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Data are scant regarding the development of cerebrovascular
autoregulation in intrauterine growth-restricted (IUGR) newborns.
We tested the hypothesis that IUGR improves the ability of neonates
to withstand critical periods of gradual hemorrhagic hypotension by
optimizing cerebrovascular autoregulation. Studies were conducted
on 1-d-old anesthetized piglets divided into groups of normal weight
(NW, n � 14, body weight � 1518 � 122 g) and IUGR (n � 14,
body weight � 829 � 50 g) animals. Physiologic parameters,
including regional cerebral blood flow (CBF) and cerebral meta-
bolic rate of oxygen (CMRO2), were similar in NW and IUGR
piglets under baseline conditions. Controlled arterial blood loss
[hemorrhagic hypotension (HH)] induced a stepwise reduction of
the mean arterial blood pressure of 49 � 3 mm Hg (mild HH), 39
� 3 mm Hg (moderate HH), and 30 � 3 mm Hg (severe HH) in
seven NW and seven IUGR piglets (p � 0.05). In NW piglets,
cortical CBF and CMRO2 was reduced already at moderate HH (p
� 0.05). A similar CMRO2 reduction occurred during severe HH in
NW and IUGR piglets (p � 0.05). In addition, during mild and
moderate HH, primarily in IUGR piglets, an increase in regional

CBF of brainstem, cerebellum, and thalamus was shown compared
with baseline values (p � 0.05). Furthermore, under these condi-
tions, cerebral cortex blood flow was maintained in newborn IUGR
animals. In contrast, NW piglets exhibited a significant reduction in
CBF (p � 0.05) during moderate HH. Thus, IUGR resulted in an
improved ability to withstand critical periods of gradual oxygen
deficit as shown by improved cerebrovascular autoregulation during
hemorrhagic hypotension. (Pediatr Res 56: 639–646, 2004)

Abbreviations
ABP, arterial blood pressure
CBF, cerebral blood flow
CMRO2, cerebral metabolic rate of oxygen
HH, hemorrhagic hypotension
IUGR, intrauterine growth restriction
MABP, mean arterial blood pressure
NW, normal-weight
PID-controller, proportional differential integral controller

Asymmetric IUGR (type II) is still an unresolved problem in
perinatal medicine. Perinatal mortality is markedly increased
(1–3), as well as the incidence of perinatal asphyxia, because
placental insufficiency is the main cause of IUGR (4).

The perinatal morbidity and mortality of neonates after
IUGR is mainly caused by postasphyxial encephalopathy (4).
The most dangerous complication is brain injury secondary to
hypoxic-ischemic disease, which is the predominant form of all
brain injuries encountered in the perinatal period (5). Periods
of arterial hypotension are frequently involved in the initial

period of acute perinatal asphyxia (6). Cerebrovascular auto-
regulation protects against brain hypoperfusion, provided arte-
rial pressure does not fall below the lower limit of the auto-
regulatory range. The efficiency of autoregulation to prevent
hypoperfusion generally improves with increasing fetal age
and maturity of the brain (7–9). This implies that the immature
brain is susceptible to ischemia during hypotension (10).
Therefore, poor autoregulation may place the immature brain
at risk for injury (11,12).

The slow down of fetal growth late in gestation after intra-
uterine malnutrition, although resulting in IUGR, can be re-
garded as a compensatory process, which enables the fetus to
survive (13,14). Growth reduction is primarily achieved by
altering the endocrine milieu, possibly by reducing the endo-
crine and paracrine IGF-I activity (15) in response to impaired
transplacental nutrient transfer (16). Reduced substrate con-
sumption enables—at least at times—the prevention of a life-
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threatening imbalance between nutritional supply and demand.
Therefore, the period of adequate compensation, characterized
by reduced growth due to restricted nutrient availability, but
widely compensated placental respiratory function (17), re-
flects a functional state in which contradictory effects of ac-
celeration or delay in organ maturation including brain func-
tional development may occur (18–22). Moreover, it should be
considered that further disturbances in hormonal homeostasis
during fetal life are apparently involved in permanent alter-
ations of organ structure or function. Among others, an excess
of glucocorticoids during fetal life may be associated postna-
tally with an altered programming of the hypothalamo-
pituitary-adrenal axis (23), disturbed brain dopamine metabo-
lism (21,24), and altered cerebrovascular function (25).

Furthermore, an improved capacity of newborn IUGR pig-
lets to withstand severely disturbed renal oxygenation has been
reported (26). Until now, the effects of IUGR on the cerebral
autoregulatory response and cerebral oxygen uptake during
gradual reduction of the cerebral perfusion pressure have not
been determined. Therefore, we estimated regional CBF and
CMRO2 during gradual HH in newborn normal-weight and
IUGR piglets. We used a morphometrically well-characterized
state of IUGR in newborn piglets (27) and included animals
with optimal vital conditions early after birth. We speculate
that IUGR may improve the ability of the neonate to withstand
critical periods of brain oxygen availability by gradual HH.

METHODS

All surgical and experimental procedures were approved by the
committee of the Thuringian State Government on Animal Re-
search. Animals were obtained from a breeding farm. Delivery
was observed and the viability of neonatal piglets assessed im-
mediately after birth so that only animals with a viability score �7
(28) were included in the study. Immediately before the onset of
the experiments, animals were carried to the laboratory in a
climate-controlled transport incubator (environmental tempera-
ture, 33–34°C; time for transportation, 30–60 min). Animals were
divided into NW piglets (n � 14; age, 11–26 h; body weight, 1518
� 122 g) and IUGR piglets (n � 14; age, 13–28 h; body weight,
829 � 50 g) according to their birth weight. The birth weight
distribution of the breed of piglets used here (German Landrace)
has been described previously (27).

Anesthesia and surgical preparation. The piglets were ini-
tially anesthetized with 1.5% isoflurane in 70% nitrous oxide
and 30% oxygen by mask. The anesthesia was maintained
throughout the surgical procedure with 0.8% isoflurane. Cuta-
neous incisions were made after s.c. instillation of a local
anesthetic (Xylocitin 2%, Jenapharm, Jena, Germany). A cen-
tral venous catheter was introduced through the left external
jugular vein and was used for the administration of drugs and
for volume substitution [heparinized isotonic saline solution (1
IU heparin/mL): 5 mL/h]. An endotracheal tube was inserted
through a tracheotomy. After immobilization with i.v. pancu-
ronium bromide (0.2 mg/kg body weight/h), the piglets were
artificially ventilated (Servo Ventilator 900C, Siemens-Elema,
Sweden). The artificial ventilation was adjusted to maintain
normoxic and normocapnic blood gas values. Polyurethane

catheters (inner diameter, 0.5 mm) were advanced through both
umbilical arteries into the abdominal aorta to record the arterial
blood pressure and to withdraw reference samples for the
colored microsphere technique. Another polyurethane catheter
(inner diameter, 0.3 mm) was inserted into the superior sagittal
sinus through a midline burr hole (3 mm in diameter and
located 4 mm caudal to the bregma) and advanced to the
confluence sinuum to obtain brain venous blood samples. The
left ventricle was cannulated retrogradely via the right common
carotid artery with a polyurethane catheter (inner diameter, 0.5
mm). The arterial, left ventricular, and the central venous
catheters were connected with pressure transducers (P23Db,
Statham Instruments Inc., Hato Rey, Puerto Rico). Correct
positioning of the catheter tips was checked by continuous
pressure trace recordings and by autopsy at the end of the
experiment. Body temperature was monitored by a rectal tem-
perature probe, and was maintained throughout the general
instrumentation at 38 � 0.3°C using a warmed pad and a
feedback-controlled heating lamp. Physiologic parameters
were recorded on a multichannel polygraph (MT95K2, Astro-
Med, W. Warwick, RI). The arterial blood pressure was mon-
itored continuously, and arterial blood samples were with-
drawn and analyzed at regular intervals to monitor blood gases
and whole blood acid-base parameters.

Experimental protocol. After the surgical preparation had
been completed, the anesthesia was reduced to 0.25% isoflu-
rane in 70% nitrous oxide and 30% oxygen and the piglets
were allowed to stabilize for 1 h. After control values were
obtained, randomly chosen NW piglets (group 3, n � 7) and
IUGR piglets (group 4, n � 7) were connected with the
external ABP controller to adjust MABP sequentially at three
different levels (starting with MABP-50: �50 mm Hg, fol-
lowed by MABP-40: �40 mm Hg, and MABP-30: �30 mm
Hg) in each animal. Each level of gradually reduced MABP
was maintained for about 30 min. A complete series of values
was recorded at the 25th min of every steady state period.
Blood volume replacement was given after each blood with-
drawal using stored heparinized blood obtained from a sibling
donor piglet. The remaining NW piglets (group 1, n � 7) and
IUGR piglets (group 2, n � 7) were submitted to all experi-
mental procedures except the induced ABP changes and served
as untreated control animals.

Gradual ABP reduction controlled by an external PID-
controller. A detailed description of the procedure of mean
arterial blood pressure adjustment at externally given set-points
using an external blood pressure control loop has been given
elsewhere (29,30). In brief, ABP (controlled quantity) was con-
trolled by a PID-controller running on a personal computer, by
altering the blood volume by arterial blood infusion or with-
drawal, respectively. An infusion/withdrawal pump was the con-
trolling element. Because there are several nonlinear and non-
stationary properties in the controlled physiologic system, the
parameters of the external technical controller were searched
by trial and error. Stable control of ABP was obtained by
means of the integrating property of the controller in particular.
The integration time constant of KI � 6.94 mm Hg � min�1

was found to be appropriate during all states investigated.
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Measurements. The regional CBF was measured by means of
the reference sample color-labeled microsphere (Dye-Trak, Triton
Technology, San Diego, CA) technique, which represents a valid
alternative to the radionuclide-labeled microsphere method for
organ blood flow measurement in newborn piglets without the
disadvantages arising from radioactive labeling (31). Application
of this technique in piglets and methodological considerations
have been presented and discussed in detail elsewhere (31,32).
Briefly, in random color sequence, a known amount of colored
polystyrene microspheres was injected into the left ventricle. A
blood sample was withdrawn from the thoracic aorta as the
reference sample. At the end of each experiment, the piglet brains
were obtained. To retrieve the microspheres, each tissue sample
was digested and then filtered under vacuum suction through an
8-�m-pore polyester-membrane filter. Colored microspheres were
quantified by their dye content. The dye was recovered from the
microspheres by adding dimethylformamide. The photometric
absorption of each dye solution was measured by a diode-array
UV/visible spectrophotometer (Model 7500, Beckman-Coulter,
Inc., Fullerton, CA). Calculations were performed using MISS
software (Triton Technology, San Diego, CA). The number of
microspheres was calculated using the specific absorbance value
of the different dyes. All reference and tissue samples contained
�400 microspheres.

The heart rate, ABP, arterial and brain venous pH, PCO2, PO2,
oxygen saturation, and Hb values were measured immediately
before the microsphere injection. Blood pH, PCO2, and PO2

were measured with a blood gas analyzer (model ABL50,
Radiometer, Copenhagen, Denmark), and blood Hb and oxy-
gen saturation were measured using a hemoximeter (model
OSM2, Radiometer) and corrected to the body temperature of
the animal at the time of sampling.

The absolute flows to the tissues measured by the colored
microspheres were calculated by the formula: flowtissue �
number of microspherestissue � (flowreference / number of micro-
spheresreference). Flows were expressed in milliliters per minute
per 100 g tissue by normalizing for tissue weight. Blood O2

content (cO2) was calculated using the following equation:

cO2 �mL � dL � 1� �

cHb �g � dL � 1� � sO2 �mmol � mmol � 1�

� 1.39 �mL � g � 1� � �Po2 �mmHg�

� � O2 �mL � dL � 1 � mmHg � 1�)

to obtain the sum of oxygen that is physically dissolved and
chemically bound to Hb [cHb: Hb concentration; sO2: O2

saturation; 1.39 (mL � g�1): theoretical oxygen capacity of Hb;
�O2: solubility of O2 in blood � cHb 	 0.000054 (Hb-
dependent O2 solubility ) 
 0.0029 (solubility of O2 in
plasma)]. Because the sagittal sinus drains the cerebral cortex,
the cerebral white matter, and some deep gray structures (basal
ganglia, thalamus, and hippocampus) (33), the blood flow
measured to the forebrain included these structures. The
CMRO2 was obtained by multiplying the blood flow to the
forebrain by the cerebral arteriovenous O2 content difference.
Cerebral oxygen extraction was calculated as the ratio between
cerebral arteriovenous O2 content difference and arterial O2

content.
Statistical analysis. Data are reported as means � SD. Initial

comparison was done for all parameters studied using two-way
ANOVA with one factor, “treatment,” which considered possible
effects of gradual ABP reduction. The second factor, “stages,”
considered repeated measures along the experimental approach.
Because in a majority of cases an interaction between the two
factors was shown, we reduced the following statistical analysis
on separate evaluations of the parameters without considering
their correlations. Consequently, comparisons between groups
were made with one-way ANOVA. Posthoc comparisons were
made with Tukey’s test for all pairwise multiple comparisons.
Comparisons of measurements between baseline and different
stages of gradual ABP decrease within the groups and CBF values
of different brain regions were made with one-way ANOVA, with
repeated measures. A Bonferroni adjustment was performed to
evaluate significant differences. Differences were considered sig-
nificant when p � 0.05.

RESULTS

Table 1 summarizes some morphometric parameters of the
experimental groups. Naturally occurring growth restriction in
swine is asymmetrical, with an increase in the mean ratio of
brain weight to liver weight from 0.90–0.97 to 1.60–1.73 (p �
0.01). The reduction in brain weight was quite small (90% of
NW group). In contrast, the decrease in liver weight (47–55%
of NW group) was similar to that in body weight (54–55% of
NW group). All differences in organ weight were significant
(p � 0.01).

During baseline conditions, ABP, heart rate, acid-base bal-
ance, blood gas, and metabolic values were within the physi-
ologic range and consistent with other data obtained from
anesthetized and artificially ventilated newborn piglets (34,35).
Arterial glucose content was mildly but significantly lower in
IUGR piglets (p � 0.05). Other physiologic values such as
CMRO2 and regional CBF were also similar in NW and IUGR
piglets (Table 2, Figs. 1 and 2).

Table 1. Organ weights of newborn piglets following normal growth [groups 1 (untreated, n � 7) and 3 (gradual HH-treated, n � 7)] or
IUGR [groups 2 (untreated, n �7) and 4 (gradual HH-treated, n � 7)]

Body weight (g) Brain weight (g) Liver weight (g) Brain liver ratio Brain body weight ratio

Group 1 1467 � 85 33.0 � 0.4 37.3 � 6.0 0.90 � 0.12 0.023 � 0.001
Group 2 804 � 46* 29.5 � 0.2* 17.5 � 3.0* 1.73 � 0.30* 0.037 � 0.002*
Group 3 1568 � 138 33.5 � 0.7 35.2 � 5.3 0.97 � 0.14 0.021 � 0.001
Group 4 854 � 42* 29.8 � 0.2* 19.4 � 4.3* 1.60 � 0.35* 0.035 � 0.001*

Values are means � SD.
* p � 0.01, comparison between normal weight newborn piglets and IUGR ones.
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Controlled arterial blood loss induced a stepwise MABP
reduction to 75 � 10% (MABP-50), 58 � 8% (MABP-40), and
45 � 8% (MABP-30) of baseline in NW and IUGR piglets
(Fig. 1, p � 0.05). This gradual HH induced a marked tachy-
cardia, gradual reduction in arterial Hb content, and a resulting
decrease in arterial O2 content. Furthermore, an increasing
metabolic acidosis appeared, which was shown by reduced
arterial pH and increased arterial lactate content, whereas
arterial PCO2 remained unaltered (Table 2, p � 0.05).

In NW piglets, CMRO2 was reduced already at moderate
HH (Fig. 1, p � 0.05). A similar CMRO2 reduction occurred
during severe MABP reduction in NW and IUGR piglets (Fig.
1, p � 0.05). Cerebral O2 extraction was increased throughout
the whole period of HH in both treated groups (Fig. 1, p �
0.05).

During mild and moderate HH, primarily in IUGR piglets,
an increase in regional CBF of brainstem and thalamus was
shown (Fig. 2, p � 0.05). Furthermore, under these conditions
cerebral cortex blood flow was maintained in newborn IUGR
animals. In contrast, already under moderate HH (MABP-40),
NW piglets exhibited a significant reduction in CBF (p �
0.05). A gradual blood pressure reduction to �45% of baseline
(MABP-30) induced similar CBF reduction in NW and IUGR
piglets (p � 0.05).

DISCUSSION

The main new finding in this study is that IUGR induces an
increased ability to prevent a decrease in regional cerebral blood
flow and oxygen uptake in newborns during progressive reduction

Table 2. Effect of hemorrhagic hypotension on arterial blood gases, acid-base balance, and metabolic parameters in normal weight (NW,
group 1, untreated; group 3, gradual HH-treated) and IUGR (group 2, untreated; group 4, gradual HH-treated) piglets

Baseline MABP-50 MABP-40 MABP-30

Heart rate (min�1)
Group 1 170 � 23 175 � 31 191 � 36 208 � 13
Group 2 164 � 16 185 � 36 195 � 28 211 � 19
Group 3 202 � 33 242 � 31* 273 � 14* 259 � 14*
Group 4 202 � 32 263 � 25* 245 � 27* 238 � 12*

Arterial PCO2 (mm Hg)
Group 1 40 � 2 41 � 2 40 � 2 40 � 1
Group 2 40 � 1 40 � 2 40 � 3 39 � 3
Group 3 41 � 4 43 � 5 42 � 8 44 � 8
Group 4 40 � 2 43 � 8 42 � 6 38 � 8

Arterial pH
Group 1 7.46 � 0.02 7.46 � 0.03 7.45 � 0.02 7.44 � 0.02
Group 2 7.48 � 0.03 7.47 � 0.03 7.45 � 0.06 7.46 � 0.05
Group 3 7.45 � 0.05 7.34 � 0.09* 7.20 � 0.17* 7.22 � 0.10*
Group 4 7.48 � 0.03 7.33 � 0.10* 7.30 � 0.08* 7.25 � 0.05*

Arterial PO2 (mm Hg)
Group 1 93 � 10 92 � 11 94 � 11 90 � 20
Group 2 107 � 21 111 � 16 114 � 24 111 � 25
Group 3 90 � 15 93 � 19 83 � 16 90 � 13
Group 4 114 � 33 116 � 34 97 � 21 96 � 24

Arterial O2 content (mL � dL�1)
Group 1 6.0 � 1.0 5.9 � 1.1 6.0 � 1.1 5.8 � 0.9
Group 2 6.0 � 1.5 5.6 � 0.9 5.4 � 0.7 5.0 � 0.5
Group 3 5.9 � 0.9 3.9 � 0.5* 3.1 � 0.4* 2.5 � 0.4*
Group 4 5.9 � 1.5 4.1 � 0.7* 3.1 � 1.3* 3.0 � 1.1*

Arterial hemoglobin content (mMol � L�1)
Group 1 6.2 � 0.9 6.1 � 1.1 6.2 � 1.1 6.1 � 0.9
Group 2 6.2 � 1.5 5.8 � 0.8 5.5 � 0.6 5.1 � 0.5
Group 3 6.2 � 0.9 4.3 � 0.6* 3.4 � 0.5* 2.9 � 0.5*
Group 4 5.9 � 1.5 4.1 � 1.7* 3.3 � 1.2* 3.2 � 1.4*

Arterial glucose content (mMol � L�1)
Group 1 5.7 � 1.2 5.7 � 1.4 5.2 � 1.0 5.3 � 1.6
Group 2 3.6 � 0.8§ 3.8 � 0.8§ 3.6 � 0.8 3.7 � 0.5
Group 3 5.9 � 1.4 8.0 � 3.9 7.1 � 4.4 5.2 � 3.1
Group 4 3.6 � 1.5§ 3.6 � 1.5§ 2.8 � 1.6§ 1.9 � 1.1§

Arterial lactate content (mMol � L�1)
Group 1 2.0 � 0.4 2.2 � 0.5 2.4 � 0.6 3.2 � 1.2
Group 2 2.0 � 0.4 2.2 � 0.4 2.4 � 0.6 3.2 � 1.2
Group 3 2.7 � 0.9 8.7 � 3.4* 12.5 � 3.4* 14.6 � 2.9*
Group 4 2.6 � 1.0 6.8 � 2.3* 11.1 � 2.8* 14.4 � 3.4*

Values are presented as means � SD.
* Significant differences between untreated control (groups 1, n � 7) and treated (group 3, n � 7) NW or untreated control (group 2, n � 7) and treated (group

4, n � 7) IUGR piglets at baseline or different levels of hemorrhagic hypotension (MABP-50: �50 mm Hg; MABP-40: �40 mm Hg; MABP-30: �30 mm Hg;
p � 0.05.

§ Significant differences between NW and IUGR groups of same treatment; p � 0.05.
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of the cerebral perfusion pressure. Indeed, at moderate HH
(�58% of baseline) global CBF and CMRO2 were reduced in
newborn NW piglets (p � 0.05), whereas IUGR animals exhib-
ited no alterations under similar conditions. These differences,
however, disappeared with increasing severity of HH.

These findings support our assumption that, in IUGR piglets,
adequate regional perfusion is maintained over a broader range
due to improved cerebral autoregulation The newborn IUGR
piglet is apparently able to maintain oxygen delivery to brain
regions outside the cerebral cortex despite a reduction in

arterial oxygen content owing to progressive blood loss and
gradual HH. Therefore, under conditions of progressive cere-
bral perfusion pressure reduction, an adequate vascular dilation
occurred in newborn IUGR piglets, whereas this was obviously
insufficient in NW newborn animals.

The underlying mechanisms were not addressed by these
experiments. Methodological reasons for the differences be-
tween NW and IUGR animals are unlikely because the exper-
imental conditions were similar. However, we cannot fully
exclude a different sensitivity of the cerebral vasculature to the

Figure 1. Effect of gradual hemorrhagic hypotension on arterial blood pressure, global CBF, CMRO2, and cerebral O2 extraction in NW (n � 7, hatched
columns) and IUGR piglets (n � 7, dotted columns) compared with untreated NW (n � 7, filled columns) and untreated IUGR piglets (n � 7, blank columns).
Values are presented as means 
 SD. *Comparison with untreated control animals, p � 0.05; §comparison within every group with baseline, p � 0.05.

Figure 2. Effect of gradual hemorrhagic hypotension on regional CBF in NW (n � 7, hatched columns) and IUGR piglets (n � 7, dotted columns) compared
with untreated NW (n � 7, filled columns) and untreated IUGR piglets (n � 7, blank columns). Values are presented as means 
 SD. *Comparison with untreated
control animals, p � 0.05; §comparison within every group with baseline, p � 0.05.
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pancuronium bromide used as myorelaxant. In a high dosage
with ganglion blocking activity (i.e. 0.4 mg/kg), this drug
enhances CBF autoregulation, whereas in a dose more selec-
tive for the neuromuscular junction (i.e. 0.1 mg/kg), it does not
alter CBF autoregulation in the newborn piglet (36). We used
a dosage of 0.2 mg/kg/h in NW and IUGR piglets. The reported
lower limit of the forebrain CBF autoregulatory range in the
NW piglets is in accordance with data given in previous reports
(8,36–38). Therefore, we assume that the dosage used in the
recent study did not alter CBF autoregulation in NW animals.
However, we are unable to exclude the possibility that the
cerebral vasculature of IUGR animals may be more susceptible
to pancuronium bromide, even if no evidence exists previously.
Action time of a single dose was similar in NW and IUGR
piglets.

Mild sedation by volatile anesthetics and analgesia by ni-
trous oxide, as used here, appears to be adequate for the
experimental approach of this study. Previous studies have
shown that there is no detectable influence on the cardiovas-
cular response in newborn piglets (39). Furthermore, CBF and
cerebral O2 uptake values presented in this study were similar
to values obtained from newborn piglets that were treated with
other drugs for general anesthesia that have been shown not to
alter brain oxidative metabolism and were delivered to awake
newborn piglets (40,41). CBF distribution throughout the im-
mature brain demonstrates a gradient between the brainstem
(highest perfusion values) and forebrain (lowest perfusion
values), thereby confirming previous findings (42). In a previ-
ous study with extensive surgical interventions, including
opening the abdominal cavity, craniotomy, and ureter cannu-
lation after retroperitoneal preparation along with 5 h of ex-
perimental performance, sham-operated newborn piglets showed
no significant differences in ABP with only a slight increase in
heart rate (by 20%). This corresponded to a comparatively mod-
erate increase in circulating catecholamines (epinephrine by 73%,
norepinephrine by 66%) (26). This elevation in circulating cat-
echolamines was markedly blunted compared with a rather mild
hypoxic exposure. After 45 min of mild normocapnic hypoxia
(arterial O2 saturation � 71 � 8%, arterial PO2 � 39 � 7 mm Hg),
we found a marked increase in circulating catecholamines (epi-
nephrine by 175%, norepinephrine by 125%) (43). Furthermore,
during baseline conditions, data were within the physiologic
range, consistent with other data obtained from anesthetized new-
born piglets (34,43), and similar to data obtained from newborn
nonanesthetized piglets (35).

Mild hypoglycemia apparently did not alter CBF in IUGR
piglets (Fig. 1 and 2). This is in accordance with previous
findings on the effects of hypoglycemia on CBF: Mild to
moderate hypoglycemia induces no more than a modest CBF
increase in immature brains (44–46). Furthermore, the en-
hanced cerebrovascular autoregulation during HH in the new-
born IUGR animals appears not to be influenced by hypogly-
cemia. In adult dogs, it has been shown that moderate
hypoglycemia induces no change in CBF at normal cerebral
perfusion pressure, but does elevate the lower limit of auto-
regulation to a CPP of 40 mm Hg (47). Moreover, a reduced
cerebrovascular reactivity in newborn piglets (48) and a posi-
tive correlation between mean arterial blood pressure and

cerebral cortical blood flow (45) suggests a loss of CBF
autoregulation during hypoglycemia.

A mechanistic explanation for an enhanced cerebrovascular
autoregulation in IUGR piglets during hemorrhagic hypoten-
sion cannot be derived from the present study. In addition, no
other studies are known that deal with the mechanisms under-
lying the regulation of cerebrovascular tone in newborn IUGR
individuals. Nevertheless, it is obvious that the regulatory
capacity of the cerebral resistance vessels is modified, i.e. at a
level of reduced perfusion pressure, where a pressure-passive
alteration of blood flow appeared in NW piglets, a further
relaxation of the vessel wall occurred in IUGR piglets to
maintain CBF. Thus, IUGR is apparently associated with a
delayed vasodilatory response at gradually reduced cerebral
perfusion pressure, which could be provoked by a primarily
increased vascular tone of the cerebral resistance vessels.
Another possibility for a delayed vasodilatory response may
result from attenuated generation of vasodilatory factors. On
principal, such response patterns could be due to the chronic
effects of enhanced glucocorticoid availability during fetal
development of IUGR. Evidence is available that glucocorti-
coid activity is increased in IUGR fetuses because maternal
glucocorticoids are cleared insufficiently by the placenta (see
below). In a recent report it was shown that a 24-h pretreatment
with glucocorticoid induces an increase in the cerebrovascular
tone of newborn piglets (49). The underlying mechanisms
appear complex and presumably involve a diminished release
of endothelium-derived prostanoids (50) due to inhibition of
cyclooxygenase-2 itself and/or induction of phospholipase A2
inhibitory proteins (51,52). Furthermore, it has been shown
that glucocorticoids down-regulate the expression of calcium-
dependent potassium channels in vascular smooth muscle (53)
and may thereby interfere with the carbon monoxide-induced
vasorelaxant response shown in newborn piglets (54).

There is evidence that an increased exposure to glucocorti-
coids occurs in IUGR fetuses due to disturbed placental clear-
ance of maternal glucocorticoids. Because the concentration of
circulating corticosteroid is several-fold higher in the sow than
in the fetus (55), fetal protection against maternal corticoste-
roid intoxication is normally affected through conversion of
physiologic glucocorticoids to inactive products by placental
11�-hydroxysteroid dehydrogenase (56–58). This may be al-
tered during IUGR pregnancies. Placental 11�-hydroxysteroid
dehydrogenase activity was markedly reduced in the late ges-
tational period of maternal protein-malnutrition sufficient to
cause IUGR in rats (59). Recently, a significant association was
found in pigs between fetal or placental size and placental
11�-HSD net dehydrogenase activity (60). In addition, IUGR
rats exhibited elevated liver and brain activities of specific
glucocorticoid-inducible marker enzymes (61), suggesting an
increased glucocorticoid action in these organs.

The principal response of regional CBF regulation includes
an early tendency to CBF increase and subsequently main-
tained blood flow in brainstem, cerebellum, and thalamus, but
decreased CBF in brain cortex, under steady state conditions.
Previous findings showed regional differences in the lower auto-
regulatory limit in newborn piglets with a most pronounced
reduction in blood flow to the cerebrum, less to the cerebellum,
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and least to the brainstem (8,62). These findings are in contrast to
results obtained after a short-term ABP decrease (�2 min), where
no regional differences were reported in the lower limit of auto-
regulation in newborn piglets (63).

In summary, this study shows that autoregulation in the brain
cortex has a lower threshold in newborn IUGR piglets than in NW
animals. A similar response was shown for forebrain oxygen
uptake. However, the cerebral O2 extraction during gradual HH
was not different between NW and IUGR piglets. Causal mech-
anisms for these differences are unknown. In contrast to the initial
assumption, it seems that IUGR newborns are more capable of
protecting some brain regions against hypoperfusion during hy-
potensive periods than NW neonates.
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