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The following is the sixth in our series of review articles on the developmental biology of the nervous system and its relation to
diseases and disorders that are found in newborn infants and children. In this article Dr. Volpe discusses the pathogenesis of
periventricular leukomalacia, the major form of brain injury in premature infants. He describes factors that predispose these
infants to this disorder as well as potential methods of prevention.
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Brain injury in the premature infant is a problem of enormous impor-
tance. Periventricular leukomalacia (PVL) is the major neuropathologic form
of this brain injury and underlies most of the neurologic morbidity encoun-
tered in survivors of premature birth. Prevention of PVL now seems ulti-
mately achievable because of recent neurobiologic insights into pathogene-
sis. The pathogenesis of this lesion relates to three major interacting factors.
The first two of these, an incomplete state of development of the vascular
supply to the cerebral white matter, and a maturation-dependent impairment
in regulation of cerebral blood flow underlie a propensity for ischemic injury
to cerebral white matter. The third major pathogenetic factor is the matura-
tion-dependent vulnerability of the oligodendroglial (OL) precursor cell that
represents the major cellular target in PVL. Recent neurobiologic studies
show that these cells are exquisitely vulnerable to attack by free radicals,
known to be generated in abundance with ischemia–reperfusion. This vul-
nerability of OLs is maturation-dependent, with the OL precursor cell highly
vulnerable and the mature OL resistant, and appears to relate to a develop-
mental window characterized by a combination of deficient antioxidant
defenses and active acquisition of iron during OL differentiation. The result
is generation of deadly reactive oxygen species and apoptotic OL death.
Important contributory factors in pathogenesis interact with this central
theme of vulnerability to free radical attack. Thus, the increased likelihood of
PVL in the presence of intraventricular hemorrhage could relate to increases
in local iron concentrations derived from the hemorrhage. The important
contributory role of maternal/fetal infection or inflammation and cytokines in
the pathogenesis of PVL could be related to effects on the cerebral vascu-
lature and cerebral hemodynamics, to generation of reactive oxygen species,
or to direct toxic effects on vulnerable OL precursors. A key role for

elevations in extracellular glutamate, caused by ischemia–reperfusion, is
suggested by demonstrations that glutamate causes toxicity to OL precursors
by both nonreceptor- and receptor-mediated mechanisms. The former in-
volves an exacerbation of the impairment in antioxidant defenses, and the
latter, an �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate
receptor–mediated cell death. Most importantly, these new insights into the
pathogenesis of PVL suggest potential preventive interventions. These in-
clude avoidance of cerebral ischemia by detection of infants with impaired
cerebrovascular autoregulation, e.g. through the use of in vivo near-infrared
spectroscopy, the use of free radical scavengers to prevent toxicity by
reactive oxygen species, the administration of �-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid/kainate receptor antagonists to prevent glutamate-
mediated injury, or the use of maternal antibiotics or anticytokine agents to
prevent toxicity from maternal/fetal infection or inflammation and cytokines.
(Pediatr Res 50: 553–562, 2001)
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OL, oligodendroglia
CBF, cerebral blood flow
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TNF-�, tumor necrosis factor-�

Among all problems in neonatal medicine, brain injury in
the premature infant, especially prevention of that injury, is of

particular importance. The absolute magnitude of this problem
is enormous. Thus, in the United States alone, approximately
57,000 infants are born yearly with a birth weight �1500 g (1).
Because of major advances in neonatal intensive care, nearly
90% of such infants now survive the neonatal period. The
downside is that approximately 10% later exhibit the spastic
motor deficits categorized as cerebral palsy, and, importantly,
an additional 25– 50% later manifest cognitive or behavioral
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deficits that result in serious school disturbances (2–5). This
enormous amount of neurologic morbidity relates primarily to
the brain injury that is the topic of this review.

Brain injury in the premature infant includes a variety of
neuropathologic lesions, including PVL, germinal matrix-
intraventricular hemorrhage, posthemorrhagic hydrocephalus, and
several patterns of neuronal injury (5). The first two of these
lesions are the most important, and with the recently declining
incidence in intraventricular hemorrhage, PVL has emerged as the
principal form of brain injury in the premature infant (5). Thus,
this review will focus on the neurobiology of PVL, with a
particular emphasis on the pathogenesis of the lesion and the
preventive interventions that are suggested by recent insights into
pathogenesis.

NEUROPATHOLOGIC AND CLINICAL FEATURES
OF PVL

The neuropathology of PVL consists of two principal com-
ponents, focal and diffuse (Fig. 1) (5). The focal component,
located deep in the cerebral WM, is characterized by localized
necrosis of all cellular elements with subsequent cyst forma-
tion. The diffuse component is a less severe injury, apparently
cell-specific, categorized by diffuse injury to OL precursors.
The latter cells, of course, are destined to develop later into
mature OLs, which form the myelin of the cerebral WM. The
latter process is principally a postterm event in human brain.
Thus, not unexpectedly, the principal neuropathologic sequela
of PVL is diminution of WM volume and ventriculomegaly,
secondary to the deficiency of myelin.

The clinical features of PVL include diagnostic aspects and
clinicopathologic correlations (5). Diagnosis of the focal com-
ponent of PVL is made readily in the neonatal period by cranial
ultrasonography. However, the diffuse component of the lesion

is invisible to cranial ultrasonography in the neonatal period.
Diffusion-weighted magnetic resonance imaging has been
shown to identify this lesion (6), although more data are
needed on sensitivity and specificity of diffusion-weighted
imaging. Diagnosis of the later deficit of myelin and the
ventriculomegaly is made readily by conventional brain imag-
ing. Available qualitative imaging data suggest that the diffuse
component of PVL is considerably more common than is the
focal component, although quantitative information is lacking
(5). The principal clinicopathologic correlates of PVL are
spastic diplegia, related primarily to the deep periventricular
locus of the focal component of the lesion, and the cognitive
and behavioral deficits, related, I believe, to the more diffuse
component of the lesion.

PATHOGENESIS AND NEUROBIOLOGY OF PVL

The pathogenesis of PVL consists of at least three major
interacting factors. The first two of these factors underlie a
propensity for the occurrence of cerebral ischemia, and the
third of these factors concerns the particular vulnerability of
OL precursors to ischemia and, importantly, to other related
insults, as I will discuss.

Vascular Anatomic and Physiologic Factors

The focal and diffuse components of PVL appear to relate in
part to the development of the vascular supply to the cerebral
WM (7–11). This supply consists principally of the long and
short penetrating arteries (Fig. 1). Thus, the focal component of
PVL with loss of all cellular elements occurs principally in the
distribution of the end zones of the long penetrating arteries
(Fig. 1). The distal fields of these vessels are not fully devel-
oped in the premature infant, and, thus, with decreases in CBF
these areas would be subjected to severe ischemia. The diffuse

Figure 1. Schematic depiction of coronal section of cerebrum with the focal and diffuse components of PVL shown in one hemisphere and the cerebral vascular
supply in the other hemisphere. The focal necrotic component of PVL is depicted by the black circles, and the diffuse OL-specific component, in the gray shading.
The long and short penetrating arteries supply the cerebral WM, as shown.
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OL-specific component of PVL occurs principally in the dis-
tributions of 1) the border zones between the individual long
penetrating arteries and 2) the end zones of the short penetrat-
ing arteries. The short penetrating arteries do not develop fully
until the cerebral cortex develops fully in the postterm period.
Thus, with declines in CBF, moderate ischemia and the more
cell-specific loss of OL precursors would be expected.

A physiologic correlate of these vascular anatomic factors
appears to be the extremely low blood flow to cerebral WM in
the human premature newborn, first shown clearly by work
with positron emission tomography (12). The finding of ex-
tremely low WM flows is consistent with measurements of
mean global CBF in ventilated human premature infants (13–
19). The studies of regional CBF by positron emission tomog-
raphy showed that values in cerebral WM in surviving preterm
infants with normal or near normal neurologic outcome ranged
from only 1.6 to 3.0 mL·100 g�1·min�1 (12). These remark-
ably low values in WM were approximately 25% of those in
cortical gray matter, a regional difference later confirmed in a
study using single photon emission tomography (20). The
blood flow values of �5.0 mL·100 g�1·min�1 in normal or
near normal cerebral WM in the preterm infant are markedly
less than the threshold value for viability in adult human brain
of 10 mL·100 g�1·min�1 (normal CBF in the adult is approx-
imately 50 mL·100 g�1·min�1) (21). The very low values of
volemic flow in cerebral WM in the human premature infant
suggest that there is a minimal margin of safety for blood flow
to cerebral WM in such infants.

Thus, these maturation-dependent cerebrovascular factors,
coupled with the neuropathology of PVL discussed earlier,
suggest that the focal necroses, affecting all cellular elements
and localized to deep cerebral WM, are related to relatively
severe ischemia. The more peripheral diffuse cerebral WM
injury, affecting, apparently specifically, OL precursor cells,
although relatively sparing other cellular elements, may be
related to less severe ischemia.

Impaired Cerebrovascular Autoregulation or
Pressure-Passive Cerebral Circulation

The vascular end zones and border zones just described thus
would render the premature infant’s brain particularly vulner-
able to injury in the presence of cerebral ischemia. Perhaps of
particular importance in the genesis of impaired CBF and
thereby cerebral ischemia is an apparent impairment of cere-
brovascular regulation in at least a subset of ventilated prema-
ture infants. This impairment was suggested initially by studies
using the invasive technique of radioactive xenon clearance
(22–25). Thus, in such sick premature infants with a pressure-
passive cerebral circulation it would be expected that when
blood pressure falls, as occurs commonly in such infants, so
would CBF, with the consequence being ischemia in the
distribution of the arterial end zones and border zones in
cerebral WM. Moreover, the particular danger is compounded
by the demonstration that blood flow to cerebral WM of the
infant is very low (see earlier) and that thereby a minimal
margin of safety may exist.

Clinically stable premature infants seem less likely to exhibit
this apparent lack of cerebrovascular autoregulation (13, 14,
24, 26, 27), although some studies of such “healthy” premature
infants identify “absent” autoregulation even in this setting
(28). With intact cerebrovascular autoregulation in the mature
child or adult, CBF remains constant over a wide range of
blood pressure because of arteriolar dilation with decreases in
blood pressure and arteriolar constriction with increases in
blood pressure. Studies in preterm lambs suggest that during
the maturation of cerebrovascular autoregulation there is an
early phase in which the range of blood pressure over which
CBF is maintained constant, although present, is narrow and
that the normal blood pressure is near the downslope of the
autoregulatory curve (29, 30). Such a situation would render
even the premature infant with a degree of intact autoregulation
vulnerable to modest declines in blood pressure. The signifi-
cance of such modest declines could go undetected if the focus
of monitoring were systemic blood pressure alone and not the
relation between blood pressure and the cerebral circulation.

A relation between impaired CBF and the occurrence of
PVL is supported further by clinical studies that relate the
lesion to neonatal events expected to cause cerebral ischemia.
Such events associated with the development of PVL include
severe hypotension, marked hypocarbia, hypoplastic left heart
syndrome, patent ductus arteriosus with retrograde cerebral
diastolic flow, and severe illness requiring extracorporeal
membrane oxygenation, among others [see Volpe (5) for
review].

The difficulty in conclusively establishing a relationship
between a pressure-passive cerebral circulation and the
occurrence of PVL is related to the inability to determine
which infants exhibit such a hemodynamic abnormality and
if so, whether such infants develop PVL. The methodolog-
ical hurdle has been the inability to measure quantitative
changes in the cerebral circulation from second to second.
The advent of in vivo near-infrared spectroscopy has
changed this situation. Thus, this noninvasive technique,
now near the threshold of clinical application, allows the
measurement, essentially in real-time, of cerebral concen-
trations of oxygenated and deoxygenated Hb (5). Changes in
the concentrations of these two intravascular compounds
provide information about cerebral blood volume, CBF, and
oxygen delivery (31, 32). Using this technique in a prelim-
inary study of 32 mechanically ventilated premature infants
from the first hours of life, we identified a pressure-passive
cerebral circulation (Fig. 2) in 53%; such infants had ap-
proximately a fourfold increased risk of PVL or severe
intraventricular hemorrhage and accounted for the vast ma-
jority of all examples of these severe lesions (33). Although
the numbers are small and the data preliminary, the obser-
vations suggest that premature infants with a pressure-
passive cerebral circulation are at high risk for the devel-
opment of ischemic WM injury and that such infants can be
identified before the occurrence of such injury. Future work
must be directed at confirmation of these preliminary re-
sults, identification of the causes of the cerebral circulatory
abnormality, and formulation of a means of preventing this
disturbance.
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Maturation-Dependent Vulnerability of OL Precursors

OL precursor as the key cellular target in PVL. Specific
maturation-dependent characteristics of the actively differenti-
ating OL precursors in the human cerebrum appear to be very
important in the pathogenesis of particularly the diffuse com-
ponent of PVL. A vulnerability of immature WM to hypoxia-
ischemia has been suggested by studies of hypoxic-ischemic
injury in midgestation fetal sheep, late-gestation fetal sheep,
near-term fetal sheep, 1-d-old piglets, and 5- and 7-d-old rat
pups (34–43). These observations led us to investigate the
neurobiologic mechanisms of the intrinsic vulnerability of OL
precursors in a highly defined system of cultured OLs. Before
undertaking those studies in depth we set out to determine the
specific stage in the OL lineage present in the cerebral WM of
the human premature infant and the presumed target, therefore,
of the diffuse OL injury in PVL. Our studies identified the
dominant form of OL in the WM of the human premature
infant, and perhaps therefore the key cellular target in PVL, as
an early differentiating OL with the specific immunocytochem-
ical characteristics of an OL precursor (44). With this infor-
mation concerning human brain we developed a chemically
defined culture system to study, in nearly pure form, the
different stages of the OL lineage, including the OL precursor
stages (45). With this system of nearly pure OL cultures, we
have addressed four important questions, as follows. First, are
OLs particularly vulnerable to free radical attack? Second,
what is the mode of cell death caused by such free radical
attack? Third, is any vulnerability to free radical attack matu-
ration-dependent? Fourth, what are the mechanisms underlying
the maturation-dependence of this vulnerability?

Vulnerability of OL precursors to free radical attack. We
asked first the question of the vulnerability of OLs to free
radical attack, because PVL has been considered to be an
ischemic lesion, and an elevation in a variety of reactive
oxygen species is a well-established sequela of ischemia–
reperfusion (46–49). Direct and indirect evidence for increases
in oxygen free radicals in developing brain during reperfusion
after hypoxia-ischemia has been obtained in studies of neonatal
and fetal animals (50–66). This evidence includes direct dem-

onstrations of elevated free radicals, as well as amelioration of
deleterious neural effects by the use of free radical scavengers
or inhibitors of free radical formation. The nature of the
specific free radicals involved varies somewhat with the ex-
perimental model but principally includes initially superoxide
anion and hydrogen peroxide (67). Although derivatives of
nitric oxide, such as peroxynitrite, have been implicated in
some paradigms, we have shown that nitric oxide is protective
to OL precursors under conditions of oxidative stress (68). In
two model systems of free radical accumulation, we have
shown that OL precursors in culture indeed are exquisitely
vulnerable to free radical attack (45, 69, 70). Moreover, clin-
ically safe free radical scavengers, e.g. vitamin E, totally
prevented the OL death caused by free radical attack. Interest-
ingly, vitamin E was capable of rescuing OL precursors from
free radical-mediated death even when added many hours after
onset of the insult (unpublished data).

Having demonstrated that early differentiating OLs are ex-
quisitely vulnerable to free radical-mediated cell death, we
next set out to determine the mode of cell death, because the
specific form of cell death may provide valuable insights into
the molecular mechanisms. The determination of specific mode
of death is relevant to periventricular WM injury, in part
because findings obtained in several neuronal systems suggest
that a moderate insult leads to neuronal death by apoptosis and
a severe insult, to death by necrosis (71, 72). As discussed
earlier the diffuse OL injury in PVL is likely to be related to
moderate ischemia, as contrasted with the severe ischemia in
deep periventricular WM that results in focal necrosis with loss
of all cellular elements. Moreover, studies in the neonatal
piglet subjected to hypoxia-ischemia have demonstrated exclu-
sively necrotic cell death in certain neuronal populations, both
necrosis and apoptosis in other neuronal populations, but ex-
clusively apoptotic cell death in immature cerebral WM (34).
Similarly, the chromatin clumping and nuclear condensation so
characteristic of the “acutely damaged glia” of the diffuse
component of human PVL (73, 74) also suggest the possibility
of apoptotic cell death. Consistent with all of these data, our
studies of OL precursors subjected to free radical attack in

Figure 2. Pressure-passive cerebral circulation in a premature infant of 26-wk gestation, on the second postnatal day. The upper trace was obtained from the
cerebral circulation by near-infrared spectroscopy and the lower trace from the umbilical artery transducer for mean arterial blood pressure (MABP). HbD is the
difference value of HbO2 � Hb, shown in animal studies to correlate tightly with cerebral blood flow (31, 32). The right panel shows a plot of the data points
and the nearly linear relationship between MABP and HbD. The infant later exhibited the ultrasonographic features of PVL.
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culture in fact show features consistent with apoptosis as the
mode of cell death, i.e. margination of chromatin, nuclear
condensation, preservation of plasma membrane, oligonucleo-
somal DNA fragmentation (by terminal deoxynucleotidyl
transferase-mediated dUTP nick-end labeling), and prevention
by protein synthesis inhibitors (45).

We next asked whether the exquisite vulnerability of OLs to
free radical attack and cell death is maturation-dependent.
Using the stage-specific system of OLs in culture and the
cystine deprivation (and thereby glutathione depletion) model
of free radical attack, we have shown that the early differen-
tiating OL is vulnerable to free radical attack, whereas the
mature OL is resistant (Fig. 3A) (45). The difference in vul-
nerability was apparent in a separate model of exposure to free
radicals (45). This maturation-dependent vulnerability thus
may be critical for the predilection of this lesion for the human
brain early in life and the absence of the lesion in similar form
after OL maturation and myelination occur.

The last of the four questions raised earlier, i.e. the mecha-
nisms underlying the maturation-dependence of the vulnera-
bility of OL precursors to free radical attack, is perhaps the
most important. Direct comparison of OL precursors and ma-
ture OLs under conditions of free radical attack showed that the
precursor cells accumulate free radicals whereas the mature
cells do not (Fig. 3B). The OL precursors appear deficient in
capability of handling the free radicals. The potential explana-
tion for this deficiency is suggested from information derived

from studies of experimental models (61, 65, 66, 75–83) and
limited analyses of autopsied human brain (84–86). Taken
together the findings suggest a delay in the development and
the reactivity of antioxidant defenses, especially glutathione
peroxidase and catalase (Fig. 3C). The latter enzymes are
involved in detoxification of hydrogen peroxide. As shown in
Fig. 3C, when these defenses fail or are overwhelmed, hydro-
gen peroxide accumulates, and in the presence of Fe2� the
Fenton reaction produces the deadly hydroxyl radical. Early in
differentiation OLs are likely to accumulate iron because of the
active acquisition of iron required for OL differentiation and
probably also because of the accumulation of nonprotein-
bound iron as a consequence of hypoxic-ischemic insult. Con-
sistent with these findings, we showed that cultured OL pre-
cursors were totally resistant to free radical attack in the
presence of the iron chelator, desferrioxamine (45). Supporting
the relevance of these findings to the human infant are studies
of plasma of human premature infants suggesting both a
propensity to generate free radicals, including the hydroxyl
radical, and impaired antioxidant defenses (87–96). Moreover,
the first reported study of peroxidation products in CSF of
premature infants shows elevations in infants with subsequent
evidence of WM injury by magnetic resonance imaging, com-
pared with levels in infants without WM injury (97).

Thus, the proposed relationship between ischemia–
reperfusion and cell death in OL precursors is provided in
Figure 3D. A maturation-dependent window of vulnerability

Figure 3. Vulnerability of cultured OL precursors to free radical attack. A, free radicals are more toxic to OL precursors (Pre OLs) than to mature OLs. Free
radical attack is produced by 24 h of growth in cystine-deprived medium (Cys�), which results in glutathione depletion. B, free radicals accumulate in OL
precursors but not in mature OLs with cystine deprivation. Glutathione levels declined to the same nadir in both cell types (data not shown). Free radicals were
determined by a fluorescence technique. C, free radical metabolism with ischemia–reperfusion. The superoxide anion is generated and undergoes conversion to
hydrogen peroxide (H2O2) by the action of superoxide dismutase (SOD). Hydrogen peroxide is detoxified by catalase and glutathione (GSH) peroxidase. If this
detoxification step fails or hydrogen peroxide accumulates, and if Fe2� is available, the Fenton reaction can produce the deadly hydroxyl radical (OH�). D,
summary scheme for pathogenesis of OL death under conditions of ischemia–reperfusion. The central role of free radical attack and the basis of the vulnerability
of OL precursors (impaired antioxidant defenses and acquisition of Fe2�) are shown.
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appears likely. The central roles of developmentally deficient
antioxidant defenses, acquisition of iron for differentiation, and
free radical accumulation are shown.

Potential Role of Hemorrhage in OL Death

The particular propensity for the occurrence of intraventric-
ular hemorrhage in the premature infant may accentuate this
apparent maturation-dependent vulnerability to free radical
attack. Thus, the incidence of PVL is higher in infants who
sustain intraventricular hemorrhage versus those who do not,
whether brain is studied postmortem (98, 99) or in the living
infant (5, 100, 101). Although several reasons for this relation-
ship seem possible, including similarities of the pathogenesis
of the two lesions (5), an excellent possibility is that the
hemorrhage provides a rich source of iron for the generation of
reactive oxygen species (Fig. 4). Supportive of this suggestion
is the recent demonstration that nonprotein-bound iron was
found in CSF of 75% of preterm infants with posthemorrhagic
ventriculomegaly but was not found in CSF of infants without
prior hemorrhage (102).

Potential Role for Glutamate in OL Death

Potential for increased extracellular glutamate. A potential
role for excess extracellular glutamate in the pathogenesis of
PVL is suggested by several interrelated observations. First, an
elevation of extracellular glutamate is likely in cerebral WM
subjected to hypoxia-ischemia. The mechanisms for such an
elevation are multiple. Thus, the earliest and an especially

prominent neuropathologic feature of focal PVL is coagulation
necrosis and disruption of axons (103, 104). Additionally, in
both human and experimental models of PVL, immunocyto-
chemical studies suggest that axonal injury can occur without
overt focal necrosis (105, 106). Because neurons, and presum-
ably axons, contain millimolar concentrations of glutamate
(107–109), it appears likely that substantial amounts of gluta-
mate could leak into the extracellular space on disruption.
Additional sources of glutamate with brain ischemia–
reperfusion include failure of glutamate uptake in astrocytes
and neurons, reversal of glutamate transporter function in
astrocytes and OLs, and cytokine effects on astrocytes, among
other factors (110, 111).

Nonreceptor-mediated glutamate-induced OL death. Po-
tential importance for elevations in extracellular glutamate is
suggested by the demonstrations that glutamate can lead to
death of OL precursors both by nonreceptor-mediated and
receptor-mediated mechanisms (Fig. 4). Concerning the non-
receptor-mediated mechanism, glutamate causes glutathione
depletion in OL precursors and thereby free radical-mediated
cell death (69). This effect is mediated by activation of a
glutamate-cystine exchange transporter, such that glutamate
uptake results in cystine efflux, intracellular cystine depletion,
and thereby impaired glutathione synthesis (69). The result is
free radical-mediated death, which can be totally prevented by
such free radical scavengers as vitamin E (69).

Receptor-mediated glutamate-induced OL death. In addi-
tion to the nonreceptor-mediated mechanism just described,
activation of the AMPA/kainate type of glutamate receptor can

Figure 4. Pathogenesis of OL death in PVL. The scheme shows the central role of vulnerability to free radical attack and the means by which intraventricular
hemorrhage (IVH), extracellular glutamate, and maternal/fetal infection or inflammation may interact with this central vulnerability.
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lead to OL death in culture and in vivo (Fig. 4) (41, 112–119).
Moreover, our data indicate that this AMPA/kainate form of
OL death occurs only in the developing OL and not in the
mature OL (115). The relevance of this phenomenon to hy-
poxic-ischemic cerebral WM OL injury was shown by the
demonstration that in the immature rat such injury is prevented
by the systemic administration of the non-N-methyl-D-aspartate
receptor antagonist 6-nitro-7-sulfamoylbenzo(f)quinoxaline-
2,3-dione (NBQX) after termination of the insult (41). A
similarly beneficial effect in this model has been shown re-
cently with a clinically safe anticonvulsant drug, topiramate,
which acts at the AMPA/kainate receptor (120). Thus, taken
together these findings indicate that glutamate leads to toxicity
of OL precursors by both receptor and nonreceptor-mediated
mechanisms. Both mechanisms can be counteracted, the latter
by free radical scavengers and the former by specific receptor
antagonists.

Maternal/Fetal Infection or Inflammation and Cytokine
Release in OL Death

An additional and interrelated mechanism for the death of
OL precursors in PVL involves the action of maternal/fetal
infection, inflammation, and cytokines (Fig. 4). An important
series of clinical, epidemiologic, neuropathologic, and experi-
mental studies suggests that maternal/fetal infection, inflam-
mation, or cytokines are involved in the pathogenesis of a
proportion of cases of PVL. Thus, a role for maternal/fetal
infection, endotoxin, and presumably endotoxin-mediated cy-
tokine release in the pathogenesis of periventricular WM injury
was suggested initially by neuropathologic and epidemiologic
studies of human infant brain and by related experimental
studies of Gilles and Leviton and coworkers approximately
25–30 y ago (121–123). Two recent demonstrations of cerebral
WM lesions in fetal rabbits after the induction of maternal
intrauterine infection are consistent with the earlier observa-
tions (124, 125). Several recent human studies lend further
support to a contributory role for such factors in the pathogen-
esis of PVL. Thus, the incidence of PVL and cerebral palsy in
premature infants is increased in the presence of 1) evidence
for maternal, placental, or fetal infection (126–138), 2) ele-
vated levels of IL-6 in cord blood (139), 3) elevated levels of
IL-6 and IL-1� in amniotic fluid (140), and 4) elevated levels
of all interferons and IL-1 and IL-6, among other cytokines, in
neonatal blood (141–143). Moreover, although potentially a
secondary effect of ischemia (see later), the demonstration of
IL-6 and TNF-� within PVL lesions is also possibly supportive
of a relation of PVL to intrauterine infection and cytokines
(144–146).

The possibility of direct injury to developing OLs by cyto-
kines or other bacterial products is raised by studies of cultured
OLs (Fig. 4). Thus, some studies, although not all, suggest that
TNF-� is toxic to OLs (147–154). Our preliminary data with
developing OLs show little or no toxicity to TNF-� in pure OL
cultures but high toxicity by interferon-�. The latter observa-
tion has been made by others (150, 155). Moreover, it has been
shown that immature OLs in culture are more vulnerable to the
cytotoxicity of interferon-� than are mature OLs (155, 156).

Additionally, TNF-� potentiates this toxicity of interferon-� to
developing OLs (153). Finally, a role for cytokines and inflam-
matory cells in the pathogenesis of cerebral OL injury in the
absence of infection also must be considered. Thus, it is
well-established in animal models that ischemia–reperfusion is
accompanied rapidly by activation of microglia, secretion of
cytokines, and mobilization, adhesion, and migration of mac-
rophages and inflammatory cells (Fig. 4). Multiple cytokines,
microglia, or white blood cells can be involved. Indeed in one
model of excitotoxic injury to developing WM, potentiation of
toxicity by several inflammatory cytokines and a central role
for microglia have been shown (157, 158). Whether induced by
infection or ischemia, these inflammatory responses could be
particularly detrimental to developing OLs because production
of reactive oxygen species is one mechanism for the cytotox-
icity caused by these factors (49, 159–163). Thus, the central
theme of vulnerability of OL precursors to such reactive
species may be unifyingly relevant in this context (Fig. 4).

Infection and cytokines, individually or in combination, may
lead to ischemia–reperfusion and thereby the potential for OL
injury on that basis (Fig. 4). Thus, a distinct disturbance of
vascular endothelium can be produced by endotoxin, as ob-
served in brains of newborn kittens that developed PVL after
endotoxin injection (122, 164, 165). Additionally, endotoxin
has been shown to cause arterial hypotension in newborn dogs,
in sublethal doses, and to produce in the same animals periven-
tricular WM injury (166). Moreover, in the model the deficits
in blood flow and metabolism produced in cerebral WM by
hemorrhage-induced hypotension were similar to those pro-
duced by endotoxin-induced hypotension. Related work in
immature rabbits also showed a particular propensity for cere-
bral WM to develop both decreased CBF 1 to 2 h after
endotoxin administration and histologic evidence for necrosis
subsequently (167). Finally, because of the pronounced vaso-
active effects of certain cytokines (e.g. TNF-�) and of other
compounds (e.g. nitric oxide) released as part of the inflam-
matory cascade (168), an impairment of cerebrovascular reg-
ulation and thereby risk for ischemic injury also could become
operative (Fig. 4). Further data in developing animals would be
of particular interest.

FROM PATHOGENESIS TO PREVENTION

Consideration of the pathogenetic scheme depicted in Figure
4 raises the possibility of several promising interventions to
prevent PVL. Especially critical is maintenance of cerebral
perfusion. Detection of the infant with impaired cerebrovascu-
lar autoregulation by the use of near-infrared spectroscopy is
likely to be valuable. Avoidance of factors that may lead to
cerebral ischemia even in the presence of intact autoregulation,
e.g. severe hypotension or marked hypocarbia, or that may
impair intact autoregulation, e.g. moderate hypoxemia or
marked hypercarbia, is important.

Perhaps of greatest value is prevention of the cascade to OL
death related to free radical attack (Fig. 4). Thus, the use of
clinically safe free radical scavengers, e.g. vitamin E, could be
beneficial, after further research. Maternal antimicrobials and
anticytokine agents may ultimately prove valuable in prevent-

559PERIVENTRICULAR LEUKOMALACIA NEUROBIOLOGY



ing the injury caused by maternal/fetal infection or inflamma-
tion and cytokines (Fig. 4). Antagonists of the AMPA/kainate
glutamate receptor might be effective if a clinically safe agent,
e.g. topiramate, can be identified (Fig. 4). Antiapoptotic agents,
such as neurotrophins, growth factors, or specific inhibitors of
proapoptotic pathways, will require further delineation of the
specific final molecular pathways to OL death in this setting.
Agents that may act at multiple sites in the pathogenetic
scheme shown in Figure 4, are administered antenatally, and
have been suggested to be beneficial in prevention of PVL
include magnesium sulfate and glucocorticoids. Magnesium
sulfate has vasodilator, antioxidant, and anticytokine effects,
but its potential benefit and safety are controversial (5, 169).
Similarly, enthusiasm for antenatal glucocorticoids (170, 171)
must be tempered by the recent demonstrations of deleterious
cerebral effects of antenatal dexamethasone (but not beta-
methasone) (172) and of postnatal dexamethasone (173–175).

It is likely that ultimately combinations of interventions will
prove most effective in prevention of the WM injury of PVL.
With the recent insights into pathogenesis of PVL and the
neurobiology of OL precursors in this pathogenetic context
(Fig. 4), the critical sites for interventions are becoming clar-
ified. Fruitful clinical trials can now be seen on the horizon.
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