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Perinatal transmission of HIV accounts for almost all new
HIV infections in children. There is an increased risk of perinatal
transmission of HIV with maternal illicit substance abuse. Little
is known about neonatal immune system alteration and subse-
quent susceptibility to HIV infection after morphine exposure.
We investigated the effects of morphine on HIV infection of
neonatal monocyte-derived macrophages (MDM). Morphine sig-
nificantly enhanced HIV infection of neonatal MDM. Morphine-
induced HIV replication in neonatal MDM was completely sup-
pressed by naltrexone, the opioid receptor antagonist. Morphine
significantly up-regulated CCR5 receptor expression and inhib-
ited the endogenous production of macrophage inflammatory
protein-1� in neonatal MDM. Thus, morphine, most likely
through alteration of �-chemokines and CCR5 receptor expres-

sion, enhances the susceptibility of neonatal MDM to HIV
infection, and may have a cofactor role in perinatal HIV trans-
mission and infection. (Pediatr Res 54: 282–288, 2003)

Abbreviations
MDM, monocyte-derived macrophages
MIP, macrophage inflammatory protein
RANTES, regulated on activation, T cell expressed and
secreted
DMEM, Dulbecco’s modified Eagle’s medium
MLV, murine leukemia virus
GAPDH, glyceraldehyde-3-phosphate dehydrogenase
RLU, relative light units
RT, reverse transcription

Current estimates of perinatal transmission of HIV infection
range from lower than 2% to as high as 25 to 40%, particularly
owing to high viral load in women in underdeveloped countries
where there is limited prenatal and perinatal care and limited
resources for standardized treatment regimens (1, 2). Increased
risk of perinatal transmission of HIV infection may result from
several maternal, placental, and neonatal factors. There is an
increased risk of perinatal transmission of HIV infection asso-
ciated with maternal illicit substance use, perhaps through
alteration of maternal immune function, enhanced HIV repli-
cation in maternal immune cells, or possible effects on neonatal
immune function (2–4). A multicenter study in the United
States demonstrated that HIV-infected women who used illicit
drugs during pregnancy had a higher risk of transmitting HIV
to their infants than did HIV-infected women who did not use

drugs while pregnant (3). There is an increased risk of vertical
HIV transmission and an increased risk of preterm birth if
substance use is continued into the second and third trimesters
in a study without antiretroviral therapy of the pregnant women
(4).
Although little is known about neonatal immune system

alterations after morphine exposure, there is substantial evi-
dence that shows morphine alters the function of the adult
immune system. Endogenous and exogenous opioids and opi-
ate abuse modulate immune function in both in vitro and in
vivo systems (5–8), including a variety of effects on human
adult-derived macrophages (7). Opioids alter cytokine produc-
tion and cell trafficking, enhance susceptibility of immune cells
to HIV infection, and increase viral titers in the brain (9).
Opioids promote the growth of HIV in adult immune cells in
vitro (10–12). We and others have recently demonstrated that
methadone, a long-acting synthetic opiate that has similar
pharmacologic properties to morphine (13), enhances expres-
sion of CCR5 (14, 15), a principal coreceptor for HIV entry
into macrophage on human immune cells, thus promoting HIV
replication in human immune cells. Neonatal cellular immunity
is less robust than that of the adult, placing the neonate at
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higher risk for infection. Acute or chronic morphine exposure
may further exacerbate defects in the neonatal cellular immune
system. Given the factors that there is efficient transfer of
opioids across the placenta and fetuses of mothers with illicit
opiate use are chronically exposed to opiates, it is possible that
opioids alter neonatal immune function in utero and at the time
of delivery. In addition, mothers frequently receive systemic
opiates for pain control during labor and delivery. These
opiates may cross the placenta and affect the neonate during
exposure to potentially infectious agents such as HIV. Finally,
critically ill newborns, including preterm newborns, frequently
receive continuous prolonged courses of i.v. morphine for
sedation and pain control. These newborns are the subset of
neonates at highest risk of nosocomial infection from bacterial,
fungal, and viral organisms. Thus, there is considerable interest
in determining whether opiates, through their receptors, com-
promise functions of the neonatal immune cells that also are
the primary targets for HIV, thus increasing the risk of vertical
transmission of HIV. In the present study, we determined
whether morphine, at clinically relevant doses, affects HIV
infection of neonatal macrophages.

METHODS

Neonatal monocyte preparation. Cord blood was obtained
from the placenta of deliveries of healthy human neonates,
after delivery and separation of the infant from the placenta.
Informed consent was obtained, and the institutional review
board of the Children’s Hospital of Philadelphia has approved
the present study. The heparinized cord blood was separated by
centrifugation over lymphocyte separation medium at 400–500
� g for 45 min. The mononuclear layer was collected and
incubated with DMEM in 2% gelatin-coated flasks for 45 min
at 37°C, followed by removal of the nonadherent cells with
DMEM. Purified monocytes were detached by EDTA. After
the initial purification, at least 97% of the cells were mono-
cytes, as determined by nonspecific esterase staining and flow
cytometry using MAb against CD14 and LDL specific for
monocytes and macrophages as described previously (16, 17).
Cells were plated in 48-well culture plates at a density of 0.5 �
106 cells/well in the DMEM containing 10% FCS to obtain
freshly isolated monocytes (within 48 h of isolation), and
monocyte-derived macrophage (7–8 d after isolation). Mono-
cyte viability was monitored by trypan blue exclusion and
maintenance of cell adherence. In all cases, Limulus amebocyte
lysate assay (Pyrochrome, Association of Cape Cod Inc., Fal-
mouth, MA, U.S.A.) with sensitivity of 0.005 endotoxin units
per milliliter demonstrated that the media and reagents were
endotoxin-free (�0.1 endotoxin units/mL).
Reagents. FITC-conjugated antibodies against CD14, CD4,

and CCR5, as well as the control IgGs (IgG1, IgG2a, and
IgG2b) were obtained from PharMingen (San Diego, CA,
U.S.A.). FITC-conjugated anti-CXCR4 antibody was obtained
from R&D Systems (Minneapolis, MN, U.S.A.). Morphine
sulfate was obtained from Elkins-Sinn, Inc. (Cherry Hill, NJ,
U.S.A.). Naltrexone was purchased from Sigma Chemical Co.
(St. Louis, MO, U.S.A.).

HIV strains. On the basis of their differential use of the
major HIV coreceptors (CCR5 and CXCR4), HIV isolates
have been referred to as R5, X4, or R5X4 strains (18). The
macrophage-tropic R5 strain (Bal) was obtained from the
AIDS Research and Reference Reagent Program, National
Institutes of Health, Bethesda, MD, U.S.A.
Preparation of pseudotyped HIV. Recombinant luciferase

encoding HIV virions were pseudotyped with the envelopes
(Env) from macrophage-tropic (ADA) or amphotropic murine
leukemia virus (MLV). Human embryonic kidney cell line
(293T) was cotransfected with the plasmids encoding either
ADA Env or MLV Env and the plasmid containing luciferase-
encoding NL4–3 HIV backbone (pNL-Luc-E�R�). Superna-
tants were collected as virus stock 48 h later. The plasmids
encoding HIV ADA or MLV Env were generously provided by
John Moore (Aaron Diamond AIDS Research Center, New
York, NY, U.S.A.), and the plasmid with luciferase-encoding
NL4–3 HIV backbone was provided by Ned Landau (Aaron
Diamond AIDS Research Center). All virus stocks were as-
sayed for p24 antigen and stored at �70°C as cell-free virus
after filtration through a 0.22-�m-pore-size filter.
RT assay. HIV RT activity was determined based on the

technique of Willey et al. with modification (19). In brief, 10
�L of collected culture supernatants was added to a cocktail
containing poly(A), oligo(dT) (Pharmacia Inc., Piscataway,
NJ, U.S.A.), MgCl2, and [

32P]dTTP (Amersham Corp., Arling-
ton Heights, IL, U.S.A.) and incubated for 20 h at 37°C. Then
30 �L of the cocktail was spotted onto DE81 paper, dried, and
washed five times with 2� saline-sodium citrate buffer and
once with 95% ethanol. The filter paper was then air-dried.
Radioactivity was counted in a liquid scintillation counter
(Packard Instrument Inc., Palo Alto, CA, U.S.A.).
Flow cytometry. To determine whether morphine affects the

expression of CCR5 on neonatal monocytes/macrophages,
cells were incubated with or without morphine (10�10 M) for
24 h. The cells were removed from the culture plate and then
resuspended in 100 �L of PBS. After incubation with 20 �L of
FITC-conjugated anti-CCR5 antibody for 30 min at 4°C, the
cells were washed twice with PBS and fixed with 1% parafor-
maldehyde in PBS. FITC-conjugated control IgG was isotype-
matched for anti-CCR5 antibody. Fluorescence was analyzed
on an EPICS-elite flow cytometer (Beckman Coulter Electron-
ics, Hialeah, FL, U.S.A.).
MIP-1� titration. MIP-1� ELISA kits were purchased from

Endogen, Inc. (Cambridge, MA, U.S.A.). The assay was per-
formed as instructed in the protocol provided by the manufac-
turer. In brief, 50 �L of supernatants was added to antibody-
coated wells and incubated for 1 h at room temperature. The
plate was washed with the provided buffer solution and incu-
bated with 100 �L of biotinylated antibody reagent for 1 h at
room temperature. The plate was washed again, treated with
100 �L of prepared streptavidin–horseradish peroxidase solu-
tion, and incubated for 30 min at room temperature. After an
additional wash, 100 �L of tetramethylbenzidine (TMB) sub-
strate solution was added to each well, and color was allowed
to develop at room temperature for 30 min. The reaction was
stopped by the addition of 100 �L of stop solution to each well.
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The plate was read on a microplate reader (ELX800, Bio-Tek
Instruments, Inc., Winooski, VT, U.S.A.).
Luciferase activity assay. The luciferase activity was deter-

mined using a luciferase assay kit (Promega Biotec, Madsion,
WI, U.S.A.). Pseudotyped HIV-infected neonatal MDM (5 �
105 cells) incubated with or without morphine (see
pseudotyped reporter virus entry essay below) were lysed in
150 �L of 1� reporter lysis buffer (Promega Biotec). Lysates
(50 �L) were mixed with an equal volume of luciferase
substrate (Promega Biotec) and luciferase activity was then
determined in a luminescence counter (PerkinElmer Wallac
Inc., Gaithersburg, MD, U.S.A.). Emitted light in each well
was measured over a 0.5-s period and designated as RLU.
RNA extraction and reverse transcription. Total cellular

RNA was isolated from neonatal MDM (106 cells) using
Tri-reagent (Molecular Research Center, Cincinnati, OH,
U.S.A.). In brief, the total RNA was extracted by a single-step,
guanidinium thiocyanate-phenol-chloroform extraction. After
centrifugation at 13,000 � g for 15 min at 4°C, the RNA-
containing aqueous phase was precipitated in isopropanol.
RNA precipitates were then washed once in 75% ethanol and
resuspended in 30 �L of RNase-free water. One microgram of
total RNA was subjected to RT using the RT system (Promega
Biotec) with specific primers (antisense) for HIV gag gene
(5'-TGACATGCTGTCATCATTTCTTC-3') and CCR5 (see
below for primer sequences) genes for 1 h at 42°C. The
reaction was terminated by incubation of the reaction mixture
at 99°C for 5 min and then kept at 4°C. The resulting cDNA
was ready for serving as a template for PCR amplification or
real-time PCR quantification.
PCR analysis. PCR amplification of CCR5 cDNA was

performed for 35 cycles using AmpliTaq Gold (Perkin Elmer-
Cetus, Foster City, CA, U.S.A.) in a GeneAmp PCR System
2400 (Perkin Elmer-Cetus). The specific oligonucleotide prim-
ers are listed as follows: CCR5 gene primers: 5'-CAAAAA-
GAAGGTCTTCATTACACC-3' (sense) and 5'-CCTGTGC-
CTCTTCTTCTCATTTCG-3' (antisense); �-actin gene
primers: 5'-ATGTGGCACCACACCTTCTACAATGAG-
CTGCG-3' (sense) and 5'-CGTCATACTCCTGCTTGCT-
GATCCACATCTGC-3' (antisense). �-Actin was used as a
control to monitor the amount and integrity of RNA in each
sample (Clontech, Palo Alto, CA, U.S.A.). The oligonucleotide
primers were synthesized by Integrated DNA Technologies,
Inc. (Coralville, IA, U.S.A.). The PCR reaction mixture con-
tained 0.2 mM dNTPs, 20 pM each of two primers, and 1.5 U
of AmpliTaq Gold in 1� reaction buffer (Perkin Elmer-Cetus).
Each of the PCR amplifications consisted of heat activation of
AmpliTaq Gold for 9 min at 94°C, followed by 35 cycles of
94°C for 30 s, 50°C for 30 s, and 72°C for 45 s and further
elongation at 72°C for 7 min. PCR-amplified products were
electrophoresed on ethidium bromide–stained 3% NuSieve 3:1
agarose gel (FMC BioProducts, Rockland, ME, U.S.A.).
Real-time RT-PCR. Real-time RT-PCR was performed us-

ing ABI Prism 7700 Sequence Detection System (Perkin
Elmer-Cetus). For HIV gag gene expression, the reaction
mixture contained 0.25 mM dNTPs, AmpliTaq Gold (1.5 U), 5
mM MgCl2, 50 pM each of the two primers (SK38: 5'-
ATAATCCACCTATCCCAGTAGGAGAAAT-3'; SK39: 5'-

TTTGGTCCTGTCTTATGTCCAGAATGC-3'), 20 pM mo-
lecular beacon probe (SK19: 5'-ATCCTGGGGATTA-
AATAAAATAGTAAGAATGTATAGCCCTAC-3') labeled
with 6-carboxyfluorescein (FAM) (a fluorophore) at its 5' end
and 4-(4�-dimethylaminophenylaso) benzoic acid (DABCYL)
(a quencher) at the 3' end. The cycle conditions were 95°C for
10 min followed by 40 cycles of 95°C for 15 s and 60°C for 1
min. The known amounts of HIV DNA isolated from ACH-2
cells were used as standard controls. All controls and samples
were run in duplicate in the same plate. For CCR5 receptor
gene expression, the same primer pair used for conventional
RT-PCR was used for real-time RT-PCR. The molecular bea-
con probe for CCR5 gene is as follows: 5'-GCGAGTCCTGC-
CGCTGCTTGTCATGGTCCTCGC-3'. The measurement of
GAPDH mRNA levels of the samples by real-time RT-PCR
performed on the same plate was used as a control to normalize
the mRNA contents among the samples tested.
Pseudotyped reporter virus entry assay. Seven-day-cultured

neonatal MDM in 48-well plates (5 � 105 cells/well) were
incubated for 24 h with or without morphine (10�10 M to 10�8

M) and then infected with 10 ng of P24 Gag antigen equivalent
of each pseudotyped HIV per well in the presence of polybrene
(4 �g/mL). At 72 h after infection, the cells were lysed in 150
�L of 1� reporter lysis buffer (Promega Biotec). Lysate (50
�L) was mixed with an equal volume of luciferase substrate
(Promega Biotec), and luciferase activity was then determined
in a Wallac Trilux Microbeta luminometer (Wallac, Turku,
Finland). Data were presented in RLU.
Morphine treatment and HIV infection. Seven-day-

cultured neonatal MDM (5 � 105 cells/well in 48-well plates)
were incubated for 12 h with or without morphine (10�14 M to
10�8 M) or naltrexone (10�8 M), or both, before infection with
HIV strain (Bal). In the case of combination treatment of cells
with morphine and naltrexone, naltrexone was added to the cell
cultures 30 min before the addition of morphine. The cells
were infected with equal amounts of cell-free HIV on the basis
of p24 protein content (20 ng/106 cells) for 2 h at 37°C in the
presence or absence of the reagents described above. The cells
were then washed three times with DMEM to remove unab-
sorbed virus, and fresh medium containing morphine or nal-
trexone was added to the cell cultures. The final wash was
tested for viral RT activity and shown to be free of residual
inocula. Untreated cells severed as controls. The cells were
incubated in the presence of the reagents described above every
4 d after infection. Supernatants were harvested 96 h after
infection for MIP-1� production as determined by ELISA, and
d 8 supernatants were collected for HIV RT activity assay. For
HIV gag gene expression, total cellular RNA was extracted
from MDM 72 h after infection.
Statistical analysis. When appropriate, data were ex-

pressed as mean � SD. For comparison of means of two
groups (morphine-treated versus untreated controls), statis-
tical significance was assessed by t test. Calculations were
performed using Stata Statistical Software (Stata Corp.,
College Station, TX, U.S.A.). Statistical significance was
defined as p � 0.05.
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RESULTS

Morphine enhanced HIV infection of neonatal MDM. To
evaluate whether morphine affects HIV infection of neonatal
MDM, 7-d-cultured neonatal MDM were incubated with or
without morphine at different concentrations (10�12 M to10�8

M) for 12 h and then infected with HIV Bal strain for 2 h. The
addition of morphine to the cultures leads to an increase in HIV
infection of neonatal MDM (Fig. 1). These effects of morphine
were abrogated by the addition of naltrexone (Fig. 1), suggest-
ing the concept that the morphine effect was mediated through
interaction with opioid receptors on the cells. MDM in the
additional wells of the same experiments were also collected
for RNA extraction 72 h after infection and subjected to
RT-PCR and real-time RT-PCR analysis using a specific
primer pair for HIV gag gene. Increased expression (2- to
2.5-fold) of HIV gag gene mRNA was observed in morphine-
treated neonatal MDM in comparison to untreated neonatal
MDM (Fig. 2).
Effect of morphine on pseudotyped HIV infection of neo-

natal MDM. To examine the hypothesis that morphine en-
hances HIV infection of neonatal MDM by affecting viral
entry, we examined the effect of morphine on ADA (CCR5-
dependent and macrophage-tropic) Env or MLV (HIV receptor
independent) Env-pseudotyped HIV infection of MDM. This
pseudotyped HIV genome that encodes a luciferase reporter
gene allows a quantitative measure of the levels of a single
round of infection (20). Neonatal MDM incubated with or
without morphine (10�10 M) were infected with recombinant
luciferase-encoding HIV particles pseudotyped with ADA Env
or MLV Env in the presence of polybrene (4 �g/mL). The cells
were lysed and subjected to luciferase activity determination
72 h after infection as described in “Methods.” When infected
with ADA Env-pseudotyped virus, significant increase of lu-

ciferase activity was observed in the morphine-treated neonatal
MDM compared with the untreated neonatal MDM (Fig. 3).
Morphine, however, had no effect on MLV Env-pseudotyped
HIV infection of neonatal MDM (Fig. 3), further confirming
the observation that morphine enhances HIV infection of neo-
natal MDM by affecting steps involved in HIV entry.
Effect of morphine on CCR5 receptor expression. Because

morphine promoted ADA Env-pseudotyped HIV but not MLV
Env-pseudotyped HIV infection of neonatal MDM, we hypoth-
esized that morphine and its receptor interaction participated in
the regulation of the CCR5 receptor expression, a primary
coreceptor for HIV R5 strain entry into macrophages. CCR5
receptor expression on neonatal MDM was up-regulated by
morphine (10�10 M) as determined by flow cytometry (Fig. 4).
CCR5 mRNA was also up-regulated in MDM by morphine
(10�10 M and 10�8 M; Fig. 5). To determine that the effect of
morphine on CCR5 receptor expression in neonatal MDM is
specific, we also examined whether monocyte/macrophage
marker (CD14) and other HIV entry receptors are affected by
morphine. The expression of CD14, CD4, and CXCR4 recep-
tors in neonatal MDM was not altered by morphine (data not
shown).
Effect of morphine on MIP-1� production. Because �-che-

mokines such as MIP-1�, the natural ligands for CCR5 recep-
tor, have been identified as the HIV suppressive factors (21),

Figure 1. Effect of morphine on HIV Bal infection of neonatal macrophages.
Seven-day-cultured neonatal MDM were incubated with morphine (Mo) or
naltrexone (Nalt) at the concentrations indicated for 12 h and then challenged
with HIV Bal strain for 2 h in the presence of morphine or naltrexone. When
both morphine and naltrexone were used, cells were treated with naltrexone
(10�8 M) for 30 min before the addition of morphine (10�10 M). Cultures
containing neither morphine nor naltrexone served as the control. Cultures
were refed with fresh medium containing morphine every 4 d. Day 8 culture
supernatants were collected for HIV RT assay. The results shown are the mean
� SD of triplicate cultures and are representative experiments using cells from
three different cord blood samples (*p � 0.05, morphine vs control).

Figure 2. Effect of morphine on HIV Bal gag gene expression in neonatal
macrophages. The HIV Bal strain was used to infect 7-d-cultured neonatal
MDM with or without morphine at the indicated concentrations for 2 h. Total
cellular RNA was extracted from the cell cultures 72 h after infection and then
subjected to RT-PCR (A) and real-time RT-PCR (B) for determination of HIV
gag gene expression. �-Actin served as the control to monitor the amount and
integrity of RNA in each sample. HIV gag gene mRNA copy numbers were
normalized with GAPDH mRNA. The results are expressed as HIV gag
mRNA copy numbers per 1,000,000 GAPDH mRNA. One representative of
four experiments using four different cord blood samples is shown.
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we investigated whether morphine affected MIP-1� production
in HIV-infected neonatal MDM. Seven-day-cultured neonatal
macrophages in 48-well plates were incubated with or without
morphine (10�14 M to 10�8 M) or naltrexone for 12 h and then
challenged with HIV Bal strain. Culture supernatants were
collected 96 h postinfection for MIP-1� analysis by ELISA.
Morphine significantly inhibited the production of MIP-1�
(67.3%, 79.7%, and 71.6% of down-regulation at 10�12 M,
10�10 M, and 10�8 M, respectively) in HIV-infected neonatal
MDM (Fig. 6). Morphine at the concentration of 10�14 M had
little effect on MIP-1� production (Fig. 6). The inhibitory
effect of morphine on MIP-1� production was reversed by
pretreating MDM with naltrexone, although naltrexone alone
had no effect on MIP-1� production (Fig. 6).

DISCUSSION

The transmission of HIV in pregnant women is influenced
by “lifestyle cofactors,” including substance abuse. There are
several reasons why increased HIV transmission from moth-
er-to infant might be associated with maternal drug use. Pre-
term delivery, a known consequence of maternal drug use, has
been reported in some studies to be related to increased risk of
perinatal HIV transmission (22–24). A history of continued
cocaine and heroin injection drug use after the first trimester of
pregnancy is strongly associated with vertical HIV transmis-
sion (4). Morphine is commonly administrated to pregnant
women during labor and delivery for pain control and to
intubated neonates for sedation. Opiates in maternal blood
cross the placental barrier very efficiently and selectively ac-
cumulate in fetal blood. However, there is little information
about neonatal immune system alteration and subsequent sus-
ceptibility to HIV infection after morphine exposure. In the
present study, we have analyzed the impact of morphine on
HIV infection of neonatal MDM. We also explored the poten-

tial mechanism(s) by which morphine enhances HIV infection
of neonatal MDM.
Direct action of opiates on viral replication in the immune

cells requires interaction with opioid receptors on the cells.
Evidence for the expression of opiate receptors on immune
cells, in particular receptors for morphine and the metabolites
of heroin, provided a biologic link between opiates and the
cells of the human immune system (25, 26). Opioid receptors
(�, �, and �), as well as nonclassic opioidlike receptors, are
present on cells of the human immune system (27–30). Binding
sites for the novel morphine receptor designated �3 are detect-
able on human peripheral blood isolated monocytes (31).
Opioid receptor mRNA is also constitutively expressed in
highly purified human microglia (32). To determine whether
the modulating effect of morphine on HIV infection and
MIP-1� production is opioid receptor specific, we incubated
neonatal MDM with or without naltrexone, an opiate receptor
antagonist, before morphine treatment. Our data showed that
naltrexone blocked the effects of morphine on HIV infection
and MIP-1� production, which provides evidence of the pres-
ence of opioid receptors on neonatal MDM. Inasmuch as
morphine has a high affinity and selectivity for the � receptor

Figure 3. Effect of morphine on pseudotyped HIV infection of neonatal
macrophages. Seven-day-cultured neonatal MDM were treated with morphine
(10�10 M) for 24 h, and then challenged with recombinant luciferase-encoding
HIV pseudotyped with either ADA Env or MLV Env. Luciferase activity was
quantitated in the cell lysates 72 h after infection. The data are expressed as
RLU of morphine-treated cells to that of controls incubated without morphine.
The results demonstrated are the mean � SD of triplicate cultures and
representative of six experiments using six different cord blood samples (*p �
0.01, morphine vs control).

Figure 4. Effect of morphine on CCR5 receptor expression on 7-d-cultured
neonatal MDM. Seven-day-cultured neonatal MDM were incubated with
(Bottom) or without (Top) morphine at 10�10 M for 24 h, and expression of
CCR5 on neonatal MDM was determined by flow cytometry. Shaded histo-
gram, control staining with isotope-matched antibody (IgG2b); open histo-
gram, CCR5 expression with MAb 2D7. The results are shown as the
percentage of CCR5-positive cells and are representative of four experiments.
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(33–35), the observed morphine effects are most likely through
the specific � receptors on the cells.
There are several mechanisms by which opiates may effec-

tively enhance HIV infection (10, 36, 37). We showed in this
communication that morphine at clinically relevant concentra-
tions (10�12 to 10�8 M) significantly enhanced HIV infection
of neonatal macrophages (Figs. 1 and 2). We also demonstrated
that morphine up-regulated expression of the CCR5 receptor at
both mRNA and protein levels (Figs. 4 and 5). CCR5 is a
primary coreceptor for HIV R5 strain infection of macro-
phages. The �-chemokine receptor CCR5 plays an important
role in nonsyncytium-inducing HIV strain infection of macro-

phages (20, 38, 39). The natural ligands (RANTES, MIP-1�
and -1�) of the CCR5 receptor inhibit HIV infection by
interfering with HIV binding to CCR5 (38, 40–42). Morphine
significantly inhibits MIP-1� production in HIV-infected neo-
natal MDM (Fig. 6). Monocytes and macrophages are impor-
tant in HIV infection during all stages of disease in that they
serve as major target cells, reservoirs, vehicles to other tissues,
and transmitters of virus to CD4� T cells (43). We and others
demonstrated that neonatal monocytes/macrophages have in-
creased susceptibility to HIV infection in vitro compared with
adult macrophages (44–46). In addition, we have recently
demonstrated that morphine, as well as methadone (a synthetic
opiate), potentiates HIV infection of adult blood mononuclear
phagocytes (14). Thus, our data provide a possible mechanism
by which morphine potentiates HIV infection of neonatal
macrophages. Our data showing that morphine modulated
expression of MIP-1� and CCR5 receptor are supported by
several recently reported observations (47–49). Nair et al. (47)
recently reported that cocaine selectively down-regulates en-
dogenous MIP-1� secretion and up-regulates CCR5 expression
by adult peripheral blood monocytes, suggesting a mechanism
by which cocaine increases susceptibility of peripheral blood
monocytes to HIV infection. Morphine induces CCR5 expres-
sion in a human T-lymphoid cell line (CEMx174) (48). This
increased CCR5 expression by morphine was correlated with
morphine-enhanced susceptibility of the CEMx174 cells to
simian immunodeficiency virus infection (49). These data sup-
port our hypothesis that morphine, through modulation of
neonatal cell function, enhances HIV infection of these cells.

CONCLUSIONS

Taken together, our in vitro data in association with the
clinical and epidemiologic evidence (3) indicate the possibility
that morphine may play an important role as a cofactor in
neonatal HIV infection. The up-regulatory effects of morphine
on HIV infection of both maternal and neonatal immune cells
may have a significant impact on perinatal transmission and
infection. Further studies are necessary to prove the association
between opioid abuse and increased risk of HIV vertical
transmission.
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