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The aim of this review is to examine recent advances in
experimental and clinical research relevant to the pathogenesis of
diarrhea-associated hemolytic uremic syndrome with special ref-
erence to histopathologic findings, virulence factors of Shiga
toxin–producing Escherichia coli, the host response, and the
prothrombotic state. Despite significant advances during the past
decade, the exact mechanism by which Shiga toxin–producing E.
coli leads to hemolytic uremic syndrome remains unclear. Fac-
tors such as Shiga toxin, lipopolysaccharide, the adhesins intimin
and E. coli–secreted proteins A, B, and D, the 60-MD plasmid,
and enterohemolysin likely contribute to the pathogenesis. Data
on the inflammatory response of the host, including leukocytes
and inflammatory mediators, are updated. The pathogenesis of
the prothrombotic state leading to thrombocytopenia secondary
to endothelial cell damage and platelet activation is also dis-
cussed. A hypothetical sequence of events from ingestion of the

bacteria to the development of full-blown hemolytic uremic
syndrome is proposed. (Pediatr Res 50: 163–171, 2001)
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HUS, hemolytic uremic syndrome
STEC, Shiga toxin–producing E. coli Stx, Shiga toxin
D1 HUS, diarrhea-associated hemolytic uremic syndrome
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EHEC, enterohemorrhagic E. coli EPEC, enteropathogenic
E. coli
Esps, E. coli–secreted proteins
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Nonimmune hemolytic anemia, thrombocytopenia, and
acute renal failure are cardinal features of HUS (1). CNS
manifestations may also be noted (2). HUS most frequently
occurs among children younger than 5 years of age, after a
diarrheal prodrome (D1 HUS) typically characterized by
bloody diarrhea, termed hemorrhagic colitis. This form of HUS
may also occur in adults, more often among the elderly. In
North America and Western Europe, Stx (also called vero-
toxin) -producing E. coli, most frequently involving the sero-
type O157:H7, is the leading cause of D1 HUS (3–5). This
review will address current knowledge about the pathogenesis
of HUS caused by STEC.

HISTOPATHOLOGY OF D1 HUS

The histopathologic features observed in HUS have been
termed thrombotic microangiopathy, a term that also encom-
passes other conditions such as HUS not associated with a
diarrheal prodrome (D2 HUS) and thrombotic thrombocytope-
nic purpura (6). Endothelial cell damage is the hallmark of
thrombotic microangiopathy found in D1 HUS. Fibrin thrombi
are predominantly formed within small vessels, followed by
ischemic damage. Glomerular endothelial cell swelling, throm-
botic occlusion of capillary lumens, tubular epithelial cell
damage, mesangial expansion, and mesangiolysis have been
observed (6). In the most severe cases, extensive cortical
necrosis ensues. Inflammatory cell infiltrates within the kid-
neys are predominantly composed of neutrophils and macro-
phages (7, 8). Moreover, apoptosis of renal cortical glomerular
and tubular cells is well documented (9, 10). Lesions of the
gastrointestinal tract usually consist of small vessel angiopathy
in the mucosa and submucosa of the small and large intestine
with hemorrhage, necrosis, and sloughing of cells into the
lumen (11). Thrombotic microangiopathy may also be noted in
other organs such as the CNS (2). The histopathologic findings
in D2 HUS and thrombotic thrombocytopenic purpura are
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different from those in D1 HUS. In D2 HUS, the lesions are
arteriolar, with thrombi and intimal proliferation. In D1 HUS
the lesions are glomerular with occlusion of capillary lumens.
There is mesangial expansion, and, in severe cases, cortical
necrosis is noted (12, 13). Moreover, fibrin thrombi are char-
acteristic of D1 HUS, whereas platelets and von Willebrand
factor constitute those seen in thrombotic thrombocytopenic
purpura (14).

STEC VIRULENCE FACTORS

Strains of STEC that can cause hemorrhagic colitis and HUS
have been termed EHEC. These include E. coli O157:H7 and
many other serotypes. Food- and water-borne transmission are
the most important means of infection (15–18), although per-
son-to-person contamination has been recognized (19). Except
for two case reports (20, 21), there is no evidence for bacte-
remia in human disease. It is therefore assumed that systemic
spread of bacterial products may lead to damage of target
organs. EHEC strains express Stxs, LPS, adhesins such as
intimin and Esps A, B, and D, enterohemolysin, a serine
protease EspP, and a heat-stable enterotoxin (22–27).

Shiga toxin. Stx has been implicated in the pathogenesis of
HUS because cases have been associated with Stx-producing
bacteria such as E. coli (22), Shigella (28), and Citrobacter
freundii (29). On the other hand, EPEC, which possess many
virulence factors found in EHEC, but not Stx, have never been
associated with HUS.

Human isolates of STEC may express Stx1 or Stx2 encoded
on a bacteriophage. The holotoxin includes one A subunit and
five B subunits. The B subunit binds to glycosphingolipid
receptors, predominantly Gb3 (30, 31). The A subunit has
N-glycosidase activity, which leads to cell death by inhibition
of protein synthesis at the level of 28S ribosomal RNA (32).
Except for one amino acid substitution in the former, Stx1 from
E. coli is virtually identical to the toxin produced by Shigella
dysenteriae and approximately 60% homologous to Stx2.
There are different pathways of translocation for Stx1 and Stx2
through the intestinal epithelium (33). Several observations
suggest that Stx2 may be more virulent in human disease than
Stx1. Clinical isolates of E. coli O157:H7 from patients with
hemorrhagic colitis or HUS produced Stx2 more frequently
than Stx1 (34–37). Moreover, an i.v. infusion of Stx2 in mice
was found to be 400 times more potent than Stx1 (38). Simi-
larly, human intestinal endothelial cells and renal glomerular
endothelial cells are more sensitive to the cytotoxic effects of
Stx2 than Stx1 (39, 40).

Stx-induced disease in animals. HUS preceded by hemor-
rhagic colitis has been described in several types of dogs as a
naturally occurring disease (41). Greyhounds are known to
develop a disease termed cutaneous and renal glomerular
vasculopathy (Alabama rot), leading to an HUS-like condition
(42, 43). STEC have been isolated in some cases of this canine
disease (44). Edema disease in pigs causing vascular damage to
the brain stem has been associated with Stx2e producing STEC
(45). Swollen head syndrome is an acute respiratory disorder in
poultry associated with STEC producing Stx2y (46). Although
STEC cause disease in animals, no animal model has suc-

ceeded in reproducing all aspects of human disease after oral
ingestion of the offending bacteria. Herein we will discuss
several animal models that highlight aspects of human HUS. A
more detailed description of animal models can be found in a
current review (47).

In vivo studies with Stx. In vivo studies have indicated that
STEC strains are pathogenic (48–54). The strains cause gas-
trointestinal, neurologic, or systemic symptoms and death in
gnotobiotic piglets (50, 51, 55), rabbits (49), and mice (48,
52–54, 56). Inoculated animals developed histopathologic le-
sions such as inflammatory colitis (50), brain endothelial cell
necrosis and neuronal impairment (52, 55), acute tubular ne-
crosis, and mesangial expansion in the kidneys (48, 54, 56). In
addition, mice inoculated intragastrically with E. coli O157:H7
had fragmented erythrocytes in the circulation (48), an aspect
of disease that resembles human HUS. Comparison of toxin-
positive with toxin-negative strains has shown that the former
induces vascular colonic damage in a Shigella primate model
(57) and glomerular mesangial changes, renal cortical apopto-
sis, and severe neurologic symptoms in an E. coli O157:H7
mouse model, changes not seen in animals infected with a
toxin-negative strain (9, 48). The presence of Gb3 or galabiosyl
ceramide receptors on cells has been found to determine the
localization of tissue damage in rabbits, mice, and humans (38,
58, 59). Species-specific differences in the distribution of Gb3
receptors have been proposed to determine the localization of
pathologic lesions in different animal models. The kidney and
the CNS are richly endowed with Gb3, likely explaining the
tissue tropism of Stx (60, 61).

In vivo experiments with purified Stx have reproduced as-
pects of HUS, with damage to the intestine, kidney, and CNS
in rabbits and mice (62–64). Baboons infused with Stx1 de-
velop renal failure, anemia, thrombocytopenia, and injury to
intestinal epithelium, glomerular endothelial cells, and renal
proximal tubular cells (65). In this experimental model,
thrombi were noted in renal glomerular and peritubular capil-
laries, resembling the pathologic alterations seen in human
HUS.

In vitro studies with Stx. Stx is cytotoxic for human endo-
thelial cells (40, 66–71) and may also induce apoptosis (72).
Prestimulation of endothelial cells with TNF-a, IL-1b, or
sodium butyrate resulted in an increase in Gb3 receptors,
rendering the cells more susceptible to the cytotoxic effect of
Stx (70, 73–75). Stx may directly lead to endothelial cell
activation with perturbed expression of endothelial-derived
vasomediators (76). Both Stx1 and Stx2 directly activate bo-
vine endothelial cells by increasing the production of prepro-
endothelin mRNA transcript levels, without modifying that of
nitric oxide (76). This effect was not observed with the recep-
tor-binding B subunit, which lacks the N-glycosidase. In con-
trast, purified Stx was found to increase nitric oxide release
from murine macrophages (77).

In addition to endothelial cells, Stx has been shown to have
a cytotoxic effect on various other cells, including renal glo-
merular and tubular epithelial cells (78, 79). Cells lacking the
toxin receptor were found to be resistant to the toxic effect (80).
Stx can induce apoptosis in renal tubular epithelial cells (9, 81)
as well as in Burkitt lymphoma cells (82), intestinal epithelial
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cells (63, 83), pulmonary epithelium–derived cells (84), and
Vero cells (85). Cell death was not only induced by the
holotoxin but also by high doses of the B subunit, indicating
that this effect may be independent of the effect on protein
synthesis (82). Apoptosis was demonstrated in kidneys from
patients with HUS and in mice inoculated with Stx-positive
strains, but not Stx-negative strains (9). Taken together with
the finding that Stx is capable of inducing apoptosis in renal
tubular epithelial cells, these studies indicate that Stx-induced
apoptosis may contribute to the renal injury during HUS.
Apoptosis has been shown to be a causal mechanism in the
pathogenesis of renal tubular injury and glomerular sclerosis
(86–88).

Several studies have addressed the pathway by which Stx
translocates from the intestinal lumen into the circulation. Stx1
translocation through intestinal epithelial cells occurs via a
transcellular route, whereas that of Stx2 occurs through a
paracellular pathway (33, 89). The toxin may also bind to
intestinal endothelial cells (39) and, by damaging both epithe-
lial and endothelial cells, induce hemorrhagic colitis and gain
access to the bloodstream.

Lipopolysaccharide. Endotoxemia has been reported in pa-
tients with Shigella and other forms of non-STEC–induced
HUS (28, 90) and has been implicated in the pathogenesis of
HUS. Endotoxemia has not been found in patients with STEC-
associated HUS. In contrast to Shigella, STEC are noninvasive
bacteria. Indirect evidence of LPS expression in vivo has been
shown by circulating antibodies against LPS in patients (91).
Furthermore, compared with children with uncomplicated
O157:H7 enteritis, those with HUS present an increased acute
phase response to LPS, as measured by circulating LPS-
binding protein (92). These findings do not, however, indicate
lipid A (endotoxin) expression.

Animal models have also indicated that LPS may play a role
in the pathogenesis of HUS. Rabbits injected with LPS exhib-
ited renal cortical necrosis, resembling the renal lesions found
in HUS (93, 94). The procoagulant events in HUS may resem-
ble the generalized Schwartzman reaction, observed after i.v.
infusion of LPS in rabbits (93, 94). However, the lack of
disseminated intravascular coagulation and endotoxic shock in
HUS indicates that these correspond to different pathophysio-
logic processes.

Pretreatment of rabbits and mice with Stx enhanced the
lethal effects of LPS (64, 95). LPS hyporesponsiveness was
associated with a biphasic course of disease in mice inoculated
with wild-type E. coli O157:H7 (48) and a longer time to death
in mice injected with Stx2 (96). These studies indicate a
synergistic effect of Stx and LPS in vivo, as has also been
shown in vitro using endothelial cells (68). Other reports
observed that pretreatment with LPS could either increase or
decrease Stx2-induced lethality, depending on the dose and
timing of injection and that the effects could be modulated by
TNF-a or IL-1b (97). A recent publication (98) showed that
antibodies to LPS block adherence of STEC to human intesti-
nal epithelial cells in vitro, although the biologic significance
of this finding has not been evaluated in vivo.

Adhesins. Using in vitro cultures of human intestine, it has
been shown that the initial binding of E. coli O157:H7 occurs

in the follicle-associated epithelium of Peyer’s patches within
the small bowel (99). Colonization of the colon may occur
thereafter (99). Adhesins are responsible for pathogen binding
to intestinal epithelial cells and, as such, may be a critical step
in the pathogenesis of hemorrhagic colitis (100). As with
EPEC, EHEC strains exhibit attachment in a localized manner,
termed attaching and effacing adherence (101). This form of
intimate adherence involves the effacement of intestinal mi-
crovilli and accumulation of polymerized actin (102) and other
cytoskeletal components at the site of bacterial attachment. It is
mediated by intimin, an outer membrane protein (103, 104),
encoded by the eae gene as well as by Esps A, B, and D, which
mediate epithelial cell signal transduction (26, 105). All factors
necessary for the formation of these lesions, including a trans-
located intimin receptor (tir, also termed EspE) (106, 107) are
encoded in the locus of enterocyte effacement on the bacterial
chromosome (26). A detailed review of these adherence mech-
anisms has been published recently (108). The expression of
the type III secretion apparatus required for the development of
attaching and effacing lesions is regulated by quorum sensing
(109), a mechanism by which bacteria regulate their own
population and that of other bacteria in their immediate sur-
roundings. This may indicate that colonization of the intestine
by E. coli O157:H7, ingested at low doses, may be induced and
modulated by nonpathogenic E. coli in the human intestine.

60-MD plasmid, enterohemolysins, and heat-stable entero-
toxin. E. coli O157 H7 and most other EHEC strains possess a
large 60-MD plasmid (25, 110). Human isolates were more
often positive for eae and EHEC plasmid sequences than
animal isolates, suggesting that these factors together with
other bacterial factors may be required for full virulence of the
strain (111). This plasmid was found to encode for an entero-
hemolysin and some biologic activity of adherence, presum-
ably mediated by fimbriae (112). Nonpiliated mutants could,
however, also adhere, and the importance of the plasmid for
adherence is not clear (113). Recently, an extracellular serine
protease EspP, encoded by the 60-MD plasmid, was found
capable of cleaving pepsin A and human coagulation factor V
(24). Although the presence of the plasmid has been associated
with clinical disease, the precise pathogenic role, if any, of the
enterohemolysins and the large plasmid have not been eluci-
dated. All strains of E. coli O157:H7 and many other STEC
possess the astA gene encoding for the heat-stable enterotoxin
EAST-1 (27). Its role also remains unknown.

HOST RESPONSE

Extensive tissue injury occurs during hemorrhagic colitis
and HUS, thereby generating an inflammatory response
through leukocyte activation and cytokine production.

Polymorphonuclear and mononuclear cells. Several obser-
vations suggest that neutrophils and macrophages may play a
key role in the pathogenesis of disease. HUS is frequently
associated with circulating leukocytosis (114–125). Further-
more, this has been shown to be an independent risk factor for
developing HUS (114, 116, 117). Increased circulating neutro-
phil (119, 120) and macrophage (120) counts are associated
with the severity of renal failure during HUS. An increased
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number of neutrophils and macrophages have been found
within the glomeruli of children with HUS, compared with
controls (7, 8). Increased elastase levels are found in the blood
of HUS patients (121, 124, 125), indicating neutrophil activa-
tion. Circulating polymorphonuclear leukocytes are activated
(121–123). Although the underlying mechanisms leading to
circulating leukocytosis remain unclear, increased circulating
levels of granulocyte colony-stimulating factor (126) and IL-8
(124) have been reported in children with HUS. Moreover,
IL-8 levels correlated with the white blood cell count (124).
Neutrophils from patients with HUS have a higher capacity to
adhere to cultured human endothelium and to induce endothe-
lial injury by degradation of endothelial fibronectin (122). The
latter may be blocked by anti-CD18 MAb (122).

Mice injected with Stx developed elevated neutrophil
counts. These neutrophils exhibited enhanced adhesive and
cytotoxic properties, and pretreatment of mice with LPS po-
tentiated this effect (127). In vitro, Stx1 increases the number
of leukocytes adhering to endothelial cells, an effect that may
be enhanced by TNF-a (128). Stx1 binds to a non-Gb3 recep-
tor on human polymorphonuclear cells (129). In the presence
of human glomerular microvascular endothelial cells in vitro,
Stx1 will transfer from polymorphonuclear cells to the endo-
thelial cells. It has thus been suggested that neutrophils may
transport Stx from the gut to the kidney vasculature (129). In
support of this hypothesis, Stx did not induce apoptosis of
neutrophils, suggesting that neutrophils are resistant to the
cytotoxic effects of Stx (130).

Monocytes may play a central role in the pathogenesis of
HUS, as depletion of hepatic or splenic macrophages, using
clodronate, reduced Stx2 cytotoxicity in mice (131). Stx1 binds
to human monocytes via a different Gb3 subtype than on
endothelial cells and leads to the secretion of TNF-a, IL-1b,
IL-6, and IL-8 via an LPS-independent pathway (132). Other
investigators also found that Stx1 activated TNF-a production
and gene transcription in a human monocytic cell line (133,
134). These studies show that Stx, in addition to being cyto-
toxic to human cells, is capable of triggering cells to produce
and release cytokines.

Circulating inflammatory mediators and their role in
STEC-induced disease. Various circulating inflammatory me-
diators, including ILs, chemokines, soluble adhesion mole-
cules, growth factors, cytokine receptors, and acute phase
response proteins, are abnormally increased in children with
D1 HUS (7, 92, 124, 126, 135–148). Although these studies do
not prove that the elevated inflammatory mediators have a role
in the pathogenesis of disease, they indicate a marked host
inflammatory response. In addition, elevated circulating levels
of inflammatory mediators may be related to decreased renal
excretion. Supporting this view, it has been reported that the
half-life of IL-10 is increased in anephric mice (149). Patients
with HUS have elevated circulating levels of pro- (IL-6, IL-8)
and antiinflammatory (IL-10, IL-1 receptor antagonist) cyto-
kines in comparison to patients with uncomplicated E. coli
O157:H7 enteritis (135). A correlation to the severity of renal
dysfunction has been made. Concentrations of IL-6, IL-8,
IL-10, and the IL-1 receptor antagonist were higher during the
acute phase of HUS in patients with oliguria and those requir-

ing dialysis as well as in patients with lower GFR 1 year after
development of HUS (136). In other studies, IL-6 concentra-
tions correlated with anuria and extrarenal manifestations
(136–138) during the acute phase of disease. Sequential sam-
ples of serum IL-6 correlated with disease activity as measured
by serum creatinine, Hb, and platelet counts, the highest levels
being found during the first days after onset of anuria, normal-
izing at recovery (138). Evidence from clinical studies and
models of renal disease indicate that IL-6 may be involved in
mesangial proliferation (150, 151) and may thus be elevated in
response to glomerular damage.

Certain mediators may be involved in chemotaxis. IL-8, a
known neutrophil chemoattractant, was significantly elevated
in the plasma of children with HUS and correlated to neutro-
phil counts (124). The highest concentrations were detected in
the blood of patients who died during the acute phase of
disease (124). Stx may induce IL-8 secretion from intestinal
epithelial cells (152, 153) and thus prime the inflammatory
response in the intestine, leading to increased chemotaxis and
further activation of inflammatory cells. Increased serum levels
of granulocyte colony-stimulating factor (126, 143) and mono-
cyte chemoattractant protein-1 (7) have also been found.

TNF-a is a key proinflammatory cytokine that mediates
inflammation and microvascular coagulation (150). Increased
concentrations of TNF-a (138, 140, 141, 143, 145) and soluble
TNF receptors (137) have been observed in HUS. There is
evidence for a role of TNF-a in the pathogenesis of HUS. In
vivo and in vitro studies have shown that Stx and TNF-a act in
concert to induce renal cell injury. In mice Stx was found to
induce TNF synthesis in kidneys and to increase the sensitivity
to the toxic effects of TNF-a (64). Inhibition of TNF-a by
nafamostat mesylate reduced the renal and CNS histologic
changes in mice infected with E. coli O157:H7 (154). Stx
infusion in baboons led to increased urinary secretion of
TNF-a and IL-6 (65). In vitro experiments have shown that
Stx1 may stimulate the production of proinflammatory cyto-
kines within the proximal tubule, including TNF-a, IL-1, and
IL-6 (155). Preincubation of human tubular epithelial cells
with TNF-a increased Stx-induced apoptosis (9). Stx and
TNF-a or IL-1b act in synergy to induce a cytotoxic effect on
endothelial cells (67, 71, 73). Pretreatment of human saphe-
nous vein endothelial cells with TNF-a before stimulation with
Stx1 induced secretion of von Willebrand factor (70), which
may be involved in the process of intravascular platelet aggre-
gation. In addition, TNF-a increased adherence of leukocytes
to Stx-stimulated endothelial cells and up-regulated adhesion
proteins on the endothelial surface membrane (128), a process
that could contribute to leukocyte-mediated endothelial cell
damage in HUS.

In addition to elevated inflammatory mediators in the circu-
lation, TNF-a, IL-6, IL-8, monocyte chemotactic protein-1,
basic fibroblast growth factor, and platelet activating factor
have been found to be elevated in the urine of patients with D1

HUS (7, 138, 140, 141, 156, 157). The kinetics of the serum
cytokine response differed from that in urine, and there was no
correlation between serum and urine levels in the same indi-
vidual, suggesting that these cytokines are produced locally
within the kidney, and not filtered from the bloodstream (138,
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140). Most cytokines are peptides of low molecular weight,
which are filtered from serum to urine (158). The concentration
of filtered substances may be higher in urine than blood owing
to reabsorption of water in the tubular epithelium. The uremic
kidney with both glomerular and tubular damage would not be
capable of such reabsorption. Thus we assume that the cyto-
kines in the circulation and those in the urine are derived from
different sources.

Endothelin is a vasoconstrictive peptide found to be excreted
in a variety of renal diseases (159). Abnormally high levels of
endothelin have been reported in the serum and urine of
patients with HUS (144, 147, 160), reflecting the degree of
renal injury, but possibly contributing to it by vasoactive
potency.

Certain lymphokines such as IL-2, IL-4, and IL-13 were
undetectable during E. coli O157:H7 enteritis or HUS, and low
concentrations of interferon-g were comparable among chil-
dren with hemorrhagic colitis and HUS and control subjects,
suggesting that T lymphocytes are not activated (139). De-
creased levels of soluble L-selectin were observed in children
with HUS, perhaps reflecting the appearance of immature
neutrophils in the circulation (135). Levels of soluble E-
selectin, P-selectin, and vascular cell adhesion molecule-1
were analyzed in several studies (135, 142, 146) and were not
consistently found to be altered in comparison to controls.
Finally, children with uncomplicated E. coli O157:H7 enteritis
were found to have higher serum concentrations of transform-
ing growth factor b1 than those who develop HUS, possibly
related to intestinal repair mechanisms (139) and gastrointes-
tinal spillover.

PROTHROMBOTIC STATE

Thrombocytopenia is a cardinal feature of HUS. Platelets are
consumed in microthrombi, and circulating platelets are de-
granulated (161) with an impaired aggregating ability and
decreased intracellular levels of b-thromboglobulin (162).
Platelet-derived microvesicles are increased, indicating their
state of activation (163). HUS plasma induces aggregation of
normal platelets (164), and increased platelet-derived factors
such as platelet factor 4, b-thromboglobulin, and P-selectin
have been found (165, 166). Studies have attempted to identify
a direct interaction between platelets and Stx. The toxin binds
to the Gb3 receptor and to a glycolipid termed band 0.03 on
platelets (167). Culture filtrates from STEC were able to induce
platelet aggregation (168). Although purified Stx does not
induce platelet aggregation in an aggregometer (169–171), a
recent study has shown that Stx and its B subunit bind to
platelets leading to direct activation. In the presence of human
umbilical vein endothelial cells, pretreated with TNF-a, Stx
and the B subunit induce the formation of aggregates on these
cells (172). Thus, platelet consumption during HUS may be
related to a direct effect of Stx on platelets or may be related to
Stx-induced endothelial cell injury, exposing the subendothe-
lium. The latter may release prothrombotic substances such as
von Willebrand factor and fibrinogen, thereby leading to plate-
let aggregation, which will in turn obscure the vessel lumen in
target organs, leading to ischemic damage. Markers of endo-

thelial cell activation, such as tissue plasminogen activator and
plasminogen activator inhibitor 1, are increased, indicating a
prothrombotic and hypofibrinolytic state (173).

There is no consumption of coagulation factors in HUS.
Prostacyclin, a potent vasodilator and inhibitor of platelet
aggregation, has been found to be deficient in certain cases of
HUS (174, 175). Deficiency may be caused by low production
secondary to damaged endothelium, or by high consumption,
and may promote platelet aggregation. Thromboxane is a
potent vasoconstrictor that is significantly elevated during
acute HUS (176).

Hemolytic anemia. Fragmentation of erythrocytes is com-
mon during the acute hemolysis seen in HUS. This may be
caused by mechanical breakdown along the damaged endothe-
lium (177). However, oxidative damage to red blood cells has
also been suggested (178). Animal models have reproduced
this aspect of HUS using either wild-type bacteria (48) or
purified Stx (65). Using the former, endothelial cell damage
could not be demonstrated, and it was therefore suggested that
red blood cell fragmentation may occur independently of en-
dothelial injury.

A HYPOTHETICAL DESCRIPTION OF THE
SEQUENCE OF EVENTS LEADING TO HUS

A schematic overview of the proposed mechanisms under-
lying the pathogenesis of STEC-associated HUS is shown in
Figure 1. STEC are ingested and establish along the intestine.
The exact localization of intestinal colonization has not been
defined, although recent studies using in vitro organ cultures

Figure 1. Overview of a hypothetical sequence of events from ingestion of
STEC to the development of HUS. Numbers-1–10 give the order of events.
Events which may occur simultaneously are mentioned with a small letter, e.g.
2a, 2b. Hypotheses for which data are either lacking or pending are shown in
italics. The proposed pathophysiologic mechanisms are discussed in the text.
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suggest that EHEC initially attach to Peyer’s patches, after
which colonization of the colon may occur (99). Quorum
sensing regulates the expression of adhesins so that even small
amounts of ingested bacteria are capable of adhering (109).
Adhesion occurs by the translocation of Esps from the bacte-
rium into the host cell, leading to signal transduction and
activation. Transfer of the translocated intimin receptor into the
host cell enables intimate binding of intimin to the intestinal
epithelium (108). Furthermore, bacteria secrete Stx, LPS, and
possibly other virulence factors into the intestinal lumen and
intestinal epithelial and endothelial cells (33, 39, 89). This
eventually leads to colitis with bloody diarrhea owing to cell
death and intestinal vascular injury (39). Intestinal cells are
activated to secrete cytokines, such as IL-8, locally and into the
circulation (124, 152). The kinetics of the toxin-induced in-
flammatory response and the role of individual cytokines have
yet to be determined. Stx, and possibly LPS and other virulence
factors, gains access to the circulation. The mechanism by
which Stx circulates and reaches its target organs has not been
clarified, although binding to monocytes, polymorphonuclear
cells, or platelets has been proposed (129, 132, 167, 172). On
reaching the microvasculature of the kidneys (179), brain, and
other Gb3-endowed organs, the toxin binds to its receptor and
induces stimulatory effects, leading to the local release of
cytokines such as TNF-a, IL-1, and IL-6 (155), and cytotoxic
effects (67–69, 78), followed by cell death. The released
cytokines lead to further influx of inflammatory cells that may
also be triggered to release cytokines (132–134), and in syn-
ergy with LPS and Stx, this will increase the cytotoxic damage
(67–69, 73). Stx is thus capable of stimulating cells to release
cytokines as well as inducing cell death by inhibition of protein
synthesis (32) or by apoptosis (9, 81). Monocytes, polymor-
phonuclear cells, and platelets have, however, been found to be
resistant to the cytotoxic effects of Stx (129, 132, 172). Al-
though the cellular events that regulate Stx-triggered cell acti-
vation versus death have, as yet, not been elucidated, it has
been suggested that cytotoxicity may be subsequent to binding
to the Gb3 receptor and that binding via non-Gb3 receptors or
Gb3 receptors with a different fatty acid composition will not
necessarily mediate cell death (129, 132). Platelet consumption
occurs because of direct activation by Stx and intravascular
aggregation (172) or secondary to endothelial cell injury (177).
Activated platelets in areas of high shear and damaged endo-
thelium may bind to the subendothelium. Unbound platelet
aggregates are removed by the reticuloendothelial cell system.
Platelet consumption and removal may thus lead to thrombo-
cytopenia. Glomerular thrombi and damage to tubular epithe-
lial cells (6) will lower glomerular filtration and cause renal
failure. Red blood cell fragmentation secondary to mechanical
injury in the vasculature (177) or to oxidative damage (178)
leads to hemolysis. It is notable that not every individual
ingesting EHEC will exhibit symptoms. Host factors that have
been proposed to contribute to HUS are young or old age (19,
180) and the P1 blood group (181, 182), although other, as yet
unknown host factors likely also play a role.

CONCLUSIONS

This review presents advances in our current understanding
of the pathogenesis of STEC-induced disease. Although the
precise sequence of events leading from ingestion of bacteria to
the development of HUS is still unknown, and a completely
valid animal model is lacking, new data have significantly
improved our knowledge and the entire E. coli O157:H7
genome was recently sequenced, enabling future identification
of genetic sequences related to pathogenesis (183). Small
quantities of bacteria may colonize the intestine by a bacterial
cross-talk mechanism termed quorum sensing (109). The
mechanisms of intestinal adhesion have been characterized
(108). Stx is uniquely associated with bacteria that cause HUS,
and together with host factors and inflammatory mediators,
contributes to the target organ injury. The toxin has been found
to be both stimulatory and cytotoxic and may circulate bound
to polymorphonuclear cells from which it will transfer to
endothelial cells (129). Stx has a cytotoxic effect on endothelial
cells (66, 67) and has most recently been shown to activate
platelets (172). These advances will hopefully enable the de-
velopment of toxin binding, neutralizing, and removal thera-
pies in the future.
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