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The Bone Disease of Preterm Birth:
A Biomechanical Perspective
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ABSTRACT

The bone disease of preterm birth has traditionally been
explained by a decrease in bone formation from insufficient
availability of calcium and phosphorus. However, there is emerg-
ing evidence that there is increased bone resorption in the bone
disease of preterm birth, an observation that indicates some other
explanation for this condition. The biomechanical model of
postnatal bone formation states that, through a regulatory feed-
back system in the bone called the mechanostat, bone is able to
respond to increased bone loading by increasing bone strength
and to decreased bone loading by decreasing bone strength. It is
suggested that this increased bone resorption in the markedly
preterm infant compared with the term infant is secondary to

Infants who are born at 24, 25, and 26 wk of gestation now
have a 50%, 70%, and 80% likelihood for survival, respec-
tively (1). This increasing survival rate of VLBW (VLBW =
birth weight <1500 g), preterm infants over the past 30 y has
created new medical diseases in these fragile infants that did
not previously exist. One such disease is the bone disease of
preterm birth in which approximately 10% of VLBW, preterm
infants incur fractures within the first several months of life.
The mean age of diagnosis of fractures in one series of preterm
infants with fractures was 76 d, and the types of fractures
included long bone, rib, and metaphyseal fractures (2). The
specific cause of the bone disease of preterm birth must explain
the observation that the rate of bone accretion for a fetus in an
intrauterine environment is greater than that for a preterm
infant in an extrauterine environment. Thus, the bone density
of a full-term infant who is born at 40 wk of gestation is greater
than that of a 12-wk-old preterm infant who is born at 28 wk
of gestation (3).

It has been assumed that this difference in bone accretion
rates in the intrauterine versus the extrauterine environment is
from the difference in availability of calcium and phosphorus,
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decreased bone loading. Application of this model to the fetus
and preterm infant suggests that intrauterine bone loading of the
fetus from movement and kicking against the uterus is critical for
normal fetal bone formation. The associated muscle growth from
this activity also contributes to bone loading. The markedly
preterm infant is deprived of much of this critical time period of
intrauterine bone accretion, and bone formation occurs in the less
favorable extrauterine environment, where there is significantly
less bone loading. (Pediatr Res 53: 10-15, 2003)

Abbreviation
VLBW, very low birth weight

the essential minerals needed for bone formation (4). There is
an exponential increase in bone formation during the last
trimester during which approximately 80% of fetal bone is
produced as the whole-body calcium increases from approxi-
mately 5 g at 24 wk of gestation to approximately 30 g at term,
40 wk of gestation (5). The peak accretion rate for bone occurs
at approximately 35 wk of gestation, when the calcium accre-
tion rate is approximately 150 mg/kg/d and the phosphorus
accretion rate is approximately 75 mg/kg/d. It is interesting that
there is a dramatic decrease in calcium accretion in the last 5
wk of pregnancy (6). For adequately meeting this large demand
for calcium and phosphorus during this rapid period of bone
formation during the last trimester, there is active transplacen-
tal transport of calcium and phosphorus from the mother to the
fetus (7). It has been assumed that for normal extrauterine bone
formation in a VLBW, preterm infant, similar daily require-
ments of calcium and phosphorus are needed. However, in the
extrauterine environment, it is difficult to achieve this level of
calcium and phosphorus delivery in the VLBW, preterm infant
with enteral formulas or hyperalimentation (8). The cause of
the bone disease in preterm birth has been ascribed to this
particular issue of mineral substrate availability. Contributing
factors to the bone disease of preterm birth include chronic
illness, prolonged hyperalimentation, bronchopulmonary dys-
plasia, and the use of hypercalciuric drugs such as furosemide
for treatment of bronchopulmonary dysplasia and methylxan-
thines for treatment of apnea and bradycardia, both of which
increase calcium losses (8).
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INCREASED BONE RESORPTION IN THE BONE
DISEASE OF PRETERM BIRTH

Although the notion that decreased bone formation from
diminished availability of calcium and phosphorus has tradi-
tionally been thought to be the primary cause of the bone
disease of preterm birth, there are two observations that sug-
gest otherwise and provide evidence of increased bone resorp-
tion in the bone disease of preterm birth. First, two separate
groups have found urinary bone resorption markers in much
greater concentration in preterm infants compared with term
infants (9, 10). Markers of bone resorption included collagen
turnover compounds (hydroxyproline, type 1 collagen telopep-
tide), calcium, and phosphate. Beyers et al. (9) noted that
preterm infants at expected full-term age had significantly
greater urine excretion of calcium (2.9X), phosphate (4.3X),
and hydroxyproline (3.7X) compared with normal term in-
fants. Serum alkaline phosphatase was twice as great (411 U/L
versus 206 U/L) in preterm infants at expected full-term age
compared with the normal term infants. Moreover, radiologic
evaluation showed increased endosteal resorption in the pre-
term infants. Mora et al. (10) found that preterm infants
(average gestational age of 33 wk) had significantly higher
blood levels of type 1 collagen telopeptide than term infants
when both groups were studied at 4 wk of age. Using osteo-
calcin and procollagen type 1 carboxyterminal propeptide as
indices of bone formation, these investigators found lower
levels of bone formation in the preterm infants than the term
infants. Others have also found an increased renal excretion of
calcium and phosphorus in the preterm infant compared with
the term infant (11).

Second, VLBW, preterm infants who are fed formula prep-
arations with higher calcium and phosphorus content usually
do not have an increased bone density (12). If the bone disease
of preterm birth were caused solely by calcium and phosphorus
deficiency, then these two observations would not be expected.
The totality of evidence points to some other factor or addi-
tional factor than just calcium and phosphorus availability as
the basis for the bone disease of preterm birth.

What specific factor could explain this difference in bone
resorption in the preterm versus term infant? In the past, a
biochemical perspective has been taken in trying to understand
human bone disease as shown in Figure 1 A. This approach has
failed to provide adequately an understanding of the bone
disease of preterm birth, because it ignores biomechanical
factors. If a biomechanical perspective is taken, then the bone
disease of preterm birth is easily understood as shown in Figure
1B. The answer to this conundrum is in the difference in bone
loading of the skeletal system in the preterm infant compared
with the term infant.

BIOMECHANICAL MODEL OF BONE FORMATION

Frost (13) proposed the mechanostat/mechanical loading
model of postnatal bone formation, which states that the pri-
mary factor in the development of bone strength is the load
(force) placed on the bone. The load causes a strain on the
bone, which is transmitted to the mechanostat as an input
signal. The mechanostat is a sensor within the bone that can

A. Biochemical Model of Bone Formation
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B. Biochemical/Biomechanical Model of Bone Formation
(simplified version of the “Utah paradigm”)
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Figure 1. Models of bone formation. 4, Biochemical model of bone forma-
tion. The biochemical model of bone formation recognizes that bone resorption
and formation are mediated by a number of biochemical and hormonal
parameters, including calcium, phosphorous, collagen, and others (e.g. vitamin
D, PTH, alkaline phosphatase). However, this model does not provide an
explanation for the primary impetus for bone formation and resorption. B,
Biochemical/biomechanical model of bone formation (Utah paradigm). The
biochemical/biomechanical model is similar to the above biochemical model
with the important addition of the influence of bone loading. Bone loading is
the mechanical catalyst that drives the above reaction either to form bone if
there is increased bone loading or to resorb bone if there is decreased bone
loading. Bone loading is far greater in a fetus in the intrauterine environment
than in a newborn infant in the extrauterine environment because of the ability
of the fetus to kick against the uterine wall in the buoyancy of the amniotic
fluid. Fetal activity also promotes muscle growth, which contributes to bone
loading.

evaluate the input of strain from a given load placed on the
bone and then direct an appropriate output to the effector cells,
osteoblasts and osteoclasts. Strain is the proportional change in
length caused by a load and can be from compression, tension,
or shearing loads. If a bone specimen is stretched by 1% of its
length, then it is said to be undergoing a strain of 1%, or 10,000
microstrain. If a bone specimen is compressed by 0.1% of its
original length so that it is now 99.9% of its original length,
then it would be undergoing a strain of 1000 microstrain.
Loads always cause strains even when they are small.

The mechanostat thus is the “brain of the bone” and func-
tions as a feedback or regulatory system to keep bone strength
commensurate with the loads placed on the bone. The mech-
anostat processes the strain input and compares it with preset,
threshold levels of strain for increasing bone strength or de-
creasing bone strength. The mechanostat is then able to gen-
erate an appropriate output signal to effector cells to bring
about the needed change in bone strength to align the strain
within given limits. Effector cells are osteoblasts that produce
bone and osteoclasts that resorb bone. If significantly increased
loads that exceed the threshold for increasing bone strength are
placed on a bone, then the mechanostat signals the effector
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cells to increase bone strength. If significantly decreased loads
that exceed the threshold for decreasing bone strength are
placed on a bone, then the mechanostat signals the effector
cells to decrease bone strength. If the strain does not exceed
either of these thresholds, then the effector cells operate at a
status quo, or baseline, level of activity.

Osteoblast and osteoclast activity can change bone strength
through either altering bone density or altering bone architec-
ture through two distinctly different processes of bone physi-
ology: bone modeling and bone remodeling. Both modeling
and remodeling are processes that respond to bone loading
through the mechanostat.

Modeling is the process by which bone is sculpted to the
most advantageous geometry, both for bone strength and for
appropriate attachment of muscles and tendons. As bone
grows, some bone must be added to certain surfaces and some
bone must be removed from other surfaces. The bone achieves
this result through formation drifts and resorption drifts. For-
mation drifts influence osteoblasts to build up some bone
surfaces, whereas resorption drifts influence osteoclasts to
remove bone from some bone surfaces. Modeling results in
changes of bone size or shape or of both and thus is a
prominent process in bone development during fetal life and in
childhood. In bone modeling, osteoblasts and osteoclasts func-
tion independent of each other, and each cell type responds to
a certain preset modeling threshold within the mechanostat.
Modeling almost always increases bone strength either by
increasing bone mass or by favorably altering bone
architecture.

Remodeling is the process whereby fatigued bone is effi-
ciently removed and then replaced by new, intact bone by the
sequential activity of osteoclasts to resorb the fatigued bone
followed by osteoblasts to produce new bone. In bone remod-
eling, osteoblasts and osteoclasts act cooperatively in a coupled
manner in a unit called a basic multicellular unit. This coordi-
nated activity is also realized when a certain preset threshold of
strain is sensed by the mechanostat.

There are two types of bone loading. The first is associated
with the direct contact or impact of bone against another
object, such as the increased load that the leg bones realize
during running or from the resistance that a bone might expe-
rience such as the extremities realize in swimming. The second
is associated with the active and passive load that the bone
senses from the muscles attached to it. The muscles that attach
to a bone exert a small but continuing load on the bone even
when the muscle is not actively moving the bone. The loading
of the skeletal system from attached muscles is critical in
maintaining bone density. Weightlifters have greater bone
density than nonweightlifters (14). Children with chronic, neu-
romuscular diseases associated with muscle paralysis and mus-
cle weakness have osteopenia and an increased risk for fracture
(15).

Frost called this model the “Utah paradigm,” which is an
ever-evolving paradigm that includes nutrient, hormonal, cel-
lular, biochemical, and biomechanical factors (16). The cen-
terpiece of the Utah paradigm is the notion that bone strives to
be a mechanically competent tissue through the operation of
the mechanostat to sense strain from the loads placed on the

bone and appropriately respond to these strains by increasing
or decreasing bone strength. Others have also underscored the
importance of mechanical considerations in skeletal health and
disease (17-19).

According to the Utah paradigm, bones are formed in two
distinct steps (16). The first step is the embryogenesis of the
skeletal system. Between 5 and 12 wk of gestation, multiple,
specific genes direct condensations of mesenchyme to specific
anatomic locations that are destined to become the precursor
tissues of bone that will eventually chondrify and ossify (20).
In a similar time period during the first trimester, other specific
genes direct ventral and dorsal condensations of somitic me-
soderm to become precursor tissues of skeletal muscle, and
these will eventually attach to their appropriate bones. By 16
wk of gestation, the anatomy, anatomical relationships, and
biologic machinery for adaptation of bones are in place. This
state of bone is called the baseline conditions.

The second step of bone formation, beginning during the
midportion of the second trimester, is the state of responsive-
ness of the skeletal system to genetically defined bone proteins
and humoral mediators, nutrient considerations, and mechani-
cal factors. Long bones grow both in length and in diameter.
Linear bone growth of the long bones is determined primarily
by specific genes through enchondral ossification. However,
long bones assume their final, normal geometry, through the
process of modeling. Modeling uses osteoblasts to form bone
and osteoclasts to remove bone. Diametrical bone growth of
long bones occurs through modeling in which osteoclasts
remove bone from the endosteum and osteoblasts form bone
along the periosteum. Flat bones, such as the scapula, pelvis,
and skull, grow through intramembranous bone formation.
Modeling that is responsive to bone loading occurs in enchon-
dral and intramembranous bone formation in both the prenatal
and postnatal periods. During the second and third trimesters,
bone modeling also responds to increasing muscle forces. As
the skeletal system of an individual ages, the adaptations for
any given bone, which include growth, modeling, and remod-
eling, are added to the baseline conditions of the bone.

At the same time that bone modeling begins, fetal movement
commences at approximately the 16th wk of gestation. Bone
modeling is strongly influenced by bone loading, and bone
loading during fetal life is determined primarily by fetal move-
ment. Fetal movement leads to bone loading in three ways: /)
the loading associated with the impact of the fetus, especially
the extremities, against the uterus; 2) the loading associated
with the resistance against movement in the amniotic fluid; and
3) the loading associated with normal fetal muscle develop-
ment, which is movement dependent.

The Utah paradigm, therefore, predicts that bone strength
and, thus, bone density and bone architecture are directly
related to fetal movement. In situations in which there is
diminished fetal movement, decreased bone strength of the
fetus and newborn is expected through changes in bone density
and bone architecture. Three observations support the hypoth-
esis that fetal movement determines fetal bone strength. First,
previous work by Rodriguez ef al. (21) showed that infants
with congenital neuromuscular disease in which there is both
decreased fetal movement and decreased fetal muscle mass and
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function have osteopenia and decreased cortical bone thickness
of long bones compared with controls. This observation sug-
gests that there is diminished subperiosteal bone formation in
infants with prenatal-onset neuromuscular disease. Second,
Rodriguez et al. (22, 23) also described an experimental animal
model called the fetal akinesia deformation sequence in which
rat fetuses are pharmacologically immobilized with curare at
17 d of gestation (term gestation is 21 d). At birth, these
curare-exposed rats have short umbilical cords and osteopenia
compared with controls. Decreased fetal movement leads to a
short umbilical cord (24). Third, diminished fetal movement
and intrauterine confinement have been put forth as the under-
lying basis of temporary brittle bone disease (25, 26). This
observation has suggested that prenatal bone loading in the
form of fetal movement can influence postnatal bone strength
during the first year of life and that infants who had signifi-
cantly decreased fetal movement may be at risk for incurring
fractures with physical forces that might not ordinarily cause a
fracture, especially in the first 4 mo of life. Preterm birth is
overrepresented in infants with temporary brittle bone disease
(25).

APPLICATION OF THE BIOMECHANICAL MODEL
OF BONE FORMATION TO THE BONE DISEASE OF
PRETERM BIRTH

That the fetus has a functioning musculoskeletal system by
16 wk of gestation sets the backdrop for the influence of
biomechanics on fetal bone development after 16 wk of ges-
tation. Whereas genetic information, hormonal influences, and
nutrient considerations all influence bone physiology after 16
wk of gestation and into postnatal existence, it is biomechani-
cal considerations that primarily determine ultimate bone
strength, and these considerations have not been fully appre-
ciated in the past in models of bone physiology before the Utah
paradigm.

The extent of in utero bone loading will determine the
ultimate skeletal strength of the fetus, especially during the last
trimester, when there is rapid bone growth and bone mineral-
ization. Fetal movement in the third trimester is the critical
event that endows the newborn infant with normal bone load-
ing and, thus, normal skeletal strength. The term infant who
has an intact neuromuscular system realizes the full influence
of this fetal movement on bone formation. The intrauterine
loading of the fetal musculoskeletal system through fetal
movement activates the mechanostat to increase bone strength
through the process of modeling as shown in Fig. 2. Fetal
movement also promotes muscle growth, which contributes to
bone loading and thus also influences bone modeling.

When an infant is born markedly preterm, however, the
infant is deprived of much of this musculoskeletal bone loading
in utero as also shown in Fig. 2. After birth, the markedly
preterm infant is often hypotonic and has a poverty of move-
ments compared with the term infant (27). Attenuated bone
loading in the VLBW, preterm infant leads to an input strain to
the mechanostat that is lower compared with the term infant.
Thus, there is also postnatal modulation of the mechanostat to
increase resorption and decrease bone formation in the VLBW,

preterm infant compared with the term infant. The markedly
preterm, VLBW infant is, therefore, at a distinct biomechanical
disadvantage in bone formation by losing weeks of meaningful
intrauterine movement that promotes bone formation and re-
placing this period with that of an earlier-than-expected en-
counter with the extrauterine environment, which is less favor-
able for bone formation.

The rib fractures associated with preterm birth have the same
underlying cause as the long bone fractures. The bone loading
of ribs probably can occur from the following: /) fetal move-
ment and kicking that likely is transmitted along the skeleton to
the ribs; 2) active or passive breathing, which would provide
some bone loading through the ribs expanding in inspiration
and contracting in expiration; and 3) the muscles attached to
the ribs, which indirectly would get stronger with active
breathing but probably would not get stronger if breathing were
assisted by mechanical ventilation. Thus, a term infant who
benefited from the loading of the skeleton during the entire 40
wk of gestation and who was actively breathing and not
ventilator dependent during the newborn period would have
stronger ribs than the 28-wk preterm infant who was deprived
of 12 wk of exuberant intrauterine bone loading and who was
on a ventilator for a prolonged period after birth because of
respiratory problems. Rodriguez et al. (21) found that the
periosteal diameter of the fifth rib in infants with prenatal-onset
neuromuscular disease was significantly lower than that of
control infants, which indicates that prenatal bone loading does
influence rib strength.

The recently published study by Moyer-Mileur et al. (28)
provides support that bone loading is important in bone for-
mation of the preterm infant. They found that preterm infants
who received daily physical therapy for an average period of
approximately 27 d after birth had gains in forearm bone
mineral density that were 75% greater than those in infants
who did not receive physical therapy. This daily physical
activity mimics the movement that this born, preterm infant
would have had as an intrauterine fetus if the infant had not
been born preterm.

The traditional, biochemical paradigm of bone biology
adequately details the intricate relationships between cal-
cium, phosphorous, and various other hormonal influences
on their disposition, as shown in Fig. 1A. However, the
biochemical model does not consider the primary determi-
nant of bone formation, bone loading. Only when biome-
chanical factors are considered in the context of the bio-
chemical model of bone biology is there a complete picture
of bone dynamics as shown in Figure 1B. This biomechani-
cal model of perinatal bone formation suggests that mineral
availability needs to be matched for the degree of bone
loading on the skeletal system of the fetus/infant. Intrauter-
ine movement of the fetus in the last trimester is much
greater than the movement of the newborn infant, term or
preterm, in the immediate postnatal period. The intrauterine
environment is unique and well-suited for promoting bone
loading of the fetal musculoskeleton, for the fetus is buoyed
in amniotic fluid, which allows for bouncing and kicking
against the uterine wall. This type of environment cannot be
duplicated once the infant is born; thus, the VLBW, preterm
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Figure 2. Biomechanical processing of bone loading in the VLBW, preterm infant vs the term infant.

infant loses this critical period of intrauterine bone
formation.

This model predicts that the amount of mineral needed for
bone formation would be less once the infant is born, because
of the change in the quality and quantity of movement, yet it
has been the goal to attain in the VLBW preterm infant mineral
availability that is comparable to the in utero delivery of
calcium and phosphorus. The conventional wisdom of trying to
achieve the same levels of mineral availability in the immedi-
ate postnatal period should be reevaluated for it may not be
physiologically adaptive to the level of bone loading. The
lower concentrations of calcium and phosphorus in breast milk
may be giving us this message.

The biomechanical model of bone formation also explains
the observations that chronic illness, bronchopulmonary dys-
plasia, and hyperalimentation are associated with the bone
disease of preterm birth. All of these are associated with

relative immobilization compared with a healthy, term infant
and therefore would lead to increased bone resorption. The
decrease in calcium accretion between 35 and 40 wk of ges-
tation also follows from the biomechanical paradigm, because
there is a physiologic crowding of the fetus during this time,
with a rapidly increasing fetal volume and decreasing amniotic
fluid volume (29).

This biomechanical paradigm has important therapeutic
implications in the treatment of the bone disease of preterm
birth. In addition to the amounts of calcium and phosphorus
in the diet of the VLBW, preterm infant, attention should be
given to the bone loading of these infants. Passive range-
of-motion activities should be considered in these infants,
the success of which has been demonstrated by Moyer-
Mileur ef al. (28). The frequency of nephrocalcinosis, which
is associated with VLBW infants, might be decreased with
this approach, as it would increase bone accretion and thus
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decrease the amount of calcium presented to the kidney
(30).

CONCLUSION

Fetal bone accretion is directly related to fetal movement.
Although nutritional factors such as mineral availability may
be contributing factors in the bone disease of preterm birth, this
condition is best explained by the decreased quality and quan-
tity of intrauterine and extrauterine movement of the VLBW,
preterm infant compared with that of the term infant. Some of
the problematic issues of the bone disease of preterm birth and
rational therapeutic interventions for its treatment become
readily understandable with a biomechanical perspective of
this issue.
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