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An artificial neural network (ANN) is a processor of exper-
imental knowledge used particularly in analyzing outcome
estimations. ANNs are widely used outside medicine in appli-
cations for analysis (e.g. voice recognition), control (industrial
applications), and forecasting (e.g. market and weather). In a
process analogous to information processing by the human
brain, the ANN uses interconnected pathways ( Fig. 1), often
including one or more “hidden layers” to allow more complex
interactions to be explored, to acquire knowledge through a
learning process and store the acquired information using
interneuron connection strengths (synaptic weights; Fig. 2).
The ANN thus is able to develop a set of outputs based on a
system of input conditions. Once sufficient training experi-
ments have been performed to minimize the error or to maxi-
mize the correct classification rate, the ANN can model the
system automatically.

In this respect, the ANN serves a similar function to com-
mon statistical techniques. However, compared with a standard
regression model, some users have suggested that ANNs may
perform better with nonlinear relationships between input and
output variables (1). Also, ANNs require no previous knowl-
edge of the relationships between the factors under investiga-
tion. However, a review of studies on adult data sets in which
ANNs were compared with statistical approaches used on the
same medical data suggested that although ANNs sometimes
outperform regression, both approaches have merit and prob-
ably should be explored as complementary rather than com-
peting approaches to medical data (2) .

As in common statistical approaches, one data set is used to
train the ANN, and then the model is tested on a new data set
to verify its performance. An ANN can be trained to model any

number of outputs from a database and can create a different
algorithm appropriate to each output. Moreover, the ANN can
be retrained at any time as more data become available or if the
relationship between inputs and outputs changes (e.g. introduc-
tion of new therapies or procedures). Once trained to model a
specific outcome, an ANN can predict that outcome on a “new”
case within seconds of new data being entered, thus allowing a
clinician immediate access to potentially valuable information.
With on-line acquisition of data now available (e.g. physio-
logic data from monitors, investigation data from laboratory,
PACS (picture archiving and communication system), and
other hospital systems), future ANN-based systems will be
able to process data in “real time” so that outcome prediction
will be immediate and updated continuously. Information and
even alerts will be able to be sent to clinical staff immediately
as the clinical situation requires.

The literature on adult uses of ANNs in outcome prediction
is now large and rapidly growing. A Medline search using only
the single MeSH term “neural networks (computer)” recorded
~2000 “hits” in March 2003 but 5759 as of March 2004. There
are, however, only a few previous studies using ANNs in
prediction of outcomes for preterm newborns. In these, ANNs
were used mainly to predict mortality and length of stay in
preterm infants (3–5). Whereas length-of-stay prediction was
believed to be of sufficient accuracy to use in clinical situa-
tions, the two studies of mortality prediction confirmed the
need for ongoing work to improve the performance of the
systems before they could be used for individual treatment
decisions. All of these studies compared ANNs with regression
models, and, in each, the ANN approach outperformed the
statistical method but usually by only a small margin. Thus, it
was again suggested that these approaches may be complemen-
tary. More recently, ANNs have been used to predict the
duration of assisted ventilation in preterm infants with good
results (6). However, there has been no previous attempt to use
ANNs in predicting the likely success of a therapeutic inter-
vention in newborns.
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Mueller et al. compared the performance of an ANN with a
multiple logistic regression (MLR) model in predicting extubation
outcome in newborns who weigh 900–1500 g (7). Mueller’s
approach uses ANNs to estimate outcomes for a “new” patient,
based on the experience acquired with a large database of a similar
population of previous patients. They also compared both systems
with clinical predictions of extubation failure or success from four
neonatologists who were provided with the same data sets used to
develop the mathematical models. In this study, there was little
difference in the ability to predict extubation success (although the
ANN had marginally the best performance: 86% ANN versus
84% MLR and clinicians), but for prediction of extubation failure,
the ANN significantly outperformed both the MLR model (86
versus 56%) and the clinicians (86 versus 41%). There was some
evidence that clinical predictions were more accurate from more

experienced clinicians. Several potential problems in using data
for such predictions are addressed, including imputation of miss-
ing data in medical databases, a problem for both statistical and
ANN approaches (8). Also, the former description of ANNs as
“black boxes” is no longer valid as weights at the nodes can be
extracted to allow estimates of the contribution of input variables
to the final model (9,10).

“Knowledge-based” systems, including ANNs, have been
studied as part of clinical decision-support systems (11–13).
In some studies, such systems have improved clinician
performance and patient outcomes in clinical settings
through uses such as quality assurance for active medical
care; however, the need for well-designed studies to assess
the effects and cost-effectiveness of clinical decision-
support systems has been noted, especially when attempting
to affect outcomes (14). Moreover, decision-support systems
(statistical or artificial intelligence based) are often poorly
taken up in routine practice because they model clinical
factors with little impact on treatment decisions, use model
structures that lack credibility, violate well-established clin-
ical precepts of cause-and-effect pathways, or are insuffi-
ciently validated (15). In response to this problem, Lisboa
(16) surveyed randomized and nonrandomized clinical trials
of ANNs in the domains of oncology, critical care, and
cardiovascular medicine, including four studies in perinatal
or neonatal care. This review noted the potential for exten-
sive benefit but criticized poor methods and exaggerated
claims in many studies, concluding with a blueprint for the
design of complex decision systems to improve the clinical
use of intelligent systems.

The potential of these systems to support or even improve
decision making by the health care team (or in pediatrics
perhaps also by parents) is obvious and exciting. However,
although the provision of better “evidence” to support clin-
ical, “ethical,” and resource decisions seems likely to be a
valuable contribution to care and decision making, without
clinical trials of such systems, it cannot yet be said that this
information will always lead to appropriate use or that
knowledge gained through such trials will lead to beneficial
clinical application. Mueller’s study breaks new ground by
applying ANN technology to therapeutic decision making
but still focuses mainly on the performance of the system in
predicting an outcome. Future work should assess not only
the performance of the systems themselves but also their use
in and impact on clinical practice.
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Figure 1. Architecture of a typical artificial neural network with five inputs,
two outputs, and a single “hidden layer.”

Figure 2. A typical node (“synapse”) of an ANN.
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