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Genetic risk for respiratory distress in infancy has been
recognized with increasing frequency in neonatal intensive care
units. Reports of family clusters of affected infants and of ethnic-
and gender-based respiratory phenotypes point to the contribu-
tion of inheritance. Similarly, different outcomes among gesta-
tionally matched infants with comparable exposures to oxygen,
mechanical ventilation, or nutritional deficiency also suggest a
genetic risk for respiratory distress. Examples of inherited defi-
ciency of surfactant protein B in both humans and genetically
engineered murine lineages illustrate the importance of identify-
ing markers of genetic risk. In contrast to developmental, inflam-

matory, or nutritional causes of respiratory distress that may
resolve as infants mature, genetic causes result in both acute and
chronic (and potentially irreversible) respiratory failure. The
availability of clinically useful genetic markers of risk for respi-
ratory distress in infancy will permit development of rational
strategies for treatment of genetic lung disorders of infancy and
more accurate counseling of families whose infants are at genetic
risk for development of respiratory distress at birth or during
early childhood. We review examples of genetic variations
known to be associated with or cause respiratory distress in
infancy. (Pediatr Res 50: 157–162, 2001)

Respiratory distress syndrome in newborn infants is the most
frequent respiratory cause of death and morbidity in children
,1 y of age in the United States (1). It is also predictive of risk
for chronic pulmonary diseases in childhood (2–5). Survivors
of respiratory distress syndrome with asthma and bronchopul-
monary dysplasia consume 20 times more annualized dollars
than unaffected children ($19,104 versus $955) and 5.9% of all
dollars spent on children from 0 to 18 y of age (6). Since the
original description of surfactant deficiency, respiratory dis-
tress syndrome has most commonly been attributed to devel-
opmental immaturity of pulmonary surfactant production (7,
8). Pulmonary surfactant is a mixture of phospholipids and
proteins synthesized, packaged, and secreted by type II pneu-
mocytes that line the distal airways. This mixture forms a
monolayer at the air-liquid interface that lowers surface tension
at end expiration of the respiratory cycle and thereby prevents
atelectasis and ventilation-perfusion mismatch. Availability of

surfactant replacement therapy has been associated with a
decline during the last 10 y in the mortality of respiratory
distress syndrome among premature infants (1, 9–11).

Despite improvement in neonatal survival, long-term respi-
ratory morbidity and mortality have persisted in a significant
fraction (5–25%) of affected infants (12–15). Pulmonary mor-
bidity has been attributed to oxygen toxicity, barotrauma,
developmental immaturity, and nutritional deficiencies. How-
ever, significant differences in pulmonary outcomes among
developmentally similar infants with comparable exposures to
oxygen, mechanical ventilation, and nutritional deficiency sug-
gest that genetic factors contribute to pulmonary outcome.
Genetic risk for respiratory distress in infancy has also been
suggested by reports of family clusters of affected infants, by
studies of different ethnic groups and sex, by characterization
of infants with inherited deficiency of surfactant protein B, and
by targeted gene ablation in murine lineages (16–28). In
contrast to nongenetic causes of respiratory distress that may
resolve as infants mature, genetic causes result in both acute
and chronic (and potentially irreversible) respiratory failure. In
contrast to cystic fibrosis or a1-antitrypsin deficiency that leads
to chronic respiratory phenotypes in childhood owing to grad-
ual destruction of normal lung parenchyma, genetic disorders
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that present in the neonatal period acutely disrupt alveolar
function. The availability of clinically useful genetic markers
of risk for respiratory distress in infancy would permit devel-
opment of anticipatory and therapeutic strategies to reduce
their significant medical and economic costs. Genetic variation
in human surfactant protein genes A, B, and C, and in other
extrapulmonary genes (granulocyte-macrophage colony-
stimulating factor and its receptor) has provided the first
examples of such genetic tools. Two mechanistically distinct
groups of genetic markers have been identified: those statisti-
cally linked to risk of respiratory distress (e.g. surfactant
protein A) and those that result in loss of surfactant function
(e.g. surfactant protein B).

SURFACTANT PROTEIN A

The human surfactant protein A locus consists of two func-
tional genes (SP-A1 and SP-A2) and a pseudogene (19, 29).
Each of the two functional genes contains four coding exons
and directs the synthesis of a distinct primary translation
product (30). Of the .15 alleles of the SP-A2 gene identified
to date, one (1A0) has recently been observed in significantly
higher frequency among unrelated, premature white infants
.28 wk gestation with respiratory distress (31). This allele has
also been associated with low levels of surfactant protein A
transcript in human lung tissue of unrelated individuals (32). In
a recent study of 88 infants with respiratory distress syndrome
and 88 control subjects from the genetically homogeneous
Finnish population, both protective and susceptibility effects
were observed with different surfactant protein A alleles (33).
In murine lineages with targeted ablation of the surfactant
protein A gene, prematurely delivered pups lack tubular myelin
but do not develop respiratory distress (34–36).

In addition to its role in surfactant function, surfactant
protein A is a member of the collectin subgroup of mammalian
C-type lectins that also includes surfactant protein D, mannose-
binding protein, and conglutinin (37, 38). The role of surfactant
protein A in host defense has been suggested by increased
susceptibility to viral and bacterial infections observed in
murine lineages with genetically ablated surfactant protein A
production (39–41). Murine and human studies thus suggest
that alleles associated with low concentrations of surfactant
protein A may increase the genetic risk of respiratory distress
and infection (19). However, to date, no human infants who
lack surfactant protein A have been identified, and the human
respiratory phenotype associated with the SP-A2 1A0 allele has
been demonstrated to be variable (19). The complexity of the
genetic contribution of surfactant protein A to respiratory
distress in infancy and to risk of infection makes surfactant
protein A polymorphisms promising but not currently useful
for estimation of individual risk of having an affected infant.

SURFACTANT PROTEIN B

In contrast to surfactant protein A, genetic disruption of
surfactant protein B expression causes an unambiguous neo-
natal respiratory phenotype in both human infants and mice.
The surfactant protein B gene has been sequenced and its
regulatory regions characterized (Fig. 1) (42). The gene spans

approximately 10 kilobases (kb) and has 11 exons. Exons 1
through 11 encode a 2-kb transcript that directs the synthesis of
a 381-amino acid preproprotein that is subsequently glycosy-
lated and proteolytically processed before incorporation into
pulmonary surfactant (43, 44). The mature 8-kD protein is
encoded in exons 6 and 7. Identified mutations and single
nucleotide polymorphisms occur throughout the surfactant pro-
tein B gene, as indicated in Figure 1.

Surfactant protein B deficiency was the first reported genetic
cause of lethal respiratory distress syndrome in infants (45).
Affected infants in the initial kindred were homozygous for a
mutation that involved a 1-bp deletion and 3-bp insertion at
codon 121 in exon 4 of the surfactant protein B gene (121ins2).
This mutation results in a frameshift and premature translation
stop signal at codon 214 that accounts for the lack of protein by
immunohistochemical staining and in tracheal effluent (46).
Nuclear run-on assays performed with nuclei from lungs of
affected infants suggest that the mutated gene is transcribed
normally, but the transcript is unstable (47). The mutation
creates a new SfuI restriction site that facilitates its rapid
detection. In addition, pro-surfactant protein C peptides with
aberrant mobility on SDS-PAGE and with increased abun-
dance by immunohistochemical staining and by Western blot
analysis have been observed in affected infants and in mice
with genetically engineered abrogation of surfactant protein B
synthesis (45–48). Abnormal processing of pro-surfactant pro-
tein C most likely accounts for its altered mobility (47, 48).
The mechanism for enhanced accumulation is unknown.

The clinical phenotype for infants homozygous for this
mutation is consistent: full-term infants develop respiratory
distress within the first 12–24 h of life and, without lung
transplantation, expire within the first 1–6 mo of life (49, 50).
Surfactant replacement therapy, corticosteroid treatment, and
mechanical ventilatory support fail to reverse this outcome
(51). The only available treatment for affected infants is lung
transplantation (52). These family studies suggested that a
single-gene, loss-of-function mutation results in irreversible
respiratory distress syndrome in infancy. To make this genetic
marker useful for individual risk assessment, animal, human,
and population-based studies are necessary to correlate bio-
chemical and clinical phenotype with genotype.

Genetic and biochemical studies of compound heterozygote
infants, heterozygote adults, and mice heterozygous for tar-
geted disruption of the surfactant protein B gene suggest that
approximately 50% of normal surfactant protein B synthesis

Figure 1. Molecular structure and genetic variation of the surfactant protein
B gene.
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may be sufficient for normal pulmonary function at birth (17,
18, 53–56). The minimum surfactant protein B production
required for normal surfactant metabolism and lung function in
humans and mice is unknown. An infant who produced only
8–10% of the normal amount of surfactant protein B because
of different loss-of-function mutations on each chromosome
experienced acute and chronic respiratory distress after birth
and died of respiratory causes at 9.5 mo of age (53). Two other
unrelated children homozygous for a mutation in exon 5
(479G3T) that creates an alternative donor splice site had
reduced surfactant protein B and chronic respiratory distress:
one required lung transplantation, and the other has chronic
respiratory insufficiency (57). In mice heterozygous for tar-
geted disruption of surfactant protein B production, reduced
synthesis led to air trapping and chronic lung damage when
exposed to hyperoxia (58). These observations suggest that
acute and chronic respiratory distress syndrome may result
from genetic variation in the human surfactant protein B gene.

To determine whether microsatellite markers would be use-
ful in prediction of genetic risk of respiratory distress, popu-
lation-based studies to evaluate genotype-phenotype correla-
tion were necessary (Table 1). Among the 1260 individuals
examined, polymorphic tandem-repeat sequences in intron 4
and intergenic microsatellite markers have been linked to risk
of respiratory distress (31, 59–63). However, control popula-
tions of insufficient size have limited the ability to use these
markers in clinical practice or parental counseling.

To determine the frequency of the 121ins2 mutation, we
used clinical and molecular ascertainment in two large, popu-
lation-based cohorts (64). We found one 121ins2 allele per
3300 individuals from a New York cohort by molecular ascer-
tainment and one 121ins2 allele per 1000 individuals from a
Missouri cohort by clinical ascertainment. The rare population
frequency of the 121ins2 mutation, the consistent phenotype
exhibited by infants with a homozygous genotype, and the
absence of biologic redundancy for surfactant protein B func-
tion permit unambiguous counseling of parents of fetuses or
infants homozygous for this mutation about disease progres-
sion, prognosis, and treatment options. In a cohort of infants
with hereditary surfactant protein B deficiency, the 121ins2

mutation was the most frequently identified mutation and was
found on approximately 60% of chromosomes (65). Other
investigators and we have identified 27 mutations or single-
nucleotide polymorphisms in the surfactant protein B gene
(Fig. 1) (59–65). Other loss-of-function mutations appear to be
family specific and result in respiratory distress, but sometimes
with more gradually progressive respiratory failure. These
findings permit prediction of acute or chronic respiratory dis-
tress in infants who carry any loss-of-function mutations on
both alleles.

SURFACTANT PROTEIN C

Surfactant protein C is a hydrophobic protein that is synthe-
sized from a precursor of either 191 or 197 amino acids
(depending on differential splicing of the primary transcript)
and proteolytically cleaved (66 – 68). Interestingly, pro-
surfactant protein C does not contain an N-terminal signal
peptide but does have hydrophobic domains (66). Mature
surfactant protein C contains 35 amino acid residues and can be
found in both airways and in lamellar bodies. A murine lineage
with targeted ablation of the surfactant protein C gene has been
reported to exhibit no respiratory distress at birth (69). In
addition, human respiratory disease in the neonatal period
caused by loss-of-function mutations in the surfactant protein
C gene has not been identified. However, a recent report
describes a family with a splice site mutation at the first base
of intron 4 of the surfactant protein C gene, development of
chronic interstitial lung disease in affected family members,
and an autosomal dominant inheritance pattern (70). This
report and the results of the surfactant protein C knockout
lineage suggest that genetic variation in the surfactant protein
C gene results in chronic respiratory disease rather than acute
respiratory distress syndrome of infancy.

SURFACTANT PROTEIN D

Surfactant protein D is a member of the collectin family and
is expressed in extrapulmonary tissues. Its functions include
carbohydrate-domain recognition on the surface of pathogens
(71, 72). Murine lineages with targeted ablation of the surfac-

Table 1. Human surfactant protein B gene microsatellite markers

Markers* Ascertainment (number of patients) Investigators (ref)

C-A tandem repeats in
intron 4

Infants with RDS (82); infants
without RDS (137)

Floros et al. 59

20 unrelated individuals Todd and Naylor 62
Control white and black infants (94);

RDS white and black (102)
Kala et al. 31

Intron 4 alleles 103 white controls; 34 black
controls; 69 Nigerian controls; 40
black RDS

Veletza et al. 61

(AAGG)n marker alleles
D2S388, D2S2232,
and GATA41E01

CEPH families (32); control black
and white infants (200); black and
white RDS infants (365); Nigerian
adults (200)

Kala et al. 60

C-A bp1013, T-C bp1580 15 individuals in affected family Lin et al. 63
Total 671 controls; 589

with RDS

Abbreviations used: ref, reference; CEPH, Centre d’Etude du Polymorphisme Humain; RDS, respiratory distress syndrome.
* Genomic numbering.
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tant protein D gene have no respiratory abnormalities at the
time of birth (73). Progressive extracellular accumulation of
surfactant lipids and of surfactant proteins A and B, activation
of alveolar macrophages and peribronchiolar-perivascular in-
flammation, and development of emphysema were observed
during the first 8 wk of age (73, 74). No human infant or older
individual with respiratory distress and mutation in the surfac-
tant protein D gene has been identified. Although differences
between genomic and cDNA sequences for surfactant protein
D have been observed (75), human genetic variation in this
gene has not been studied in detail. Two biallelic polymor-
phisms of the surfactant protein D gene have been reported
(76). Because of the role of the amino terminal region in
multimerization to dodecamers critical for many functions of
surfactant protein D, amino acid substitution in this region may
have greater impact on function. However, the contributions of
sequence variants in the surfactant protein D gene to respira-
tory distress syndrome in infancy await further study.

EXTRAPULMONARY GENE PRODUCTS

Targeted disruption of the genes that encode either granu-
locyte-macrophage colony-stimulating factor or its receptor
(GM-CSF/IL-3/IL-5 receptor common b-chain) in mice re-
sulted in pulmonary alveolar proteinosis (77). These observa-
tions demonstrated the important role of extrapulmonary gene
products in surfactant production and function. Subsequently,
patients with acquired alveolar proteinosis have been identified
who either fail to express the GM-CSF/IL-3/IL-5 receptor
common b-chain or have neutralizing antibody of IgG isotype
against granulocyte-macrophage colony-stimulating factor in
bronchoalveolar lavage (78–80). Success in restoring surfac-
tant homeostasis in mice with disrupted expression of granu-
locyte-macrophage colony-stimulating factor or its receptor by
aerosolization of granulocyte-macrophage colony-stimulating
factor or by bone marrow transplantation of wild-type bone
marrow cells suggests novel strategies for treatment of respi-
ratory distress syndrome in infancy (81, 82). However, to date,
studies of infants and informative kindreds, genotype-
phenotype studies, and population studies necessary to permit
use of these genetic markers for counseling of individual
families have not been performed.

SUMMARY

Antenatal or postnatal identification of infants homozygous
for the 121ins2 mutation in the surfactant protein B gene
permits unambiguous counseling concerning lethal prognosis
of affected infants and treatment options. Identification of
infants with loss-of-function mutations in this gene permits
reliable prediction of development of acute or chronic respira-
tory distress. A family history of neonatal or infant death
caused by unexplained respiratory distress should prompt con-
sideration of genetic testing for these mutations. Additional
population-based analyses of genotype-phenotype correlation,
including both respiratory distress in the neonatal period and
long-term respiratory morbidity, are required to quantify the
contribution of mutations in surfactant protein genes and ex-
trapulmonary genes to the frequency of respiratory distress

syndrome and subsequent pulmonary disease. For example,
although the frequency of the 121ins2 mutation in the general
population is rare, the frequencies of mutations that cause
reduced surfactant protein B production have not been as-
sessed. Molecular amplification and high throughput analysis
methods for identifying genetic variation in DNA samples
from large populations make possible such frequency estima-
tion without the need for sequencing DNA of each individual
(83, 84). Population-based studies are critical to avoid exag-
geration or underestimation of the contribution of specific
mutations or polymorphisms to respiratory distress syndrome
in infants owing to ethnic stratification, environmental selec-
tion, or genotype-phenotype heterogeneity (85–87). Ongoing
state programs for detection of inherited diseases provide
access to DNA samples that may be linked anonymously to
birth and infant death certificate databases that contain clinical
information or sufficient identifiers to evaluate respiratory phe-
notype (88, 89). Once identified, these mutations will permit
development of more rational strategies for treatment of ge-
netic lung disorders of infancy and more accurate counseling
for families whose infants are at genetic risk for development
of respiratory distress at birth or during early childhood.
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