the cerebellum, cortex,
and hippocampus after hypoxia of the piglet kept at room temperature. Lanes
are as described in the legend of Fig. 1. A total of 100 �g of protein was used
for each lane. The level of �-actin in the cortex is shown in a representative
membrane. Values are the mean � SEM of separate determinations; n � 4.
*Significantly different from the corresponding control (p � 0.01).
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ent parameters are reduced: 1) body temperature, 2) heart rate,
3) respiratory rate, and 4) blood pH.

Because of their small size and low metabolic rate, neonates
are prone to hypothermia, resulting in a lowering of the
metabolic rate. However, this decrease is associated with a
protective effect (36). The reduction of heart rate, also known
as the “diving reflex,” is accompanied by shunting of blood
flow from peripheral tissues to central organs (36). Such

change is also associated with reduced glucose and increased
blood lactate levels (37). The reduction of respiratory rate
should be regarded as an immature feature of the respiratory
network (38). The reduction of blood pH is associated with
respiratory acidosis as a result of the inhibition of the overall
enzymatic machinery (36).

Because of insufficient glycogen stores (39), immature ani-
mals have a reduced capacity for free radical detoxification
(40) and therefore are unable to cope with stress. Moderate
hypercapnia, which is observed after hypoxia, may be benefi-
cial (41).

The observed effects are mediated through generation of free
radicals, leading to cellular DNA alteration (35), which even-
tually causes apoptosis (42). It is known that HSP can protect
against the damaging effects of hypoxia (43,44) and free
radicals, specifically HSP27 (11). The present study is the first

Figure 4. Relative expression of nNOS and HO-2 in the cerebellum, cortex,
and hippocampus after hypoxia of the piglet kept at room temperature. Lanes
are described in the legend of Fig. 1. A total of 100 �g of protein was used for
each lane. The level of �-actin in the cortex is shown in a representative
membrane. Values are the mean � SEM of separate determinations; n � 4.
*Significantly different from the corresponding normoxic control (p � 0.01).

Figure 5. Relative expression of HIF-1�, HSP27, HSP70, and nNOS in the
cerebellum of piglets that were subjected to hypoxia and maintained at 37°C.
Lanes are as described in the legend of Fig. 1. A total of 100 �g of protein was
loaded in each lane. The last representative membrane shows the level of
�-actin in the cerebellum. Values are the mean � SEM of separate determi-
nations; n � 3. *Significantly different from the corresponding normoxic
control (p � 0.01).
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to investigate concomitant changes and possible relationships
between HSP and adaptive molecules induced by hypoxia in
the newborn during hypoxia.

Because cardiac frequency, arterial pressure, blood CO2,
glucose, and pH after hypoxia have been documented in other
studies (36), they were not determined in this study. The
selected criterion for hypoxia was the oxygen saturation of Hb.
The hypoxic conditions (4 h, 5% O2) resulted in a drastic
decrease of the venous Hb saturation.

In the hippocampus, the cortex, and the cerebellum, a strong
expression of HIF-1� was detected very rapidly during hy-
poxia and slowly returned to baseline during the recovery
period. Significant levels of expression at birth are not surpris-
ing, because HIF-1� is already expressed in the fetus (45).
Changes in the expression of HIF-1� as a result of hypoxia are
indicative of subsequent alterations of other downstream genes
(24), particularly those involved in cellular energy metabolism,

such as the glucose transporter (22). It should also be noted
that, despite that HIF-1� is quickly degraded (21), increased
concentrations can last several hours after the hypoxic insult,
thereby indicating an ongoing biosynthesis (24,45).

As stated previously, hypoxia is associated with the depres-
sion of thermogenesis (36,45). Under normal conditions, new-
born animals are not artificially maintained at 37°C and cannot
escape hypoxia-induced decrease in body temperature. How-
ever, human infants are maintained at 37°C; thus, a comple-
mentary study on animals was performed. In the first series of
experiments, animals were kept at room temperature; in the
second series, their body temperature was maintained at
~37°C. In the first group, a significant decrease of temperature
was observed after 4 h of hypoxia, whereas no change was
observed in the second group. However, the percentage of
venous Hb saturation indicated no difference between the two
hypoxic groups.

One of the major findings of the present study is the discov-
ery of increased levels of HSP27 expression in the cerebellum,
cortex, and hippocampus during hypoxia and early recovery.
An increase in HSP27 and HIF-1� is observed in hypoxic
animals with either a lower or a normal body temperature. We
hypothesize that both the hyperthermia and the hypoxia in-
creases HSP27. An interesting observation is the rapidity of the
increased expression of both HIF-1� and HSP27, which occur
only 1 h after hypoxia. Because new protein synthesis is
unlikely to occur in this time frame, other mechanisms may be
operational (21). In the present study, no change in the expres-
sion of HSP70 or HSP90 after hypoxia was observed. This
result is similar to findings presented in a previous study
performed in the rat (43).

The specific response of HSP27 to hypoxia, independent of
hyperthermia, is particularly interesting in muscle physiology.
Small HSPs, such as HSP27, are strongly expressed in myo-
blasts and myocytes (46). A marked increase in HSP27 expres-
sion as a result of muscle hypoxia is associated with extensive
muscular damage (47,48). Increase in HSP27 expression can
occur in glia and can tentatively be associated with cellular
oxygen metabolism (49,50) at the cytochrome level, resulting
in apoptosis (50).

Another important aspect of the HSP27 response as ob-
served in myoblast cell lines (51) is the translocation between
nucleus and cytoplasm. However, the present observations
should be complemented by future immunohistochemical stud-
ies, which would detect changes in subcellular localization.

The other proteins studied in the present investigation in-
clude nNOS and caspase 3. NOS, specifically nNOS, is impor-
tant because of its relationship to NMDA in the ischemia-
reperfusion model of brain injury. nNOS activation, through
the generation of NO, controls cerebral microcirculation during
neural activity (52). Moreover, NMDA toxicity depends on the
number of nNOS neurons and their specific expression (53).
The importance of nNOS after hypoxia is further confirmed by
the specific protection of these neurons after vascular stroke
(54). This transient increase in nNOS expression suggests that
a role for nNOS in blood flow regulation is limited to the initial
phase of hypoxia. This increase in nNOS expression suggests
the need for future study of other NOS isoforms, such as

Figure 6. Relative expression of caspase 3 in the cerebellum and cortex after
hypoxia of the piglet kept at room temperature. Lane t0 indicates newborn
control; lanes t4, h4, t8, h4 � 4, t24, h4 � 20, t48, h4 � 44, t72, and h4 � 68
indicate, respectively, control 4 h, hypoxia 4 h, control 8 h, hypoxia 4 h
followed by 4 h recovery, control 24 h, hypoxia 4 h followed by 20 h recovery,
control 48 h, hypoxia 4 h followed by 44 h recovery, control 72 h and hypoxia
4 h followed by 68 h recovery. An equal amount of protein was used as
described in the legends of the other figures. Light columns are for controls,
and dark are columns for animals that were subjected to hypoxia. The level of
�-actin in the cortex is shown in a representative membrane. Values are the
mean � SEM of separate determinations; n � 4.
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endothelial NOS, a major regulator of hemodynamics. Via the
production of NO, NOS regulates HIF-1� expression during
hypoxia (55). NO produced by neuronal NOS also plays a
critical role in cerebral capillary flow response to hypoxia (56).

Moreover, HSP70 (57) and HSP90 (26) can activate NOS,
an enzyme that is associated with HO-2 (27). Studies of nNOS
and HO-2 expression in the cerebellum, cortex, and hippocam-
pus show relatively constant levels of nNOS, which is in
agreement with the stable levels of HSP70 and HSP90 ob-
served in the same brain regions. The apparent absence of
global changes in expression of certain HSP isoforms or other
stress proteins does not exclude modification at the subcellular
level and therefore, warrants future immunocytologic investi-
gations (58,59).

Determination of caspase 3 expression shows that this pro-
tein is increased after hypoxia, which is in agreement with
recently published observations (60). However, this is ob-
served not only in the cortex but also in the cerebellum, and,
more interesting, such an increase is even higher after 4 h, 1 d,
and even 2 d of recovery, indicating a delayed posthypoxic
response (33,36) in these regions. Very low caspase 3 activity
was observed in the hippocampus (data not shown).

The present observations also show that an increase in
specific HSP (HSP27) expression can still occur several hours
after hypoxia, and this change has to be related to delayed
protection of neurons (33,42) that is necessary after NOS
enzyme activation (61). Inhibition of nNOS and inducible NOS
after hypoxia-ischemia results in long-term improvement of the
rat brain (62). It has also been shown that introducing posthy-
poxic hyperbaric oxygenation can prevent brain injury induced
by hypoxia-ischemia (63).

CONCLUSION

Our study reveals that the newborn piglet model can be used
to evaluate the impact of hypoxia at the molecular level as
demonstrated by other groups. The present piglet model can
also be used for studying the effect of hypo- or hyperthermia
associated with hypoxia and correlating the changes with
behavioral outcome. Further characterization at the molecular
and cellular level will provide credence to the usefulness of this
model.
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