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Most studies of the cellular toxicity of unconjugated bilirubin
(UCB) have been performed at concentrations of unbound UCB
(BF) that exceed those in the plasma of neonates with bilirubin
encephalopathy. We assessed whether UCB could be toxic to
neurons and astrocytes at clinically relevant BF values (�1.0
�M), a range in which spontaneous precipitation of UCB would
be unlikely to occur, even though BF exceeded the aqueous
saturation limit of 70 nM. A meta-analysis yielded twelve pub-
lished studies that had determined the in vitro effects of UCB on
the function of cultured neurons or astrocytes at calculable BF

values � 1.0 �M. BF values were recalculated from the stated
UCB, albumin, and chloride concentrations by applying affinity
constants derived from ultrafiltration of comparable solutions
containing 14C-UCB and delipidated human serum albumin. At
BF slightly above aqueous solubility, UCB impaired mitochon-
drial function and viability of astrocytes. Exposure of neuroblas-
toma and embryonic neuronal cell lines to BF above 250 nM
impaired cellular proliferation and mitochondrial function and
increased apoptosis. Purified UCB inhibited the uptake of gluta-
mate into astrocytes at BF as low as 309 nM and induced

apoptosis in brain neurons at BF as low as 85 nM. UCB can
impair various cellular functions of astrocytes and neurons ex-
posed to BF near or modestly above its aqueous solubility limit,
at which UCB exists as soluble oligomers and metastable micro-
aggregates. The results render doubtful the long-held concept
that precipitation of UCB in or on cells is required to produce
neurotoxicity. (Pediatr Res 54: 98–104, 2003)

Abbreviations
UCB, unconjugated bilirubin
BF, concentration of free (unbound) UCB
BT, total UCB concentration
HSA, human serum albumin
KF, corrected affinity constant of HSA for UCB
MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide
DMEM, Dulbecco’s Minimal Essential Medium
LDH, lactate dehydrogenase
T3, triiodothyronine
DAPI, 4�, 6-diamidino-2-phenylindole

The moderate “physiologic” jaundice that develops after
birth may be neuroprotective for the neonate (1), owing to the
potent antioxidant properties of UCB (2, 3). By contrast, if the
underlying immaturity of the hepatic transport processes or the
postnatal increases in production and enterohepatic circulation
of UCB are more severe (4), marked neonatal jaundice occurs,
which may result in reversible neurotoxicity (bilirubin enceph-
alopathy) (5, 6). This may progress to precipitation of UCB in

focal areas of the CNS with permanent neurologic damage
(kernicterus) (5).

The UCB that enters the CNS is derived from the free
fraction of plasma UCB (BF) that is not bound to plasma
proteins and lipoproteins (6). BF levels in plasma are normally
very low, as a result of the tight binding of UCB to two sites
on HSA (7). Recent data indicate that the affinity for UCB
decreases markedly as HSA concentration increases (8, 9) and
when chloride is added (9). Therefore, the accepted affinity
constant of 6 � 107 L/mol (10), determined at an HSA
concentration of 60 �M, overestimates by an order of magni-
tude the true affinity constant at physiologic albumin and
chloride concentrations (9), with consequent marked underes-
timation of BF. In addition, most published studies of the
neurotoxicity of UCB have been performed at total UCB levels
vastly higher than those seen in jaundiced neonates with
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reversible bilirubin encephalopathy, and thus have question-
able relevance to the clinical manifestations of neurotoxicity
(11, 12).

In the present work, we have applied the affinity constants of
UCB for HSA (KF), derived by serial ultrafiltration (9), to
recalculate the BF levels present in published in vitro studies of
UCB toxicity to neurons and astrocytes. Our aim was to test the
hypothesis that in vitro neurotoxicity of UCB could be ob-
served at BF values of 1.0 �M or less, in the range at which
spontaneous precipitation of UCB would be unlikely to occur,
even if BF was above the aqueous saturation limit of 70 nM. In
12 studies performed at relevantly low total UCB concentra-
tions, toxicity usually occurred at BF levels near or modestly
above the aqueous solubility of UCB.

METHODS

Selection of papers for meta-analysis. We searched
PubMed for papers under the following headings: bilirubin �
(cells, cultured or cell lines) � (astrocytes or neurons). After
eliminating duplicates and adding two related papers by Sil-
berberg et al. (12a,b), we had 28 references. Of these, all but 12
were eliminated for the following reasons: paper published in
Chinese 1; review article without original data, 1; did not
perform in vitro incubations with UCB, 5; data duplicated
results in a paper by the same group that was selected for
meta-analysis, 1; only uptake and binding of UCB were stud-
ied, not toxicity, 1; incubations included whole human or
bovine serum, or BSA, precluding estimation of BF values by
applying our ultrafiltration-derived KF values for binding of
UCB to delipidated HSA, 4 (also, in two of these, the source
and purity of UCB were not given, one studied only UCB
photodegradation products, and one performed studies only at
BF values of � 5 �M); studies were done only at BF values of
5 �M or greater, 2; studies were done at BF values below 5
�M, but examined only recovery of function after bilirubin
washout and the control data duplicated results in another
paper by the same group, 1.

One of the 12 papers selected one was done only at a single
BF value of 0.5 �M in the absence of albumin (13), and in part
duplicated data from another paper by the same group (14) that
was performed over a range of BF values. In another selected
paper (15), studies were done at BF values below 5 �M, but no
toxicity was observed at BF values � 1 �M. In three of the
papers selected (13, 14, 16), the stock UCB solution was
markedly supersaturated, so that precipitation and degradation
likely occurred; thus, the true threshold for UCB toxicity may
have been lower than the calculated BF values. Another se-
lected paper studied BF values below 5 �M, but there were no
studies done at BF values between 383 and 1761 nM, so that
the true threshold could not be evaluated (17).

Calculations. BF levels were calculated from a model that
assumes independent binding of UCB to two sites on albumin,
using equation 1 (10), where k1 and k2 are the binding constants
for the first and second sites, respectively:

BT � BF

[HSA]
�

BF � k1

1 � (BF � k1)
�

BF � k2

1 � (BF � k2)
(1)

Applying the Solver function of Microsoft Excel 6.0 (Mi-
crosoft Corp, Redmond, WA, U.S.A.) to equation 1, BF values
were calculated from the total UCB (BT) and total albumin
[HSA] concentrations given in the selected papers, using af-
finity constants of solutions containing comparable concentra-
tions of delipidated HSA and chloride. The value for k1 was set
equal to the first site affinity constant (KF) of 14C-UCB for
delipidated HSA, derived from serial ultrafiltration of 14C-
UCB in solutions containing comparable HSA and chloride
concentrations, after correction for the labeled degradation
products of 14C-UCB that passed the filter (9). This is valid,
because the ultrafiltration studies had intentionally been per-
formed at UCB/HSA ratios of 0.25 or below (9), at which
binding of UCB to the second, lower-affinity site is insignifi-
cant (10). k2 was calculated as k1/15 � k2 (10).

Most of the papers in the meta-analysis added the UCB �
HSA to cells incubated in protein-free DMEM, which has a
total chloride concentration of 118 mM; two papers (20,21)
used a chloride concentration of only 1 mM. Because the KF

values from the ultrafiltration studies had been obtained only in
the presence of 50 mM chloride or no chloride, KF values
obtained at 50 mM or 0 mM chloride were applied, respec-
tively. Based on published measurements of the affinity of
chloride ions for delipidated HSA (18), these approximations
may result in overestimation of KF by, at most, 14 to 26% (see
“Discussion”).

All but three of the papers used unpurified UCB. Only the
studies from the Lisbon group (19–21) used UCB that was
purified by alkaline extraction of impurities and recrystalliza-
tion from chloroform (22). All studies that included HSA,
including the reference ultrafiltration studies of UCB-HSA
binding, used delipidated HSA (Sigma Chemical Co, St. Louis,
MO, U.S.A.). In all studies, the UCB had been dissolved in
0.1–1.0 N NaOH, then added to the buffered solution of HSA
(if used), and then neutralized with HCl.

RESULTS

We report only comparisons of reported toxic effects of
UCB with BF levels calculated from the total UCB, HSA, and
chloride concentrations provided in the published papers that
were selected for the meta-analysis. We performed no direct
measurements of the BF levels in these media and no studies of
the effects of UCB on cultured cells.

Studies with Unpurified UCB

Astroglial cells (Table 1). Cultured cerebral glial cells from
rat embryos showed a significant decrease in mitochondrial
function (MTT activity) when exposed for 2 h to BF levels of
500 nM or higher (Fig. 1) (16). Trypan blue release by the
same cells increased significantly at BF levels of 1560 nM, but
not at 119 nM; intermediate BF levels were not tested. In
contrast, cultured cerebral astrocytes from neonatal rats were
damaged by � 24-h exposure to BF levels as low as 71 nM,
exhibiting significant dose-related decreases in viability (in-
creased LDH release) and mitochondrial function (MTT test)
(Fig. 2) (23). A similar 24- to 48-h exposure of these cells to
UCB likewise significantly increased LDH release, but the
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threshold BF level was 721 nM (Fig. 3), with no effect at 194
nM (24).

Another study with cultured brain astrocytes from newborn
rats, performed without albumin, tested BF values as low as 1
�M, but found no effect on the uptake of T3 at BF of 10 �M
(15); at BF � 25 �M, UCB caused dose-dependent inhibition
of T3 uptake, with a Ki of 31 �M. Biliverdin, bilirubin ditaurate
and bilirubin glucuronides were progressively more effective
inhibitors than UCB, supporting the concept that the inhibition
was competitive and not a result of cytotoxicity.

Neuronal cells (Table 2). In the absence of HSA, MTT
activity was impaired after 24 h of exposure of embryonic rat
hippocampal neurons to 250 nM UCB (p � 0.05; figure not
shown) (25) and of 14-d embryonic rat forebrain neurons to

UCB concentrations as low as 400 nM (Fig. 4) (14) or 500 nM
(data not shown) (13). The last two studies also demonstrated
that exposure to 500 nM UCB for 24 to 96 h caused a large
decrease in [3H]thymidine incorporation, accompanied by in-
creases in subsequent [3H]thymidine release and in apoptosis.
[3H]leucine incorporation into cell protein was affected also
after 6 h, with a triphasic response (13). A line of mouse
neuroblastoma cells exposed to UCB/HSA systems for 22 h
showed significant, dose-related decreases in MTT activity and
[3H]thymidine incorporation only at BF levels of 775 nM and
above (Fig. 5) (26). In a related paper from the same group
(17), a line of rat neuroblastoma cells exhibited significant,
multifunctional UCB toxicity after only 2–4 h of exposure to
UCB/HSA systems, but only at BF levels in excess of 1700

Table 1. Toxic effects of UCB on cultured rodent glial cells and astrocytes, with threshold BF levels

CNS region and cell type
Animal species

UCB/HSA
mol ratio

Cl�

(mM)*
Free UCB,

BF range (nM)
Exposure

to UCB, (h)
Threshold BF

(nM)†
Function tested,

change from control Reference

Cerebral glial cells No HSA NA 10–10,000 2 500 MTT activity 2 41% 16
20–21 day rat embryos 0.5 or 2.0 118 53–4800 1, 2 4800, 1560 Trypan blue release 1 8.7, 2.9�

Cerebral astrocytes 0.5–1.0 118 34–107 24–72 71 LDH release 1 1.8–3.3� 23
2-d-old neonatal rat 0.7–1.0 58–107 24–72 71 MTT activity 2 48%

Cerebral astrocytes 1.7 118 194–26,818 24, 36, 48 721 LDH release 1 4.2, 11.1, 16.8� 24
2-d-old neonatal rat

Cerebral astrocytes No HSA NA 1,000–300,000 1 min 25,000 T3 uptake 2 18% 15
2-d-old neonatal rat

Cortical astrocytes‡ 0.2–3.0 118 33–1050 0.25 309 [3H]glutamate uptake 2 37% 19
2-d-old neonatal rat 3.0 6,060–29,807 6063§ Apoptosis¶ 1 5� 20

* DMEM has total chloride concentration of 118 mM.
† Threshold BF is the lowest unbound UCB concentration tested that produced a significant (p � 0.05) change from control.
‡ Only these studies used purified UCB.
§ Apoptosis was not studied at lower BF.
¶ Hoechst stain for nuclear fragmentation was used.
Abbreviations used: NA, not available; 3H-T, tritiated thymidine.

Figure 1. Effects on cultured embryonic rat cerebral glial cells of exposure
for 2 h to 10 to 10,000 nM of unpurified UCB in the absence of albumin.
Impairment of mitochondrial function (MTT test) was similar in cells cultured
for 4 or 8 d. *p � 0.05 vs control. Derived from Figure 4 of Amit and Brenner
(16).

Figure 2. Effects on cultured neonatal rat astrocytes of exposure to varied
concentrations of unpurified unbound UCB (BF) for 24 h. A significant
decrease in both mitochondrial function (MTT activity) and membrane integ-
rity (increased LDH release) occurred at BF levels at or above 71 nM, just
above the aqueous solubility limit for UCB (70 nM, vertical dashed line). *p
� 0.05, **p � 0.01. Derived from data of Chuniaud et al. (23).
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nM; the true thresholds may have been much lower, because
BF levels between 400 and 1700 nM were not tested. The
functions impaired included 42K� uptake, [3H]thymidine in-
corporation into DNA, MTT activity, and incorporation of
[35S]methionine into cellular protein.

Studies with Purified UCB

Cortical astrocytes from neonatal rats showed a dose-related
decrease in uptake of [3H]glutamate after only 15 min of
exposure to purified UCB at BF levels above 300 nM (Table 1
and Fig. 6) (19). Apoptosis was observed also, but was studied
only at BF levels of 6063 nM or higher (20). Neonatal and
embryonic cortical neurons from rats exhibited dose-related
apoptosis when exposed for 4 h to BF levels of 85 nM or higher
(Table 2 and Fig. 7) (20, 21). At and above this threshold BF

level, the apoptosis was accompanied by release of cytochrome
c from mitochondria, as well as activation of caspase-3, and
cleavage of ADP-ribose polymerase (21). By contrast, other
mitochondrial changes (translocation of Bax and collapse of
membrane potential) were not observed until BF levels reached
50 �M.

DISCUSSION

Applying the corrected affinity constants (KF) (9), BF ex-
ceeds maximum aqueous UCB solubility (70 nM) at BT well
below those at which the first binding site on HSA becomes
saturated (Fig. 8A). At the normal adult HSA concentration of
600 �M, this occurs when BT exceeds 80–85 �M (4.7–5.0
mg/dL; Fig. 8B). Except in Crigler-Najjar syndrome, BT levels
are rarely this high in adults with unconjugated hyperbiliru-
binemia. At the 25% lower mean albumin concentrations in
newborn plasma (5), supersaturation would occur at BT above
82 �M (�4.8 mg/dL; Fig. 8B), values commonly observed in
uncomplicated neonatal hyperbilirubinemia. Thus, except pos-
sibly when HSA levels are low in jaundiced patients with

cirrhosis, only neonates are exposed to plasma BF levels above
aqueous solubility.

At BF levels above saturation, self-aggregation of UCB
diacid must occur, progressing through three stages (7, 27–29).
Oligomers of UCB diacid appear just above saturation; al-
though they are too small to precipitate, they can dissociate
reversibly and serve as a reservoir to replenish UCB monomers
removed by cells. At higher UCB concentrations, larger col-
loidal aggregates form, stabilized by UCB mono- and dianions
adsorbed on their surfaces (7). These microsuspensions may
precipitate with prolonged standing (ripening) or neutralization
of the charges by a decrease in pH (28). At yet higher UCB
concentrations, coarser aggregates appear that precipitate spon-
taneously. Limited available data suggests that metastable
aggregates are present at BF as low as 1–2 �M at pH 7.0 to 7.4,
but probably not at 500 nM (28, 29).

Our recalculated BF levels for published in vitro studies
(Tables 1 and 2) reveal that neurotoxic effects of even purified
UCB can be observed at BF levels ranging from slightly above
to 11 times aqueous solubility (71–770 nM), although higher
thresholds were obtained in some of the studies. Only a few of
the original papers attempted to calculate or measure free
bilirubin concentrations, and, when doing so, they used meth-
ods that have been shown to be flawed, as discussed elsewhere
(8, 9). The variation of more than 10-fold among studies in our
recalculated toxic thresholds for unbound bilirubin concentra-
tions (Tables 1 and 2) is not unexpected, as the 12 papers used
different cell systems from different species (26) of differing
maturity, different cell functions, and different durations of
culture (16) and exposure to UCB. Thus, the variable thresh-
olds may simply reflect different susceptibilities of different
cell systems to different types of injury.

Minor components in the DMEM, including those released
by the cells themselves, might have influenced binding also.
Although the different batches of delipidated HSA may have
differed somewhat in their affinities for UCB, we have found
that the binding affinity for UCB among four different batches
of delipidated albumin from the same manufacturer (Sigma
Chemical Co) varied by less than 4% (Ostrow JD, unpublished
data). Thus, only a small error in BF is introduced by our
assumption that the binding affinity of the HSA used in our
ultrafiltration study (9) is representative of the batches used in
the studies in the meta-analysis.

Figures 2, 5, and 6 reveal a trend toward decreased viability
or function at BF levels below those at which a statistically
significant impairment was attained. In all four cases, if those
trends are assumed to be real effects, the resultant lower
thresholds are still all slightly below (Fig. 2 and 6) to modestly
above (Fig. 5) the solubility limit for unbound UCB. Some
figures show gradual declines in function with increasing BF

levels, whereas in others, the threshold appears to be abrupt.
Such differences, however, may be more apparent than real,
depending on whether enough data points were obtained both
above and below the true threshold.

Although, for reasons noted above, the thresholds varied
with different studies and the responses were not uniform, our
findings clearly establish that that marked supersaturation and
precipitation of UCB are not necessary to produce toxicity to

Figure 3. Effects on cultured neonatal rat astrocytes of exposure for 24, 36,
or 48 h to concentrations of unpurified unbound UCB (BF) ranging from 194
to 26,818 nM. *p � 0.05 at threshold BF of 721 nM, as well as all higher
concentrations. The effects above BF of 6000 (not shown) are similar to those
at 5400 nM. Derived from data of Rhine et al. (24).
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CNS cells. This renders untenable the long-accepted concept
that only coarse UCB aggregates, which may include copre-
cipitated albumin, are involved in early UCB toxicity (7). Even
allowing for potential moderate inaccuracies in our calculated

values of unbound bilirubin (9), our findings strongly suggest
that toxicity develops only near or above the aqueous satura-
tion limit of 70 nM, a range in which only UCB monomers,
soluble oligomers, and metastable small colloids are likely to
be present. By contrast, BF levels well below 70 nM [aqueous

Table 2. Toxic effects of UCB on cultured rodent neuronal cells, with threshold BF levels

CNS region and cell type
Animal species

UCB/HSA
mol ratio

Cl�

(mM)*
Free UCB,

BF range (nM)
Exposure to

UCB (h)
Threshold BF

(nM)†
Function tested,

change from control Reference

Hippocampal neurons
17-d embryonic rat

No HSA NA 25–250 24 250 MTT activity 2 26% 25

Forebrain neurons
14-d embryonic rat

No HSA NA 250–5000 72
96

400
500

MTT activity 2 13%
Apoptosis (DAPI) 1 5�

14

Forebrain neurons
14-d embryonic rat

No HSA NA 500 only 48, 72, 96
96

24, 96
24, 96

Only 500
tested

MTT activity 2 18, 21, 26%
Apoptosis (DAPI) 1 6.8�

[3H]leucine incorp. 2 39, 41%
2-DG uptake 2 66, 35%

13

Neuroblastoma cells
mouse (NBR10A line)

0.8–1.5 118 100–3900 22 775‡
786‡

MTT activity 2 41%
3H-T incorporation 2 58%

26

Neuroblastoma cells
rat (N115 line)

0.8, 1.5

1.5 only

118

118

301–383 and
1766–2378
2113 only
2113 only

2, 4
2, 4
1–4
1–4

1766
2378

Only 2113
tested

42K� uptake 2 26% (4 h only)
3H-T incorporation 2 23, 50%

MTT activity 2 13–63%
[35S]methionine incorp. 2 23–57%

17

Cortical neurons§
neonatal and embryonic

rat

0.5–3.0 1 85–2900 4 85 Apoptosis� 1 2�¶ 20
21

* DMEM has total chloride concentration of 118 mM.
† Threshold BF is the lowest unbound UCB concentration tested that produced a significant (p � 0.05) change from control.
‡ Rat neuroblastoma cell line N115 was tested also and showed no effect on MTT activity until BF was 2600, but virtually identical sensitivity to the mouse

line when [3H]thymidine incorporation was tested.
§ Only these studies used purified UCB.
¶ Release of cytochrome c from mitochondria, as well as activation of caspase-3, and cleavage of ADP-ribose polymerase were demonstrated also at the same

threshold BF level.
� Hoechst stain for nuclear fragmentation was used.
Abbreviations used: NA, not available; DAPI, 4�, 6-diamidino-2-phenylindole; 2-DG, 2-deoxyglucose; 3H-T, tritiated thymidine.

Figure 4. Effects on cultured forebrain neurons from 14-d-old rat embryos of
exposure for 72–96 h to varied concentrations of unpurified unbound UCB
(BF). A significant decrease in mitochondrial function (MTT activity) was
observed at BF levels at or above 400 nM, and an increase in apoptosis at a BF

level of 500 nM, 5.7 and 7.1 times, respectively, the aqueous solubility limit
for UCB (70 nM, vertical dashed line). **p � 0.01. Derived from data of
Grojean et al. (14).

Figure 5. Effects on cultured mouse neuroblastoma cells (NBR10A line) of
exposure for 22 h to varied concentrations of unpurified unbound UCB (BF).
A significant decrease in both mitochondrial function (MTT activity) and
[3H]thymidine uptake occurred at BF levels at or above 780 nM, 11 times the
aqueous solubility limit for UCB (70 nM, vertical dashed line). *p � 0.05, **p
� 0.01. Derived from data of Schiff et al. (26).
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saturation (30)] appear to protect CNS cells against oxidative
damage (25, 31), and this protection is lost because of the
countervailing toxic effects of UCB at higher BF levels (25).

At these relatively low BF levels, both astrocytes and neu-
rons were susceptible to impairment of mitochondrial functions
(MTT activity and apoptosis), whereas diminished incorpora-
tion of [3H]thymidine was reported only for neurons. These
toxic effects can account for the structural features of apoptosis
that appear in the cerebellum and cochlear nucleus of jaundiced
Gunn rat pups (32–34) and in the basal ganglia of kernicteric
human infants (5). These early changes appear well before

peak UCB levels are attained, but ultimately progress to atro-
phy of these CNS regions.

The modestly supersaturated BF levels also affected astro-
cyte membranes, as shown by increased LDH release (23) (Fig.
2) and impaired [3H]glutamate uptake (Fig. 6) (19). The ex-
tremely brief period of exposure to UCB probably explains
why Warr et al. (35) did not detect changes in glutamate
transporters, N-methyl-D-aspartate receptors, or electrical cur-
rents in retinal glial cells from salamanders after treatment with
10 �M UCB for only 10–50 s.

Effects of purified UCB on the membrane structure of
neurons (21) and mitochondria (20) have been observed, how-
ever, only at highly supersaturated BF levels in the micromolar
range, at which UCB precipitation is expected. This fits with
historic concepts that precipitation of UCB in cell membranes
alters membrane fluidity and the activity of integral membrane
proteins (7), but it is problematic as to whether this is relevant
to the modestly elevated BF levels associated with the revers-
ible stages of bilirubin encephalopathy. Monomers of UCB
diacid cannot penetrate deeply into membranes (36), but bind
near the surface of the outer leaflet of the membrane (37–39).
The resultant modest perturbation of membrane structure might
be a factor in the early cellular toxicity of clinically relevant
concentrations of UCB (39).

Ahlfors (8) applied a peroxidase-diazo method to reassess
BF for historic data on plasma BT and HSA concentrations in
jaundiced neonates and concluded that kernicterus was likely
only when BF levels exceeded 60 nM (40), in apparent agree-
ment with our results for in vitro systems. There are, however,
important differences between plasma or serum and in vitro
systems that limit comparisons between his study and ours.
Plasma contains additional proteins that bind UCB, such as apo
D (41), so that BF levels in plasma are lower than those in
solutions containing the same concentration of purified albu-
min (42). On the other hand, FFA and other substances not
present in defined solutions containing delipidated albumin
may inhibit the binding of UCB to albumin (7). Finally, in vivo,

Figure 6. Effects on cultured cortical astrocytes from 2-d-old neonatal rats of
exposure for 15 min to varied concentrations of purified unbound UCB (BF).
A significant decrease in [3H]glutamate uptake was observed at BF levels at or
above 309 nM, 4.4 times the aqueous solubility limit for UCB (70 nM, vertical
dashed line). *p � 0.05, **p � 0.01. Derived from data of Silva et al. (19,20).

Figure 7. Effects on cultured cortical neurons and astrocytes from neonatal
and embryonic rats of exposure to varied concentrations of purified unbound
UCB (BF) for 4 h. A significant increase in apoptosis of neurons occurred at BF

levels at or above 85 nM, slightly above the aqueous solubility limit for UCB
(70 nM, vertical dashed line). Astrocytes were affected at 6063 nM, but lower
BF levels were not tested. *p � 0.05, **p � 0.01, ***p � 0.001. Derived from
data of Silva et al. (20) and Rodrigues et al. (21).

Figure 8. UCB/HSA ratios (left) and total UCB concentrations (right) at
which calculated BF values equal the aqueous solubility of unbound UCB at
pH 7.4 over a range of albumin (HSA) concentrations. Areas above each curve
are supersaturated with unbound UCB, whereas areas below the line are
unsaturated. At mean normal plasma albumin concentrations of 450 �M for
neonates and 600 �M for adults, supersaturation occurs at UCB/HSA ratios as
low as 0.2 and at total UCB concentrations above 80 �M. BF values were
calculated by applying corrected affinity constants of UCB for HSA in the
presence of chloride (9) at the albumin concentrations indicated. The calcula-
tions (equation 1) assumed independent binding of UCB to two sites on
albumin (10).
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neurons and astrocytes are not exposed directly to plasma, but
are separated by the blood–brain and blood–cerebrospinal
fluid barriers that may limit penetration of unbound UCB into
the CNS (6). Thus, the media to which the CNS cells are
exposed in vitro are the equivalent of the cerebrospinal fluid
and extracellular fluid in the brain, where, in jaundiced Gunn
rats, total UCB concentrations may be only one fifth those in
plasma (43) and albumin concentrations are much lower than
plasma. Overall, therefore, the threshold BF levels for UCB
neurotoxicity are likely to be higher in plasma in vivo than in
defined albumin solutions in vitro.

CONCLUSIONS

Because of the above-noted differences between in vitro and
in vivo systems, as well as interspecies differences, it remains
to be determined whether, to fully prevent bilirubin encepha-
lopathy, treatment of neonatal hyperbilirubinemia should be
instituted at plasma UCB levels lower than those that are
currently recommended (5, 44). Nonetheless, our findings fa-
vor a role for small, soluble UCB aggregates, present at
moderately supersaturated BF levels, in the often-reversible
damage to mitochondria, and possibly plasma membranes of
CNS cells that characterize the early stages of bilirubin
encephalopathy.
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