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Linear growth occurs during development and the childhood
years until epiphyseal fusion occurs. This process results from
endochondral ossification in the growth plates of long bones and
is regulated by systemic hormones and paracrine or autocrine
factors. The major regulators of developmental and childhood
growth are GH, IGF-I, glucocorticoids, and thyroid hormone.
Sex steroids are responsible for the pubertal growth spurt and
epiphyseal fusion. This review will consider interactions between
GH, IGF-I, glucocorticoids, and thyroid hormone during linear
growth. It is well known from physiologic and clinical studies
that these hormones interact at the level of the hypothalamus and
pituitary. Interacting effects on peripheral tissues such as liver are
also well understood, but we concentrate here on the epiphyseal
growth plate as an important and newly appreciated target organ
for convergent hormone action. (Pediatr Res 52: 137–147, 2002)
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PREPUBERTAL GROWTH

GH and IGF-I. Disruption of the GH/IGF-I axis causes an
IGF-I deficiency syndrome that is characterized by growth
retardation due to failure of GH production or GH resistance.
Failed production results from genetic abnormalities (1–4),

hypothalamic or pituitary malformations (5), trauma, inflam-
mation, tumors (6), radiation (7), psychosocial disorders (8),
and neurosecretory abnormalities (9). GH resistance results
from GHR mutations (10), postreceptor signaling defects, and
defects of IGF-I synthesis, or may be secondary to chronic
disease, malnutrition (11), or circulating GH or GHR antibod-
ies. Defects in genes encoding GH (2), the Pit-1 transcription
factor (1), and GH releasing hormone receptor (4) cause severe
GH deficiency, but the associated growth retardation results
from predominant postnatal growth failure. Similarly, mild
growth retardation is apparent at birth in GH insensitivity and
other causes of congenital GH deficiency. In contrast, intra-
uterine growth retardation was severe in the single reported
case of IGF-I gene deletion (12), suggesting that IGF-I exerts
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major influences during fetal growth. In neonates, growth
failure due to GH deficiency is established by 6 mo and may
result in short stature 3 or 4 SD below the mean.

Glucocorticoids. Excess glucocorticoids enhance bone re-
sorption, inhibit osteoblast activity, and reduce bone matrix
production to cause growth retardation in children (13, 14) and
osteoporosis in adults (15). These effects are related to duration
of GC excess and occur irrespective of its etiology. Long-term
GC excess also interferes with GH pulsatility and decreases
total GH secretion by elevating hypothalamic somatostatin
tone (16). Nevertheless, growth impairment due to excess GC
is associated with normal circulating GH and IGF-I concen-
trations, suggesting there is peripheral insensitivity to both
hormones, an interpretation supported by the requirement for
pharmacological doses of GH, which only partially overcome
growth retardation in GC excess (17). Furthermore, GC inhibit
calcium absorption and reabsorption in the gastrointestinal
tract (18) and kidney (19), and may cause secondary hyper-
parathyroidism. They induce sex hormone deficiency and alter
vitamin D metabolism, leading to deleterious effects on growth
and skeletal integrity (20). Growth retardation resulting from
excess GC is dose-related, may be severe, and is difficult to
treat. Exposure to excess hormone should be corrected early or
GC treatment can be limited by intermittent dosing, although
this may not prevent bone loss (21). Treatment with GH in the
presence of continuing GC therapy or after correction of GC
excess often fails to achieve target height, suggesting that
deleterious effects of GC on the growth plate are persistent and
resolve only partially after steroid withdrawal (22).

Thyroid hormones. Childhood hypothyroidism causes
growth failure, but other features of adult hypothyroidism are
often absent. Growth failure may develop insidiously, but is
severe once established. In untreated hypothyroidism, com-
plete growth arrest occurs with delayed bone age, epiphyseal
dysgenesis, and immature body proportion (22). A proportion
of patients with T3 resistance, caused by mutant T3 receptor �
proteins, suffer from growth retardation and developmental
abnormalities of bone (23) that reflect tissue hypothyroidism.
T4 replacement induces rapid catch-up growth, although this
may be incomplete because bone age advances faster than the
increase in height (24). The deficit in final height after treat-
ment correlates with the duration of hypothyroidism. Catch-up
growth may be especially compromised if treatment is required
at or around the onset of puberty, when it may be appropriate
to treat with lower T4 replacement doses and add therapy to
delay puberty and epiphyseal fusion. In accord with this,
childhood thyrotoxicosis causes accelerated growth and ad-
vanced bone age, which may lead to craniosynostosis, prema-
ture growth plate closure, and short stature (24, 25).

GROWTH PLATE STRUCTURE

The epiphyses and metaphyses of long bones originate from
independent ossification centers and are separated by a growth
plate (Fig. 1A). The growth plate becomes ossified after pu-
berty and epiphyseal fusion occurs. In the normal growth plate,
immature cells lie toward the epiphysis, with mature chondro-
cytes adjacent to the primary spongiosum, which lies in con-
tinuity with the bone marrow. The reserve zone contains small

clusters of progenitor cells within a matrix of type II collagen
and proteoglycans. Flattened chondroblasts undergo clonal
expansion in the proliferative zone and form organized col-
umns. Proliferative chondrocytes secrete matrix and enlarge as
they mature. The largest proliferative cells differentiate to form
hypertrophic chondrocytes, which secrete type X collagen.
Hypertrophic chondrocytes enlarge by five times their volume
and eventually undergo apoptosis to leave lacunae separated by
cartilaginous septae that become calcified and form a scaffold
for new bone formation (Fig. 1B). New blood vessels enter
from the primary spongiosum and osteoblasts invade from the
bone marrow to lay down trabecular bone and complete the
endochondral ossification process. These processes have been
reviewed in detail (26, 27).

Recent experiments have established that chondrocyte dif-
ferentiation during bone development and growth is regulated
by a negative feedback loop involving the paracrine factor Ihh
(28, 29) and PTHrP (30, 31). Ihh is secreted by prehypertrophic
chondrocytes and stimulates production of PTHrP from the
periarticular region of the epiphysis (28–32). PTHrP acts on
PTHrP-receptor expressing prehypertrophic chondrocytes to
maintain cell proliferation, reduce Ihh production, and com-
plete a feedback loop in which PTHrP exerts a negative signal
that inhibits hypertrophic differentiation (Fig. 2). The physio-
logic importance of other autocrine, paracrine, or systemic
factors to influence bone formation via this pathway must also
now be considered with the demonstration that retinoic acid
stimulates Ihh expression in primary cultured growth plate
chondrocytes (33), our finding that expression of growth plate
PTHrP and PTHrP receptor mRNA is sensitive to thyroid
status in vivo (34), and evidence that bone morphogenetic
proteins influence expression of its signaling components (35, 36).
The importance of this feedback loop has also been demonstrated
in man by the rare inherited conditions Jansen’s metaphyseal and
Blomstrand chondrodysplasias, which are characterized by de-
layed or advanced endochondral ossification, respectively.
Jansen’s metaphyseal dysplasia results from constitutively active
PTHrP-receptors (37), whereas, in Blomstrand chondrodysplasia,
the mutated receptor is nonfunctional (38), thus confirming the
requirement for correct PTHrP signaling in the programming of
human endochondral ossification.

HORMONE ACTION IN SKELETAL CELLS

GH and IGF-I. The growth-promoting actions of GH and
IGF-I have been reviewed recently (39). The original somato-
medin hypothesis (40) proposed that GH stimulates hepatic
production of IGF-I, which in turn promotes growth directly at
the epiphyseal plate. Subsequently, the dual somatomedin hy-
pothesis (41) proposed that local IGF-I promotes chondrocyte
maturation and longitudinal growth in an autocrine/paracrine
fashion (42), while hepatic IGF-I exerts feedback control on
pituitary GH secretion (43). However, this does not account for
the additional direct actions of GH on bone. Thus, GH induces
unilateral epiphyseal growth when injected (44) or infused
locally (45) and promotes chondrocyte proliferation in vitro
(46). Furthermore, IGF-I neutralizing antibodies block the
proliferative effects of GH (17), to suggest an additional local
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somatomedin hypothesis, in which GH actions in chondrocytes
are mediated by local IGF-I production (Fig. 3).

Infusion of GH or IGF-I shortens stem and proliferating cell
cycle times in the growth plate of hypophysectomized rats and
decreases the duration of the hypertrophic differentiation
phase, with GH being more effective. GH or IGF-I treatment
restores mean cell volume and height, but the growth rate is not
normalized by either hormone (47). The rats in this study were
hypothyroid, and treatment with infused GH or IGF-I for 8 d
did not alter thyroid status. Furthermore, the GC axis was not
investigated, and it is likely, therefore, that incomplete recov-
ery after GH or IGF-I replacement resulted from uncorrected
hypothyroidism and altered GC signaling. Nevertheless, it was
concluded that both IGF-I and GH stimulate growth plate

chondrocytes at all stages of differentiation, and that GH
actions are mediated predominantly via IGF-I but also by direct
IGF-I independent effects (47). This has since been described
as the “dual effector theory” (41), in which GH acts selectively
on stem cells but also promotes chondrocyte proliferation via
local IGF-I production. IGF-I is proposed then to stimulate
clonal expansion of proliferating cells in an autocrine/paracrine
manner (48).

GHR and IGF-IR are expressed at all stages of growth plate
chondrocyte differentiation in many species (47, 49–54) (Fig.
2). Distribution of the GHR varies with age. It is only present
in hypertrophic chondrocytes in neonatal rabbits, but becomes
more widespread at 20–50 d and appears in reserve zone and
proliferative cells. In 3- to 8-mo-old humans, GHR protein is

Figure 1. Structure of the growth plate. (A) Diagram of the growth plate in relation to the upper end of a long bone alongside a section of normal growth plate
from a 3-wk-old mouse stained with Alcian blue/van Gieson. RZ indicates reserve zone; PZ, proliferative zone; HZ, hypertrophic zone; PS, primary spongiosum.
The resorption front is the region where cartilage is ossified by invading osteoblasts. (B) High-power view of the growth plate. RF indicates resorption front.
Small, rounded progenitor cells are present in the RZ, columns of flattened proliferating chondrocytes in the RZ, and enlarging hypertrophic cells in the HZ.
Cartilaginous septae (CS) are seen in the RF, where osteoblasts invade via new vessels (NV) that invade from the underlying bone marrow.
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expressed in proliferative and hypertrophic chondrocytes and
immunostaining has been documented in fetal growth plates of
12–16 wk gestation.

GH binding to its receptor causes recruitment and activation
of the receptor-associated JAK-2, which in turn activates mem-
bers of the family of STAT (55). In particular, the growth
retardation described in STAT5ab�/� mice suggests that
STAT5 proteins largely mediate GH effects on bone growth
(56), although a more recent study of GHR null mice suggested
that bone homeostasis in these animals could be restored by
IGF-I via a pathway that was independent of STAT5 (57).
Importantly, FGF, which also play a major role in both endo-
chondral and intramembranous ossification (58–60), have
been shown to activate the STAT1 signaling pathway and
mediate the inhibitory effects of FGF on chondrocyte prolifer-
ation that are mediated mainly by FGFR3 (61, 62). These
results indicate an essential role for STAT signaling pathways in
the control of chondrocyte proliferation during endochondral bone
formation in the growth plate and suggest a point of convergence
for interaction between GH and FGF signaling during growth.

IGF and IGFBP are also expressed in growth plate chondro-
cytes. In fetal bovine growth plates, IGF-I and IGF-II expres-
sion occurs mainly in proliferating chondrocytes, although
others have identified IGF-I mRNA in hypertrophic and pro-
liferating chondrocytes or in all zones of the postnatal rat
growth plate (47, 63). IGF-I has important direct effects on
proteoglycan synthesis and cell proliferation, however, these
actions are modulated by noncovalent associations between
IGF-I and IGFBP that limit the bioavailability of IGF-I. Fur-
thermore, a range of factors, including IGF-I, IGF-II, insulin,
and transforming growth factor �1, differentially modulate the
expression and release of IGFBP from cultured fetal tibial
growth plate chondrocytes, suggesting a role in the control of

local IGF action (64). Surprisingly, other factors that are
involved in the regulation of chondrogenesis, including GH,
FGF2, and T4, had no effect on IGFBP expression and release
in these experiments. High concentrations of IGFBP have also
been associated with inhibition of IGF activity and impairment
of longitudinal growth in children with chronic renal failure,
although a recent study demonstrated differential effects of
IGFBP to either stimulate or inhibit IGF-I-induced chondro-
cyte proliferation, depending on whether they were present as
intact molecules or proteolysed fragments (65). This is further
complicated by a recent report concerning mesenchymal chon-
drogenic RCJ3.1C5.18 cells, in which the antiproliferative
effects of IGFBP3 were influenced by the stage of chondrocyte
differentiation (66). IGFBP-3, -4, and -5 are expressed in
proliferating cells and hypertrophic chondrocytes, whereas
IGFBP-2 expression occurs throughout the growth plate (50),
and IGFBP-1 inhibits the growth-promoting effects of IGF-I
and GH in the growth plate in hypophysectomized rats (67).
Taken together, these studies indicate that IGF-I action in bone
is subject to complex and subtle regulation of its bioavailability
by locally expressed IGFBP that are secreted in varying com-
binations and concentrations.

The activity of IGFBP has been shown further to be differ-
entially regulated by GC (68), an observation that may be
relevant to the growth-inhibiting effects of GC. Thus, dexa-
methasone inhibited IGFBP-5 expression, a potentiator of
IGF-I action in chondrocytes (69, 70), but up-regulated
IGFBP-3 mRNA and protein, which has been reported by some
(71), but not others (72), to have an inhibitory effect on IGF-I
action. Despite the in vivo and in vitro studies that have
addressed the regulation of IGFBP by GC, the results have
varied considerably between IGFBP, the types of cells studied,
and the experimental conditions. Another level of interaction

Figure 2. Hormone action in the growth plate. A indicates the effects of GH, IGF-I, GC, and T3 on growth plate chondrocytes. B demonstrates regions of the
growth plate in which IGF-I and GHR, IGF-IR, GR, and TR are expressed. RZ indicates reserve zone; PZ, proliferative zone; HZ, hypertrophic zone; PS, primary
spongiosum. C shows the Ihh/PTHrP feedback loop, which regulates the pace of endochondral ossification. Ihh is secreted by prehypertrophic chondrocytes and
acts on perichondrial cells during development, or on proliferative chondrocytes during postnatal growth, to stimulate release of PTHrP. PTHrP acts on PTHrP
receptors (PTHrPR) that are expressed in uncommitted prehypertrophic chondrocytes to delay differentiation and maintain cell proliferation.
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that deserves consideration in this context is the effect of IGF-I
on matrix proteoglycan synthesis. As indicated above, this may
modulate IGFBP availability in the growth plate. Additionally,
structural modifications to HSPG within the growth plate are
likely to impact on FGF/FGFR signaling because binding of
FGF to its receptor requires heparan sulfate (73, 74) and altered
expression and structure of HSPG modulates FGFR signaling
in a ligand- and receptor-specific fashion (75, 76). Further-
more, matrix HSPG act as a reservoir for delivery of FGF,
indicating that modulation of matrix proteoglycan secretion
and structure is likely to play an important role in dictating
growth plate chondrocyte responses to both the IGF/IGFBP
and the FGF/FGFR signaling pathways. Regulation of chon-
drocyte matrix secretion and proteoglycan structure by sys-
temic hormones such as glucocorticoids (77, 78) and T3 (34)
adds further complexity to the convergence of systemic hor-
mones and local autocrine/paracrine factors at the growth plate.

Glucocorticoids. Evidence for a direct effect of GC in the
growth plate came from a study in which local dexamethasone
infusion markedly decreased tibial growth compared with the
contralateral limb (79). The GR has since been identified in
proliferating and hypertrophic chondrocytes and in osteoblasts
and osteocytes in the rat (80). GR is also expressed in human
growth plates, mainly in hypertrophic chondrocytes and in
osteoblasts at sites of bone remodeling, but is not expressed in
osteoclasts, suggesting that effects of GC on bone resorption
are indirect (81). GC inhibit osteoblast proliferation, enhance
their differentiation, and enhance bone resorption, probably via
increases in collagenase expression with concomitant reduced
expression of tissue inhibitors of matrix metalloproteinase (82,
83). GC also inhibit type I collagen gene expression so that
there is a simultaneous decrease in bone matrix production
with increased levels of proteases that degrade it. Furthermore,
excess GC induce apoptosis of osteoblasts and osteocytes in
rabbit trabecular bone (84), and in osteoblasts in rat long bones
(85), resulting in an almost complete absence of new bone
formation. In rats, GC excess also reduces growth plate width,
possibly due to decreased numbers of proliferative chondro-
cytes and increased apoptosis in terminal hypertrophic chon-
drocytes (86). These results are also consistent with the dexa-
methasone-induced inhibition of chondrocyte proliferation and
cartilage matrix production observed in 3-mo-old rats in vivo
(87), suggesting that dexamethasone is a potent negative reg-
ulator of the progression of chondrogenesis. It is likely, how-
ever, that dexamethasone also acts as a stimulator of chondro-
progenitor cell recruitment and supporter of chondrocyte
viability (88, 89). Dexamethasone enhances expression of the
Sox-9 transcription factor (90), which regulates expression of
genes encoding markers of commitment to chondrogenesis,
including Col2a1 and aggrecan, to further support the notion
that dexamethasone is a maintenance factor for chondrogenic
cells. This effect on Sox-9 mRNA and protein expression was
observed within 24 h. Indeed, Murakami et al. (91) also
reported that FGF-2 increased Sox-9 mRNA expression in
primary cultures of chondrocytes as early as 30 min after its
addition, an effect that lasted at least up to 24 h. FGF signaling
in chondrocytes also results in an inhibition of proliferation
(62) and thus it is possible that the effects of dexamethasone on

Sox-9 are indirect and involve FGF signaling (91, 92). In
addition, Sox-9 is a target of PTHrP signaling in prehypertro-
phic growth plate chondrocytes, suggesting a complex inter-
play between these factors to influence discrete early steps
during chondrogenesis (92, 93).

It is well established, however, that the effects of GC are
transient and that, after their removal, there is a period of
accelerated catch-up growth. It has been proposed that the
mechanism governing catch-up growth after treatment of GC
excess resides in the growth plate itself (94). This proposal was
based on the observation that suppression of growth within a
single rabbit growth plate in vivo by local administration of
dexamethasone was followed by catch-up growth restricted to
the affected limb. According to this model, growth inhibiting
conditions of excess GC reduce the growth and maturation of
growth plate stem cells, or chondroprogenitors, and conserve
their proliferative potential (95). Our unpublished observation
that the GR is expressed in germinal and proliferative zone
chondrocytes of the rat tibial growth plate is consistent with
this proposal and suggests that chondrocyte progenitors and
proliferating cells are GC target cells in the growth plate. These
hypotheses are further supported by our findings that dexam-
ethasone-treated chondrogenic ATDC5 cells retain the capacity
to re-enter chondrogenesis following withdrawal of GC. Thus,
although dexamethasone arrests growth and differentiation of
chondrocytes, the capacity for cells to undergo chondrogenesis
is maintained in the presence of GC, even though progenitor
cells are quiescent; the program is reactivated when dexameth-
asone is removed. Nevertheless, it is the additional action of
dexamethasone on cells of the proliferative zone to decrease
clonal expansion that, if prolonged, may contribute to the
permanent height deficit observed in children treated for pro-
longed periods with GC (96).

The growth-suppressing effects of GC appear multifactorial,
and some GC actions in bone may modify skeletal responses to
GH and IGF-I. GC reduce IGF-I mRNA in growth plate
chondrocytes (97) and inhibit basal and IGF-I-induced DNA
synthesis (98). Some skeletal effects of GC may actually be
mediated via decreased IGF-I expression, as evidenced by
reduced expression of IGF-I, GHR, and IGF-IR in GC-treated
chondrocytes (17, 99). In cultured osteoblasts, GC inhibit
expression of IGF-I and IGFBP-1, -3, -4, and -5 (83). Thus, GC
cause a generalized reduction in skeletal IGF-I expression in
osteoblasts and chondrocytes. This correlates with observa-
tions that IGF-I and GC exert opposing actions in bone; IGF-I
is mitogenic and GC inhibit proliferation. IGF-I also increases
collagen synthesis and decreases collagenase 3 expression,
whereas GC decrease and increase these parameters, respec-
tively. It has also been reported that IGF-II overexpression in
transgenic mice partially protects bone from the osteopenic
effects of GC (100). Furthermore, GC prevent the induction of
GHR and IGF-IR expression by GH and IGF-I in chondrocytes
(17), although it has been shown previously that GC per se
increase GH receptor mRNA expression in liver, growth plate,
and osteoblasts (83, 101). Although variable effects of GC on
GHR are evident between studies, the effects of GC on GHR
and IGF-IR may account for peripheral GH insensitivity in
patients with GC excess. Reduced numbers of peripheral GHR
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and IGF-IR may also explain antagonism of the growth-
promoting actions of GH by GC, although children with im-
paired growth due to GC excess may still respond to pharma-
cological doses of GH therapy. Importantly, and in contrast to
chondrocytes, GC stimulate GHR in osteoblasts (102), suggest-
ing that insensitivity to GH in conditions of GC excess is
mainly applicable to the detrimental effects of GC on growth
rather than bone mass.

Of additional interest is the observation that GH, via IGF-I,
inhibits activity of 11�HSD1 in human adipose stromal cells
(103). 11�HSD1 is principally a reductase in vivo that converts
inactive cortisone to cortisol, mainly in liver and adipose
tissue, to maintain circulating levels of GC. The type 2 en-
zyme, 11�HSD2, is a dehydrogenase that catalyzes inactiva-
tion of GC to protect the nonselective mineralocorticoid recep-
tor from GC activation in target tissues such as the kidney, or
to prevent the passage of maternal GC across the placenta and
protect the fetus (104). Thus, local tissue GC concentrations
are modulated by the 11�HSD2 enzyme, and 11�HSD2 activ-
ity has been demonstrated in osteoclasts and osteoblasts (105,
106), although its function in bone is unknown (107). If
11�HSD enzymes are expressed in growth plate chondrocytes,
they may act as significant GH- and IGF-I-sensitive regulators
of local GC concentrations in the growth plate.

Thyroid hormones. The hypothesis that GH mediates T3
effects on growth was tested in thyroparathyroidectomized rats
treated with GH, T4, or both (108). T4 reversed all the effects
of hypothyroidism, which reduced growth plate width, articular
cartilage, and trabecular bone volume. GH had no effect on the
growth plate or metaphysis but partially restored epiphyseal
trabecular bone. GH and T4 in combination increased growth
plate width and metaphyseal trabecular bone above the value of
T4-treated animals. Hypertrophic features of chondrocytes
were absent in hypothyroid rats and were only restored by
treatment with T4 or T4 plus GH, but not GH. Thus, three sites
of T3 action were identified in which GH exerted no influence.
GH did not affect stimulation of resting zone cells to differen-
tiate. GH accomplishes this in the intact animal, but these
studies indicate the action requires T3 (108). Secondly, T3 is
indispensable for chondrocyte hypertrophy; and, thirdly, T3 is
required for vascular invasion of the growth plate and metaph-
yseal trabecular bone formation (108). In contrast, reduced
epiphyseal trabecular bone volume in hypothyroidism may
result partly from associated GH deficiency. A similar study in
mandibular condyle cartilage came to the same conclusion that
abnormal bone formation in hypothyroidism can be restored by
T4 but not GH (109). Immunohistochemical analysis demon-
strated expression of GHR throughout the mandibular condyle,
regardless of thyroid status. IGF-I was also expressed through-
out the condyle, but in hypothyroidism and GH-treated rats, it
was absent from reserve and proliferating chondrocytes and
present only in some hypertrophic cells. These data were
interpreted to indicate that chondrocyte IGF-I is down-
regulated in hypothyroidism and that hypothyroid cartilage is
compromised in its GH responsiveness by a lack of IGF-I
(109).

Although the effects of T3 and IGF-I on growth plate
chondrocytes can be separated, T3 influences expression of

several components of IGF-I signaling in bone. T3 increases
IGF-I mRNA in osteoblastic cells, and stimulates IGF-I release
from bone organ cultures (110). T3 also stimulates IGF-I
protein accumulation in conditioned medium of cultured rat
bone tissue (111), IGF-IR mRNA in chondrocytes (112), and
IGFBP-4 in osteoblastic cells (113). IGFBP-4 is an inhibitor of
cell proliferation, and this may be a mechanism that contributes
to the antiproliferative effect of T3 in osteoblasts. T3 also
stimulates IGF-I and IGFBP-2 expression in primary rat cal-
varial osteoblasts, whereas GH has no effect (114).

Current data suggest that the two phases of chondrocyte
growth are regulated separately; IGF-I stimulates proliferation,
whereas T3 induces hypertrophic differentiation (115). The fact
that T4 is also active in this system is noteworthy. T4 is a
prohormone that is converted to T3 by 5'-DI type 1 in periph-
eral tissues. GH stimulates conversion of T4 to T3 (116, 117),
suggesting that some effects of GH may involve this pathway.
Additionally, GC regulate deiodinase activity in renal tubular
cells and the liver whereas T3 regulates 11�HSD1 in liver
(118–120). The activity of T4 to promote chondrocyte hyper-
trophy in serum-free cultures suggests that expression of deio-
dinase in chondrocytes may be an important determinant of
ligand supply to the growth plate that is physiologically sig-
nificant and could be modulated by GH. Indeed, a recent study
has confirmed that growth plate chondrocytes express deiodi-
nase enzymes that may serve to regulate intracellular T3
concentrations during thyroid hormone-inducible hypertrophic
chondrocyte differentiation (121). In view of interactions in
other tissues, GC may modulate the supply of T3 in chondro-
cytes, and vice versa, indicating that local control of intracel-
lular hormone concentrations might be an important mecha-
nism for hormone interactions in the growth plate (Fig. 3).

Figure 3. Interaction between GH, IGF-I, T3, and GC. GH stimulates hepatic
IGF-I secretion and local production of growth plate IGF-I, and exerts direct
actions in the growth plate. Circulating T3 is derived from the thyroid gland
and by enzymatic deiodination of T4 in liver and kidney to act on growth plate
chondrocytes. GC are secreted by the adrenal glands and circulating concen-
trations are modulated by activity of the 11�HSD enzyme in liver and adipose
tissue (type 1 isoform). The regulatory 5'-DI and 11�HSD type 2 enzymes may
also be expressed in chondrocytes to control local supplies of intracellular T3
and GC. Receptors for each hormone (GHR, IGF-IR, TR, GR) are expressed
in growth plate chondrocytes.
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TR-�1, -�2, and -�1 mRNA and -�1 and -�1 proteins have
been identified in rat growth plate by reverse transcriptase PCR
and Western blotting (122). High-affinity nuclear T3 binding
sites are present in human fetal epiphyseal chondrocytes (123)
and TR-�1, -�2, and -�1 proteins have been identified in
chondrocytes at sites of endochondral ossification (124). Until
recently, the locations of T3 target cells within the growth plate
were unknown. In our studies (34, 125), TR-�1, -�2, and -�1
were expressed in reserve and proliferating zone chondrocytes
but not in hypertrophic cells. These data suggest that progen-
itor cells and proliferating chondrocytes are primary T3-target
cells but that differentiated chondrocytes lose the ability to
express TR and are unresponsive to T3. Primary suspension
cultures of rat tibial growth plate chondrocytes express TR-�1,
-�2, and -�1 mRNA and T3 inhibits clonal expansion and cell
proliferation directly while simultaneously promoting hyper-
trophic chondrocyte differentiation (125). These findings are
supported by data that show T3 regulates chondrocyte prolif-
eration and the organization of proliferating chondrocyte col-
umns and is required for terminal hypertrophic differentiation
(112, 115, 123, 126–132). This terminal differentiation process
is associated with induction of the cyclin-dependent kinase
inhibitors p21 and p27 (133), the expression of which was
recently shown to be associated with rat epiphyseal chondro-
cytes induced to terminally differentiate with T3 (134).

We also examined growth plates in thyroid-manipulated rats
(34). Hypothyroid growth plates were grossly disorganized and
hypertrophic chondrocyte differentiation failed to progress.
These effects correlated with absent collagen-X expression and
increased PTHrP mRNA expression. In thyrotoxic growth
plates, histology was normal but PTHrP receptor mRNA was
undetectable. TR-�1, -�2, and -�1 proteins were localized to
regions in which PTHrP and PTHrP receptor expression was
altered by thyroid status. Thus, dysregulated Ihh/PTHrP feed-
back loop activity may be a mechanism that underlies growth
disorders in childhood thyroid disease, which could result from
alteration of the set-point controlling growth plate chondrocyte
maturation. Furthermore, the expression of TR in osteoblasts that
invade the growth plate (34) also suggests that T3 may integrate
the activities of chondrocytes and osteoblasts during ossification.

GENETICALLY MODIFIED MICE

GHR knockout. GHR null mice exhibit severe postnatal
growth retardation, proportionate dwarfism, markedly reduced
IGF-I and elevated GH concentrations, and reduced serum-free
T3 but normal PTH, testosterone, and estrogen concentrations
(135, 136). Growth retardation is evident at 2–3 wk of age, is
progressive, and its onset is associated with reduced chondro-
cyte proliferation and growth plate narrowing (57, 136). In
contrast to the original report in which proportionate dwarfism
was identified in GHR�/� mice (135), others report the pres-
ence of disproportionate growth retardation and reduced bone
mineral density (136). Treatment with IGF-I almost completely
restores growth and bone turnover in GHR�/� mice, suggest-
ing that most of the effects of GH on growth result from direct
actions of IGF-I. It is important to note also that reduced T3
concentrations in GHR�/� mice may contribute to impaired

epiphyseal mineralization (136). Analysis of other mutant mice
has further highlighted the physiologic interaction between the
GH axis and thyroid status. The lit/lit mouse has isolated GH
deficiency and displays a growth curve that is similar to Laron
mice (137). However, the Snell and Ames GH-deficient dwarf
mice are more growth retarded than lit/lit mice, probably
because they are also hypothyroid (138, 139).

IGF-I knockouts. Two IGF-I null mice have been generated
(140, 141). The mice are growth retarded to 60% of normal
birth weight. Many IGF-I null mice die soon after birth; those
surviving to adulthood become further growth retarded, with
delayed bone development, and reach only 30% of normal
adult weight. Thus, IGF-I is essential for pre- and postnatal
growth and development, although survival of IGF-I null mice
to adulthood is dependent on genetic background (141, 142),
suggesting that unknown genes modify IGF-I action. The
IGF-I null growth plate is narrow, with an expanded reserve
zone but reduced width of the hypertrophic zone at postnatal d
20, the beginning of the GH/IGF-I-dependent growth spurt
(143). The expanded reserve zone is considered to be due to
increased GH levels. The hypertrophic zone is reduced 35% in
length and individual chondrocyte diameter reduced by 30%,
correlating with the degree of growth retardation observed and
indicating that IGF-I is required for expansion of hypertrophic
chondrocytes. Collagen X, alkaline phosphatase, and bone
sialoprotein expression in IGF-I null hypertrophic chondro-
cytes was normal, suggesting that cells differentiate but do not
attain full somatic growth (143). These data support the view
that GH expands the pool of chondrocyte progenitors but
contradict the hypothesis that IGF-I is responsible for clonal
expansion of proliferating cells. The major and unique effect of
IGF-I is to amplify hypertrophic chondrocyte size.

To test whether hepatic IGF-I contributes to growth, liver-
specific deletion of IGF-I was performed by two groups who
crossed the same IGF-I loxP strain with differing Cre recom-
binase liver-specific strains of mice (144, 145). Sjogren et al.
(145) used interferon-induced Cre excision of hepatic IGF-I on
postnatal d 24, 26, and 28, whereas Yakar et al. (144) used an
albumin promoter-driven Cre recombinase to constitutively
delete hepatic IGF-I. Circulating IGF-I was reduced by 75% in
both, and hepatic IGF-I expression was abolished, with a
marked compensatory increase in circulating GH concentra-
tions. There was no effect on postnatal growth in either study,
providing evidence to refute the somatomedin hypothesis (40)
and support the view that autocrine/paracrine actions of IGF-I
are major determinants of postnatal growth. Nevertheless, such
conclusions can be challenged by the argument that circulating
concentrations of IGF-I at levels that are 25% of normal may
be sufficient to maintain growth in the presence of elevated
circulating GH concentrations.

IGF-IR knockout. IGF-IR deletion is lethal (141, 142, 146).
Neonatal mice die of respiratory failure and exhibit severe
growth retardation, delayed ossification, and generalized organ
hypoplasia (141). Surprisingly, IGF-IR and IGF-IIR double
knockout mice are rescued, although postnatal growth is com-
promised. Triple mutants lacking both IGFR and IGF-II are not
viable and growth is retarded to 30% of normal (146). The
IGF-IR mediates signaling by IGF-I and -II, whereas the
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IGF-II receptor regulates IGF-II turnover but does not mediate
signal transduction. Thus, the double and triple knockout data
are interpreted as indicating that IGF-II, as well as IGF-I,
contributes to postnatal growth regulation and signals via an
unidentified receptor (146). Subsequent evidence from in vitro
and genetic studies indicates that the unidentified receptor may
actually be the insulin receptor inasmuch as proliferative and
growth-promoting actions of IGF-II may also be mediated, in
part, by the insulin receptor (147, 148). Thus, in contrast to
IGF-I, which acts exclusively via the IGF-IR, IGF-II stimulates
both the IGF-IR and the insulin receptor.

GR knockouts. GR gene deletion is lethal and mice die of
respiratory failure due to lung atelectasis within a few hours of
birth (149). Mice with GR targeted for a point mutation that
prevents receptor dimerization and abolishes DNA-binding-
dependent transcriptional activation were generated (150) to
allow analysis of GR signaling pathways that are independent
of DNA-binding and require cross-talk with other transcription
factors. Such pathways inhibit transcription via protein–protein
interactions between GR and other transcription factors, in-
cluding activator protein-1 or nuclear factor-�B, or cause
activation of transcription in the case of GR and STAT5 (151).
Although the skeletal phenotype of these mice has not been
studied, the GC effects on collagenase-3 and gelatinase B gene
expression are now known to be independent of DNA binding
(150), suggesting that GC regulation of matrix metalloprotein-
ases is highly complex and involves other signaling pathways.

TR knockouts. The skeletal phenotypes of TR knockout mice
(Table 1) (152–156) reinforce the view that T3 acts directly in
growth plate cartilage. In TR-��/� mice there is growth arrest and
disorganization of growth plate chondrocytes, with delayed carti-
lage mineralization and bone formation. These abnormalities re-
sult from severe hypothyroidism due to impaired thyroid hormone
production at weaning, as the phenotype can be rescued by T4

(154). This suggests that TR-� can compensate for TR-� in the
growth plate. Nevertheless, TR-� is not essential for bone devel-
opment inasmuch as TR-� null mice (152, 153) show no evidence
of growth retardation or developmental abnormalities in bone and
cartilage. Furthermore, double knockout of both TR-� and -�
genes fails to modify the skeletal phenotype seen in TR-��/� null
mice (155). The TR-��/� mutation results in deletion of TR-�1
and -�2 proteins but preservation of two truncated isoforms,
TR-��1 and TR-��2, that arise from a novel promoter in intron
7 (157). In contrast to TR-��/� mice, TR-�1�/� mice (156, 158)
do not exhibit skeletal abnormalities and retain expression of
TR-�2 and -��2 but lack TR-�1 and -��1. Interestingly, TR-
�1�/���/� double knockouts experience growth retardation
(156) associated with an inhibition of the GH/IGF-I axis. How-
ever, GH substitution in these animals reverses the growth phe-
notype but not the defective ossification (159), suggesting that TR
are important both for the regulation of the GH/IGF-I axis and for
direct effects on cartilage. Furthermore, these animals suggest a
role for TR-�2 in bone development. This argument, however,
has been difficult to test by selective deletion of TR-�2 because
TR-�1 is markedly overexpressed in TR-�2�/� mice, thereby
confusing phenotypic interpretation (160). To investigate this
issue further, mice devoid of all known TR-� isoforms were
generated (161). These TR-�0/0 mice exhibit all features of the
previously described TR-�1�/� mice (158), but also display
retarded growth and delayed bone maturation. The skeletal phe-
notype of TR�0/0 mice includes retarded ossification, failed hy-
pertrophic chondrocyte differentiation, and disorganized growth
plate architecture. Importantly, TR-�0/0 mice are euthyroid and
pituitary GH synthesis is normal. The data suggest that severe
hypothyroidism may be more detrimental to endochondral ossifi-
cation than deletion of all products of the TR-� gene and support
the notion that there is functional redundancy between TR iso-
forms in the growth plate.

Table 1. Genotypes and growth characteristics of TR null mice

Genotype (reference) Deleted TR mRNA
Expressed TR

mRNA Thyroid status GH status
Growth

retardation

TR-� mutants
�1�/� (158) �1, ��1 �2, ��2, all �

mRNA
Mildly

hypothyroid
Normal �

�2�/� (160) �2, ��2 �1,* ��1, all �
mRNA

Mildly
hypothyroid

GH normal,
IGF-I deficient

�/� late
onset

��/� (154) �1, �2 ��1, ��2, all
� mRNA

Grossly
hypothyroid

Normal ��

�0/0 (161) All � mRNA All � mRNA Euthyroid† Normal �
TR-� mutants

�2�/� (162) �2 All � mRNA,
�1, �3, ��3

RTH Mildly deficient �

��/� (152) All � mRNA All � mRNA RTH Mildly deficient �
TR-�� double mutants

�1�/���/� (156) �1, ��1, all � mRNA �2, ��2 Severe RTH GH & IGF-I
deficient

��

��/���/� (155) �1, �2, all � mRNA ��1, ��2 Severe RTH Not determined ��
�0/0��/� (161) All � mRNA, all � mRNA None Severe RTH GH deficient ��

RTH, resistance to thyroid hormone. GH status was determined by measurement of pituitary mRNA and/or protein or by GH concentration in serum. IGF-I
was measured in serum.

* TR-�1 is overexpressed in �2�/� mice, and presumed consequences of gene targeting on expression of ��1, ��2 mRNA were not tested in the original
studies.

†TR� 010 mice show mildly increased sensitivity to thyroid hormones following provocative dynamic testing.
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CONCLUSIONS

We have reviewed the actions of GH, IGF-I, GC, and T3
during linear growth. Interactions between these hormones to
regulate various hypothalamopituitary axes have long been
understood, but recent interest from a variety of disciplines,
including the broad fields of developmental biology, hormone
action, and bone and cartilage metabolism, has led to a new
appreciation of the epiphyseal growth plate. This organ is a
point of convergence for interactions between circulating hor-
mones and locally acting autocrine/paracrine factors that are
achieved by mutual regulation of hormone availability and
receptor expression in growth plate chondrocytes. We suggest
that GH, IGF-I, GC, and T3 signaling pathways are integrated
by such complex interactions to regulate, for example, the set
point of the Ihh/PTHrP feedback loop to control the pace of
growth plate chondrocyte differentiation and linear growth. A
clearer understanding of the molecular basis for these interac-
tions in humans will facilitate the design of new, targeted
approaches to treat childhood growth retardation.
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