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Congenital diaphragmatic hernia (CDH) continues to frus-
trate clinicians for several reasons: it is not possible to

predict accurately the extent of pulmonary hypoplasia in the
individual fetus and the postnatal response to treatment mo-
dalities such as inhalational nitric oxide (NO) is variable.
Moreover, the use of extra corporeal membrane oxygenation
(ECMO) carries a high morbidity and sometimes profound
long-term sequelae.

Analysis of the literature reveals a myriad of treatment
modalities proposed as “solutions” for the problem pulmonary
hypoplasia in CDH. They range from termination of pregnancy
following prenatal ultrasound to gentle handling of the lung
postnatally to diminish iatrogenic damage of the fragile hypo-
plastic lungs (1). The fetal sheep model of CDH opened the
way to fetal intervention and endoscopic fetoscopic procedures
(FETENDO) such as tracheal ligation/occlusion in the human
(2–7). Others have studied the basic mechanisms of pulmonary
growth in a drug-induced CDH model (the Nitrofen rodent
model) with or without the evaluation of additional treatment
modalities such as corticosteroids and/or TSH releasing hor-
mone (TRH) (8–14).

The supposed “lung growth” resulting from tracheal ligation
is not founded on clean concepts of underlying mechanisms,
although a variety of factors has been suggested (15–17).

Intriguing are recent observations from different laboratories
of the negative effects of tracheal ligation, in fetal sheep, on
type II cell differentiation, as nicely evaluated by Kay et al. in
this issue (18). The question of whether we will end up with a
combined approach of tracheal ligation/occlusion and maternal
betamethasone therapy to rescue type II cell differentiation as
optimal treatment of CDH in humans is therefore still open.

We have to bear in mind that the experiments described in
the paper of Kay et al. were not conducted in a CDH model. As
a consequence, we can only assume that the response will be
the same in the hypoplastic lungs of CDH. However, no
research data are available to support this assumption. Other
questions are unanswered too, because the authors only as-

sessed certain structural features of Type II cell density and
markers of mRNA for two surfactant proteins. Whether ste-
roids do more than up-regulate mRNA for the surfactant
proteins or enhance function remains controversial. The study
by Kay et al. involved no physiologic assessment of lung
function, gas exchange or the development of pulmonary
hypertension.

Before we apply the results of the experimental approach of
Kay et al. in a clinical setting, we have to analyze the argu-
ments for the use of corticosteroids to enhance lung develop-
ment in prenatally diagnosed CDH, because the few reports on
the use of corticosteroids in human CDH consist of personal
communications, individual case reports, and anecdotal small
series. However prenatal steroids are used to enhance lung
development in premature infants.

A meta-analysis of published studies on prenatal glucocor-
ticoids in threatened premature labor of fetuses without CDH
consistently demonstrated beneficial effects on neonatal out-
come for those infants born at 24 to 34 wk of gestation (19).
Therefore, the National Institutes of Health consensus recom-
mends antenatal administration of corticosteroids at least for
24 h, but if possible for 48 h, to all fetuses between 24 and 34
wk of gestation at risk of preterm delivery (20). However, as
often suggested, it is still contradictory whether lungs of
animal and human infants with CDH are surfactant deficient
and morphologic immature like lungs from premature infants
with surfactant deficient lung disease that do benefit from
antenatal corticosteroid therapy (21). As a consequence it is
hard to predict the significance of antenatal corticosteroids for
the individual CDH patient. Moreover, we still do not know the
long-term effects of antenatal corticosteroid treatment and
there is growing evidence that these drugs may have adverse
perinatal and longer term effects (22, 23). Profound effects on
postnatal alveolar septation have already been documented (24,
25). In this light another important issue, recently raised by
Smith et al. (22), is whether to use multiple or single antenatal
courses of corticosteroids which is currently in use.
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Considering the high incidence of chronic lung disease in
CDH infants (26) the same concern is warranted for postnatal
use of corticosteroids as recently eluded upon by Stark et al. in
another group of patients: extremely-low-birth-weight infants
(27).

We have to await the result of a recently started randomized
controlled trial evaluating the use of betamethasone in prena-
tally diagnosed CDH, guided by the International CDH study
group (principal investigator: Dr. K. Lally, Houston, U.S.A.)

After demonstration of accelerated lung maturation in pre-
mature sheep by Liggins (28, 29), several experimental studies
in the Nitrofen CDH rodent model as well as in the surgically
created sheep model have shown the beneficial effects of
antenatal corticosteroid therapy including acceleration of the
synthesis and release of surfactant, reduction of alveolar septal
thickness, increase in maximum lung volume and compliance,
and improvement in the antioxidant defense mechanisms (8–
14). Prenatal use of corticosteroids in the Nitrofen model
supposedly changes the pulmonary vascular architecture, al-
though there are no reports of the expression of the glucocor-
ticoid receptor in small pulmonary arteries. In contrast, expres-
sion of the thyroid hormone receptor has been described (30).
The administration of glucocorticoids and TRH to Nitrofen-
treated pregnant rats increased di-saturated phosphatidylcho-
line levels in the fetal offspring, reduced lung glycogen levels
and significantly improved lung compliance and morphology
(8–11). In addition, in our CDH rat model the combination of
dexamethasone and TRH treatment of pregnant rats did not
affect survival during ventilation in the pups and decreased
glutathione reductase (14). We, therefore, concluded that an-
tenatal administration of dexamethasone as a monotherapy
would offer better prospects for randomized trials in prenatally
diagnosed children with CDH than would the combination of
dexamethasone and TRH.

Mechanisms of Glucocorticoid Action

During fetal and postnatal development, glucocorticoids
function as signaling molecules to modulate the orderly se-
quence of differentiation in most tissues. From midgestation
onwards, the fetus is exposed to increasing levels of cortisol of
primarily fetal origin. Many studies, in humans as well as in
animals, have provided strong evidence that the administration
of glucocorticoids to the immature fetus accelerates lung mat-
uration. Even “physiologic stressors.” such as infection and
premature rupture of the membranes, have been shown to
accelerate fetal lung maturation, indicating that endogenous
fetal glucocorticoids are instrumental in the normal course of
lung maturation too. Endogenous hormones, however, do not
initiate alveolar epithelial maturation, but are only involved in
the modulation of genes responsible for surfactant production
(for review see ref. 31).

Corticosteroids are known to induce several components of
surfactant and to increase saturated phosphatidylcholine by
stimulating key enzymes involved in phospholipid synthesis,
such as fatty acid synthetase, choline phosphate cytidylyltrans-
ferase, and lysophosphatidylcholine acyl CoA acyl transferase.
In addition, they stimulate lamellar body development in type
II cells, and increase both tissue and alveolar content of

surfactant (32). Finally, they also increase levels of the surfac-
tant-associated proteins A, B, C, and D. In addition to these
positive effects on surfactant production, glucocorticoids also
stimulate antioxidant enzyme activity (33). Although still not
completely defined, some of these effects appear to result
largely from increased production of fibroblast-pneumonocyte
factor by the fetal lung fibroblasts (34).

In contrast to these positive effects of corticosteroids, a
variety of negative effects have been documented in the liter-
ature. In cultured lymphocytes, glucocorticoids caused apopto-
sis and an arrest in the G1 phase of the cell cycle thereby
affecting proliferation which may finally lead to a reduction in
cell number (35).

Also, prenatal dexamethasone treatment reduced overall
DNA, but not the collagen content in lung tissue of neonatal
rats (36). Moreover, a recent study showed that prenatal ad-
ministration of dexamethasone to premature rats exposed to
prolonged hyperoxia resulted in increased fibrosis in the dexa-
methasone treated lungs compared with the lungs from un-
treated animals (37).

In embryonic rat lung studies, corticosteroid treatment
causes distorted branching, tubular dilatation, suppression of
lung growth and epithelial cell proliferation, attenuation of
mesenchymal tissue and compression of mesenchyme between
adjacent epithelial tubules which represent the features of both
distorted and accelerated maturation (38, 39).

Glucocorticoid-Receptor Interaction

Glucocorticoids exert their effects via a nuclear receptor of
the steroid hormone receptor superfamily. This superfamily
includes a number of ligand-responsive transcriptional en-
hanced proteins, including the glucocorticoid and thyroid hor-
mone receptors. All members of the family share a highly
conserved modular structure, with discrete functional domains
for hormone binding, DNA binding, and transactivation (40).
Concomitant with a rise in glucocorticoid plasma levels near
term, enhancement of glucocorticoid receptor gene expression
has been shown by Sweezy et al. in the fetal rat (41). Autora-
diographic localization studies demonstrated increased glu-
cocorticoid receptor gene expression in the mesenchyme, and
more specifically in those mesenchymal cells adjacent to the
terminal saccular epithelium (the cell population responsible
for fibroblast-pneumonocyte factor production) (42, 43). To
enhance our understanding of the potential effects of cortico-
steroids on the hypoplastic lung, we studied the glucocorticoid
(GC)-receptor in hypoplastic CDH rat lungs and age-matched
controls. No significant differences were observed in the tissue
distribution or time of appearance of the GC-receptor under
these experimental conditions (30).

Modulation of Pulmonary Growth in CDH

Findings presented at the 16th annual ECMO meeting in
Keystone (March 2000) by investigators from Boston (J. Wil-
son, J. Schnitzer) and Liverpool (P. Losty) made it likely that
members of the fibroblast growth factor family play important
roles in an organotypic culture system of hypoplastic lungs in
Nitrofen-induced CDH. During that same meeting Ch. Stolar
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and colleagues advocated a pivotal impact of other well known
growth factors, such as vascular endothelial derived growth
factor (VEGF), on lung growth following tracheal ligation in
the sheep CDH model as well as in an organotypic culture
system including both the embryonic rat heart and lung buds.
This is especially intriguing because human CDH lungs
showed abnormal expression of VEGF, even in the endothe-
lium of pulmonary arteries less than 75 �m (44).

In the light of the international corticosteroid treatment
protocol of prenatally diagnosed CDH, including over 300
patients, and the National Institutes of Health sponsored tra-
cheal ligation/occlusion study of prenatally diagnosed CDH
patients with the highest risk (“liver up” patients), we must
bear in mind that our knowledge of the optimal way to
modulate prenatal pulmonary growth and differentiation is far
from complete.

Although corticosteroids are known to induce apoptosis,
they exert intriguing effects, not yet evaluated in humans, on
VEGF expression and platelet-derived growth factor (PDGF),
and on the PDGF-A receptor and pulmonary fibroblasts
(45–47).

The presumed negative effects of tracheal ligation on type II
cell differentiation in experimental CDH models are reason to
carefully evaluate the use of corticosteroids in human cases.
Not only the overall outcome should be assessed but also the
more fundamental cell-biologic changes occurring during the
transition from the saccular phase of pulmonary development
to the alveolar phase, which takes place late in gestation in
humans. The application of new technology such as the use of
micro-arrays will help us to understand pulmonary develop-
ment at the molecular level. The time dependent expression of
a number of genes relevant for the progression in lung devel-
opment in general (48, 49) should be taken into account, both
in spontaneous as well as in experimental induced CDH. In this
way we will be able to pinpoint the exact mechanisms resulting
into pulmonary hypoplasia in CDH as well as the effect of
modulating “agents” such as corticosteroids. We cannot run the
risk that tracheal ligation with or without corticosteroids al-
though “again” suggested as magic bullets for the improvement
of the survival rate in newborns with CDH, turns out to be a
new chapter in the book of unanswered questions in congenital
diaphragmatic hernia.
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