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ABSTRACT

Adriamycin (ADR) inhibits the carnitine palmitoyl trans-
ferase (CPT) system and consequently the transport of long-
chain fatty acids across mitochondrial membranes. r-Carnitine
(CARN) plays a major role in fatty acid oxidation by translocat-
ing activated long-chain fatty acids into the matrix of mitochon-
dria. CARN has been shown to be of benefit in certain cardiac
conditions including cardiomyopathy and myocardial infarction.
This study was devised to investigate the effect of CARN on
altered CPT I and CPT II activity in the cardiomyopathy asso-
ciated with ADR therapy. We also assessed the effect of CARN
on the plasma free, total, and acylcarnitine concentrations. Four
groups, each consisting of four male Sprague-Dawley rats, were
studied: group 1(n = 4) was not given either ADR or CARN;
group 2 (n = 4) was given ADR (15 and 20 mg/kg, respectively,
cumulative dose) by i.p. injections for 1 and 2 wk; group 3 (n =
4) was given the same dose of ADR with CARN (200 mg/kg);
and group 4 (n = 4) was given CARN (200 mg/kg). The
activities of CPT I and CPT II in heart were significantly
decreased in the ADR-treated rats (»p < 0.05) in a dose-dependent

The precise mechanism for the pathogenesis in ADR-
induced cardiomyopathy has not been elucidated (1, 2). A
number of different hypotheses have been proposed to account
for the cardiotoxic effect of ADR. These include the production
of free radical species (3, 4), leading to lipid peroxidation of
cardiac microsomal membranes (5), the differential accumula-
tion and retention of positively charged ADR as a result of high
negative membrane potential (6), an interaction with nucleic
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manner. The reduced activities of CPT I and CPT II, inhibited by
ADR, were not normalized by supplementation with CARN (p <
0.05). In rats supplemented with CARN alone, the activities of
CPT I and CPT II were elevated approximately 50% above those
of the control rats (p < 0.05). ADR treatment resulted in
elevation of plasma free and total CARN concentrations (p <
0.05). Supplementation with CARN did not effect the increased
plasma CARN concentrations resulting from ADR treatment (p
< 0.05). This study supports the concept that ADR toxicity
results from the inhibition of both CPT I and CPT II activities
and that one of the causes of ADR-induced cardiomyopathy is a
result of globally impaired fatty acid oxidation. (Pediatr Res 53:
788-792, 2003)

Abbreviations
ADR, adriamycin
CARN, L-carnitine
CPT, carnitine palmitoyltransferase

acid or nuclear components (7), and disruption of a cardiac-
specific program of gene expression (8). Increased myocardial
lipid accumulation and plasma lipid levels are usually associ-
ated with ADR-induced cardiomyopathy (9).

It has been suggested that ADR may exert at least part of its
cardiotoxicity by inhibition of fatty acid oxidation in the heart
(10—14). Impaired cardiac fatty acid oxidation is usually asso-
ciated with diastolic dysfunction (15), cardiomyopathy, and
congestive heart failure as a result of a deficiency in energy
supply and possible accumulation of toxic intermediates of
fatty acid oxidation in cardiac tissues (16).

Two CPT activities exist within mitochondria; CPT I and
CPT II are located in the outer and inner mitochondrial mem-
branes, respectively. Both the outer and inner membrane CPT
activities have been reported to be inhibited by ADR, although
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the degree of inhibition of CPT I and CPT II remains controversial
(17, 18). Brady and Brady (17) suggested that CPT I was less
sensitive to the inhibition by ADR than CPT II because of the
lower cardiolipin content in the outer mitochondrial membrane.
Kashfi ef al. (18) demonstrated inhibition of CPT I and CPT II by
ADR in isolated heart and liver mitochondria but reported that the
outer membrane CPT I was more sensitive to inhibition by ADR
than the inner membrane CPT II.

CARN, an important cofactor for the translocation of fatty
acids into the mitochondria for B-oxidation, has been shown to
partially protect the myocardium against ADR-induced cardio-
toxicity without interfering with its antitumor activities (13).

We report here the results of an investigation on the effects
of CARN on CPT activities in hearts from ADR-treated rats
and its effects on the free and total CARN levels in plasma.

METHODS

Animals. Male Sprague-Dawley rats, weighing 250-300 g,
were purchased from Korean Laboratory Animal Center
(Chungbuk Province, Korea). Rats were allowed free access to
standard diet essentially free from CARN derivatives and water
ad libitum. The Seoul National University’s Institutional Care
and Animal Use Committee approved the animal protocol.

ADR-induced cardiomyopathy protocol. The rats were di-
vided into four groups. Group 1, controls, was not given ADR
or CARN. Group 2 was given ADR (15 and 20 mg/kg,
respectively, cumulative dose) by two and four i.p. injections
for 1 and 2 wk. Group 3 was given the same dose of ADR and
supplemented with CARN (200 mg/kg). Group 4 was given
CARN (200 mg/kg). Cardiomyopathy was induced in groups 2
and 3 by i.p. injection of ADR hydrochloride (doxorubicin
hydrochloride, cumulative dose, 5, 10, 15, and 20 mg/kg) for a
2-wk period. CARN (200 mg/kg) was administered by i.p.
injection daily for a 2-wk period. The volume of ADR injected
was 1.25 mL/kg, and that of CARN, 1 mL/kg. The rats were
weighed and observed for general appearance, behavior, and
mortality during the study period. They were also assessed for
clinical evidence of ascites, limb edema, and abnormal fur
characteristics at the time of each injection and before sacri-
ficing. At the toxic dose of ADR (15 and 20 mg/kg), congestive
heart failure was seen in affected rats with notable tachypnea
and ascites. Increased heart weight and internal ventricular
dimensions were demonstrated at autopsy. Irregularly arranged
myofibrils, markedly swollen mitochondria, nuclear fragmen-
tation, and chromatin clumping were found by electron micros-
copy, and apoptosis was confirmed by a nick-end labeling
method (19).

The animals were killed by decapitation, their hearts were
removed rapidly, and blood was immediately collected from
the abdominal aorta in nonheparinized tubes at the time of 15
and 20 mg/kg of cumulative dose of ADR. Heart tissues were
removed and immediately frozen at —70°C for enzyme anal-
ysis. Serum was separated from the blood immediately by
centrifugation and used for determination of total and free
CARN and acylcarnitine. All assays were performed in
duplicate.
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Enzyme assay for CPT I and II. Ten to twenty milligrams of
frozen tissue was thawed, minced with razor blades, and homog-
enized with a Dounce homogenizer in 2 mL of buffer containing
150 mM and 5 mM Tris (pH 7.2) for CPT enzyme assay.

[**C]Carnitine was purchased from ARC (St. Louis, MO,
U.S.A)). All other reagents for the enzyme assay were from
Sigma Chemical Co. (St. Louis, MO, U.S.A.).

CPT activity was assayed using a modification of a method
previously described by Esser ef al. (20). All experiments were
performed in duplicate. Assay tubes contained 10 mg/mL BSA,
essentially fatty acid free, 250 uM glutathione, 4.4 mM ATP,
500 uM KCN, 4.2 mM MgCl,, 100 uM rotenone, 200 uM
CARN, 0.125 uCi ['*C]Carnitine, and 50 uM palmitoyl CoA
in a final volume (including tissue homogenate) of 1 mL.
Additionally, blank tubes contained 15 mM KCl and 1 mL of
1.2 M HCI, CPT I activity tubes contained 15 mM KCIl, and
CPT 1I activity tubes contained 50 uM malonyl CoA. Tissue
homogenates were either untreated or treated with 1% n-octyl
B-p-glucopyranoside, held on ice and vortexed every 10 min
for 30 min. The assay was started with the addition of 100 uL
of tissue homogenate, and the tubes were incubated at 30°C for
15 min. The reaction was stopped with the addition of 1 mL of
1.2 M HCl and 1 mL of 1-butanol, and the tubes were vortexed
for 30 s. The tubes were centrifuged, and 500 wL of the butanol
layer was removed to another tube and washed with 100 uL of
water. Two hundred microliters of the butanol layer was
transferred to a scintillation tube and counted on a scintillation
counter. The cell homogenate protein concentration was mea-
sured by the method of Lowry et al. (21). Activity was
expressed as nanomoles of palmitoyl-carnitine formed per
minute per milligram of protein.

Determination of plasma total and free CARN and acyl-
carnitine. We used the method of Takahashi ez al. (22). In brief,
the enzymatic reaction was carried out in an incubator (SEO-
KWANG Scientific Co, Seoul, South Korea) at 37°C in a 10-cm
path length cuvette containing 1 mL of 100 mM Tris-HCL, pH
9.5, 5 mM thio-NAD, 0.2 mM NADH, and 100 units of CARN
dehydrogenase. The cuvette was incubated for 3 min, after which
the reaction was started with the addition of 50 wL of plasma. A
standard curve was constructed by the addition of CARN stan-
dards. After a 1-min delay, the absorbance increase was measured
for 5 min, and the rate was compared with the standard curve.

Statistical analysis. The data are expressed as the mean =
SD of duplicate experiments. Statistical significance was de-
termined using the unpaired ¢ test and analysis of variance.
Unpaired ¢ test was used to determine statistical differences
among groups (p < 0.05 was considered significant).

RESULTS

Effect of CARN on CPT activity in ADR-treated rat heart.
Figure 1 shows the effect of CARN on heart tissue CPT I and
CPT 1I activity at different doses in ADR-treated rat with and
without CARN (Tables 1 and 2). After attaining a cumulative
dose of 15 mg (Table 1) and 20 mg (Table 2), ADR caused a
significant inhibition of the activity of heart CPT I and CPT I
ADR induced a 44% decrease of CPT I and a 32% decrease of
CPT II at a cumulative dose of 15 mg (Table 1). There was a
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Figure 1. The effect of CARN on heart tissue CPT I and CPT II activity in ADR-treated rat with and without CARN. Results (mean = SD) are expressed as
nanomoles per minute per milligram of protein. Numbers of rat included were two for control and CARN-treated rats and three for ADR- and ADR with
CARN-treated rats. Heart tissue homogenates were incubated with CARN (200 mg) for 30°C for 15 min. Concentration of palmitoyl CoA were 200 uM. For

detail refer to the enzyme assay in “Methods.”

Table 1. CPT activity of ADR-treated rats with heart tissue
presentations at a cumulative dose of 15 mg/kg of ADR

CPT I CPT II
Groups (n=2) (n=2) CPT I/CPT II
Control (n = 2) 27+22 22*13 1.1+04
ADR (n = 3) 1.49 £ 0.53*% 146 £0.72*  1.06 = 0.16
ADR + CARN (n = 3) 084 =0.12* 0.98 =0.26% 0.85*0.26
CARN (n = 2) 399 £4.11*%  3.64 £3.18% 0.93 +0.32

* p < 0.05; significantly different from control group. Results (mean = SD)
are expressed as nanomoles per minute per milligram of protein. CPT activities
were measured in duplicate (» = 2), n = number of independent experiments.
ADR, cumulative dose of 15 mg/kg of adriamycin-treated group; ADR +
CARN, adriamycin and 200 mg/kg of L-carnitine-treated group; CARN, 200
mg/kg of L-carnitine-treated group.

Table 2. CPT activity of ADR-treated rats with heart tissue
presentations at a cumulative dose of 20 mg/kg of ADR

CPT I CPT II
Groups (n=2) (n=2) CPT I/CPT 11
Control (n = 2) 27*22 22+1.3 1.1 04
ADR (n = 3) 0.91 = 0.43*%  1.66 = 0.88* 0.56 = 0.04*
ADR + CARN (n = 3) 083 £0.22* 0.74 =0.16* 1.13*=0.24
CARN (n = 2) 3.99 +4.11*  3.64 +£3.18% 0.93 +0.32

* p < 0.05; significantly different from control group. Results (mean = SD)
are expressed as nanomoles per minute per milligram of protein. CPT activities
were measured in duplicate (n = 2), n = number of independent experiments.
ADR, cumulative dose of 20 mg/kg of adriamycin-treated group; ADR +
CARN, adriamycin and 200 mg/kg of L-carnitine-treated group; CARN, 200
mg/kg of L-carnitine-treated group.

67% decrease of CPT I and a 23% decrease of CPT II at a
cumulative dose of 20 mg (Table 2).

The addition of CARN did not reverse the ADR-induced
inhibition of CPT I and CPT II activity. Surprisingly, the
activities of both CPT I and CPT II were further decreased
when CARN was supplemented to the ADR. However, in rats
supplemented with CARN alone, the activities of both CPT I
and CPT II were significantly elevated, being 48 and 65%
greater than the control rats (Tables 1 and 2, and Fig. 1).

Effect of CARN on the CARN level in ADR-treated rat
plasma. Tables 3 and 4 show the effect of ADR treatment with
and without CARN supplementation on the plasma CARN
levels in ADR-treated rats. ADR caused a significant elevation
of total and free CARN and acylcarnitine in plasma in a time-
and dose-dependent manner. The free CARN concentration
was significantly elevated in plasma 2 wk after administration
of ADR. The addition of CARN further increased the levels of
total and free CARN and acylcarnitines. Administration of
CARN alone (200 mg) resulted in increased total and free
CARN and acylcarnitines in plasma but at levels significantly
lower than ADR plus CARN.

DISCUSSION

Although abnormalities of CPT activity and mitochondrial
fatty acid oxidation have been associated with ADR use, the
exact site of ADR inhibition remains to be determined. The
inhibition of fatty acid oxidation by ADR may be at one or
more sites in the pathway, including transport of fatty acids
across the plasma membrane, activation in the cytosol by
acyl-CoA synthetase, transport across the inner mitochondrial
membrane via the CPT system, CPT 1, CARN-acylcarnitine

Table 3. Effect of carnitine on ADR-treated rats with plasma at a
cumulative dose of 15 mg/kg of ADR

Groups TC(n=2) FCm=2 AC@H=2)
Control (n = 4) 383+ 59 313 +34 70+35
ADR (n = 4) 557 +2.1%  223+52 33.4 + 7.4%
ADR + CARN (n = 4) 3253 + 54.4% 190.0 = 43.9% 135.4 = 20.1*
CARN (n = 4) 1724 + 12.3% 1208 + 7.9  51.6+72

* p < 0.05; significantly different from control group. Results (mean = SD)
are expressed as uM. TC, total carnitine; FC, free carnitine; AC, acylcarnitine.
Plasma TC, FC, and AC levels were measured in duplicate (n = 2), n =
number of independent experiments. ADR, cumulative dose of 15 mg/kg of
adriamycin-treated group; ADR + CARN, adriamycin and 200 mg/kg of
L-carnitine-treated group; CARN, 200 mg/kg of L-carnitine-treated group.



CARDIAC CARNITINE PALMITOYLTRANSFERASE

Table 4. Effect of carnitine on ADR-treated rats with plasma at a
cumulative dose of 20 mg/kg of ADR

Groups TC(n=2) FCn=2 AC@xn=2)
Control (n = 4) 36.6 +9.3 272+ 18 9.3+ 0.9
ADR (n = 4) 98.9 + 40.4%  52.4 + 28.4*%  46.5 * 15.7*
ADR + CARN (n = 4)  610.0 = 24.4% 3812 + 33.8% 228.8 + 34.2%
CARN (n = 4) 180.1 + 13.7% 134.8 + 7.6% 452+ 6.1*

* p < 0.05; significantly different from control group. Results (mean = SD)
are expressed as wM. TC, total carnitine; FC, free carnitine, AC, acylcarnitine.
Plasma TC, FC, and AC levels were measured in duplicate (n = 2), n =
number of independent experiments. ADR, cumulative dose of 20 mg/kg of
adriamycin-treated group; ADR + CARN, adriamycin and 200 mg/kg of
L-carnitine-treated group; CARN, 200 mg/kg of L-carnitine-treated group.

translocase, CPT II, and finally the oxidation in the mitochon-
drial matrix through the B-oxidation cycle. One study sug-
gested that ADR may exert at least a part of its cardiotoxic
effect by inhibiting the activity of CPT I, the rate-limiting step
for mitochondrial transport, but not CPT II (17). A second
study suggested that ADR inhibited both CPTs, suggesting a
more global inhibition of the fatty acid oxidation process for
which our data provide strongly supporting evidence (18).

In a previous study, we provided preliminary evidence that
the administration of ADR resulted in inhibition of fatty acid
oxidation (14). We demonstrated that plasma FFA levels were
significantly higher in ADR-treated rats compared with control
rats. In that study, long-chain fatty acids including palmitate
(Ci6:0), linoleate (C,g.,), oleate (C,s.;), and stearate (C,g.q)
were significantly elevated, and it was speculated that this may
result from impairment of long-chain fatty acid oxidation (14).

In the present study, both CPT I and CPT II activities were
significantly decreased by ADR from 23 to 67% when com-
pared with control rats, indicating a more generalized inhibi-
tion of fatty acid transport, or oxidation rather than inhibition
of a specific target enzyme. This is consistent with the data
presented by Kashfi et al. (18), who demonstrated inhibition of
both CPT I and CPT II by ADR in isolated heart and liver
mitochondria. The ratio of CPT I/CPT II in our study was 1.1
for control rats whereas that of CPT I/CPT II for ADR-induced
cardiopathic rats was 1.06 after injection of 15 mg/kg of ADR
(Table 1), and 0.56 after administration of 20 mg/kg of ADR
(Table 2). This indicates that the activity of CPT I is more
dramatically inhibited than CPT II at the highest dose of ADR
(Tables 1 and 2). Our results showed that inhibition of CPT I
by ADR was more sensitive than CPT II, similar to the findings
reported by Kashfi ef al. (18). These authors reported that the
sensitivity of the outer membrane CPT to inhibition by ADR
was greater than that of the inner membrane enzyme. The
difference in that report could be a result of the way in which
the inner membranes were prepared. ADR binds to the protein
component rather than the lipid component of the membrane. It
was suggested that inhibition by ADR is dependent on specific
binding to the CPT protein, which appears to differ for the two
enzymes only at the highest concentrations of ADR.

Our results contrast those of Brady and Brady (17), who
suggested that CPT I was less sensitive to inhibition by ADR
than CPT II and speculated that this was because of the lower
cardiolipin in the outer mitochondrial membrane than the inner
one. Brady and Brady (17) also demonstrated the interaction of
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ADR with cardiolipin, the structural phospholipid of the inner
mitochondrial membrane, forming an ADR-cardiolipin com-
plex. It was suggested that this complex decreases the integrity
of the inner mitochondrial membrane with the consequent
decrease in the transport of long-chain acylcarnitine species.
This hypothesis does not explain the clear inhibition of CPT II
activity demonstrated in our study and the study of Kashfi et al.
(18). Therefore, the precise mechanism of enzymic inhibition
remains to be explained and will form the basis of our ongoing
studies.

CARN is mostly derived from the diet, but is also synthe-
sized de novo in the liver. It is concentrated in the myocytes to
levels 2050 times greater than those in plasma (23). High
myocardial CARN levels are maintained by the action of a
specific energy-dependent carnitine transporter, OCTN?2.
CARN promotes fatty acid oxidation by translocating activated
long-chain fatty acids into the matrix of mitochondria as their
acylcarnitine species. CARN deficiency result from genetic
and environmental causes and may be associated with symp-
toms of metabolic disease, including hepatic dysfunction, skel-
etal myopathy, and cardiomyopathy (23-26). Primary CARN
deficiency has been identified as a result of inherited defects of
the plasma membrane CARN transporter. This disorder results
in a progressive cardiomyopathy of infancy that is responsive
to pharmacologic doses of CARN (23). Secondary CARN
deficiency may result from other genetic diseases, dietary
deficiency, chronic malabsorption, renal tubular dysfunction,
hemodialysis, or peritoneal dialysis (27).

Fatty acid oxidation is the primary energy-providing path-
way of the myocardium. Inhibition of the pathway as a result
of primary or secondary causes of CARN deficiency has been
shown to impair myocardial function (10-12, 14, 15, 23, 27,
28). Decreased myocardial levels of free CARN are thought to
be part of the mechanism involved in the progression of heart
failure (27-29).

In general, the CARN content of oxidative tissue (heart, 1.26
pmol/g wet weight; liver, 0.94 wmol/g wet weight; skeletal
muscle, 25.6 wmol/g noncollagenous protein) is much greater
than that in plasma (approximately 50 nmol/mL). The method
for CARN measurement that we applied provides several
advantages over traditional radioisotope exchange assays; in
particular, it does not require radioisotope handling and is
easily applicable to the clinical laboratory. To determine the
presence of interfering compounds using our method, the
concentration of free CARN was cross-checked by quantifica-
tion using the gold standard assay of electrospray tandem mass
spectrometry (30). Potential interference may be related to the
presence of nonphysiologic acylcarnitines, such as valproyl-
carnitine (31) or pivaloylcarnitine (32). We did not find evi-
dence for any interfering compounds potentially derived from
ADR.

CONCLUSIONS

In conclusion, we observed that ADR appears to have a
global effect on fatty acid transport with a profound inhibition
of both CPT I and CPT II activities rather than specifically
targeting one of these enzymes. The inhibition was not affected
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by CARN supplementation although CARN alone resulted in
increased activity of both enzymes.

ADR also caused significant elevations of plasma total and

free CARN and acylcarnitines. The mechanism for the high
serum CARN fractions is unclear but may be caused by
leakage or impaired uptake of myocardial CARN by the CARN
transporter. Our ongoing studies will attempt to define the
mechanisms of plasma CARN elevation and CPT inhibition in
the ADR toxicity process.

13.
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