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Meconium aspiration causes intensive inflammatory reactions
in the lungs, and may lead to neonatal respiratory disorder.
Infiltrated inflammatory cells, particularly macrophages, play an
important role in such an inflammation. A rat alveolar macro-
phage cell line (ATCC8383) was exposed to meconium alone or
in combination with dexamethasone, budesonide, or interfer-
on-g. Nitric oxide (NO) accumulation in the supernatant of the
cell culture was detected by Griess reaction, and mRNA of
inducible NO synthase (iNOS) expression was detected by re-
verse transcriptase-PCR. Nuclear factor-kappa B was analyzed
by electrophoretic mobility shift assay, and iNOS location and
nuclear factor-kappa B transactivation were determined by im-
munostaining. Our results showed that meconium was capable of
inducing production of NO and expression of iNOS in alveolar
macrophages in a dose- (1–25 mg/mL, p , 0.05) and time-
(4–48 h, p , 0.05) dependent manner. This capability of meco-
nium could be further enhanced in the presence of interferon-g
(100 IU/mL, p , 0.05). Budesonide (1024–10210 M) or dexa-
methasone (1024–1026 M) effectively inhibited the meconium-
induced NO production (p , 0.05). Using the protein synthesis
inhibitor cycloheximide, we demonstrated that meconium di-
rectly induced iNOS in macrophages. Furthermore, meconium

also triggered nuclear factor-kappa B activation, a mechanism
possibly responsible for the iNOS expression. Our findings sug-
gest that meconium is a potent inflammatory stimulus, resulting
in iNOS expression, leading to overproduction of NO from the
macrophages, which may be of pathogenic importance in meco-
nium aspiration syndrome. In vitro steroids down-regulated the
iNOS expression, thus suggesting a potential to down-regulate
NO-mediated inflammation in neonates with meconium aspira-
tion syndrome. (Pediatr Res 49: 820–825, 2001)

Abbreviations:
LPS, lipopolysaccharide
RT-PCR, reverse transcriptase-PCR
NO, nitric oxide
iNOS, inducible nitric oxide synthase
IFN-g, interferon-g
NF-kB, nuclear factor-kappa B
CHX, cycloheximide
EMSA, electrophoretic mobility shift assay
MAS, meconium aspiration syndrome
NO2

2, nitrite
G3PDH, glyceraldehyde-3-phosphate dehydrogenase

Meconium-stained amniotic fluid is frequently encountered
during both term and postterm deliveries, and 1–3% of affected
infants consequently develop MAS. This disorder is character-
ized by respiratory distress complicated with persistent pulmo-
nary hypertension caused by airway obstruction and pneumo-
nitis. MAS is a major cause of neonatal morbidity and
mortality (1).

NO is an important molecule active in a number of biologic
reactions (2, 3), especially with implications in inflammation
(4). It is generated from L-arginine by three different NO
synthases; of these, two are constitutive isoforms. The third is
an inducible and Ca21-independent NO synthase (iNOS), nor-
mally produced only after transcriptional activation of its gene
(5, 6). High levels of NO produced by iNOS can mediate lung
injury (7). Laboratory studies have suggested that NO can
potentiate the lung injury by promoting oxidative or nitrosative
stress (8), inactivating surfactant, and stimulating inflammation
(9).

The expression of iNOS is mediated by differential signaling
transduction pathways. Among them, the NF-kB signaling
pathway has been suggested as the determinant mechanism, for
example, for cytokine production, regulation of adhesion mol-
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ecules, and acute-phase protein synthesis (10). NF-kB may be
induced by many endogenous and exogenous stimuli.

The purpose of this study was to investigate whether meco-
nium could stimulate macrophages to produce NO, express
iNOS, and activate NF-kB in vitro and further to evaluate the
effect of dexamethasone and budesonide on NO production.

METHODS

Cell culture. A rat alveolar macrophage cell line
(ATCC8383, Rockville, MD, U.S.A.) was maintained in
Ham’s F-12 medium (GibcoBRL, Gaithersburg, MD, U.S.A.)
supplemented with 15% heat-inactivated fetal bovine serum
Myclone (GibcoBRL).

Preparation of meconium. Meconium was collected from
the first stools of three healthy newborn infants. It was pooled,
resuspended in sterile PBS, filtered, and subsequently irradi-
ated. No bacterial growth was found from meconium. Endo-
toxin levels in the meconium were ,10 pg/mL as assessed by
the Limulus amebocyte lysate endochrome test (Charles River
Endosafe, Charleston, SC, U.S.A.). The sterile pooled suspen-
sion was then stored at 220°C for later use.

Antigen stimulation and effect of steroids on NO produc-
tion. The rat alveolar macrophages were distributed into 24-
microwell plates at a concentration of 13106 cells/mL in
serum- and phenol red–free medium. They were stimulated
with either 1–25 mg/mL meconium, or 100 ng/mL LPS
(O55:B5, Sigma Chemical Co., St. Louis, MO, U.S.A.) alone
or in combination with 100 IU/mL IFN-g (Genzyme, Cam-
bridge, MA, U.S.A.) for 24 h at 37°C, in 5% CO2. Meconium
(5 mg/mL) was also incubated with the macrophages for
different periods (4–48 h). For the effect of steroids on NO
production, the rat alveolar macrophages were incubated with
5 mg/mL of meconium in combination with dexamethasone
(1024–10210 M) or budesonide (1024–10210 M). To investi-
gate whether meconium has a direct effect on NO production,
the macrophages were incubated with 5 mg/mL of meconium
in combination with the protein synthetase inhibitor CHX (1
mg/mL, Sigma Chemical Co.) for 24 h. Supernatants were
collected after stimulation and stored at 270°C for analysis.

NO2
2 assay. The accumulation of NO2

2, a stable end
product of NO formation, in conditioned media was measured
as an indicator of NO production. One hundred microliters of
cell-free conditioned medium was incubated for 10 min with
100 mL of Griess reagent at room temperature, and the absor-
bance at a wavelength of 540 nm was automatically measured
in a microplate reader. NO2

2 in the samples was calculated
using a standard curve of sodium nitrite.

RT-PCR. Total RNA was extracted from cells with RNA-
zolB (Biotecx Laboratories; Houston, TX, U.S.A.) according
to the manufacturer’s instructions. First-strand cDNA synthesis
of total RNA was performed using SuperScript RNase H2

Reverse Transcriptase (GibcoBRL) and random hexamer prim-
ers [pd(N)6; Amersham Pharmacia Biotech, Uppsala, Sweden].
Specific oligonucleotide primers were synthesized for rat iNOS
(Clontech, Palo Alto, CA, U.S.A.). The sequences of the 3'-
and 5'-primers used are 5'-CCCTTCCGAAGTTTCTGGCAG-
CAG-3' and 5'-GGGCTCCTCCAAGGTGTTGCCC-3' (11).

The rat G3PDH primer (Innovagen, Lund, Sweden) sequences
are 5'-CTCAAGATTGTCAGCAATGC-3' and 5'-CAGGAT-
GCCCTTTAGTGGGC-3' (12). The PCR using Taq polymer-
ase (final concentration, 0.025 U/mL; GibcoBRL) was per-
formed in a final volume of 25 mL containing 2 mL of cDNA
for iNOS and G3PDH in a DNA Thermocycler 480 (Perkin
Elmer, Norwalk, CT, U.S.A.) for 33 cycles for rat iNOS under
the following conditions: 1 min denaturation at 94°C, 1 min
annealing at 60°C, and 2 min extension at 72°C. PCR was
conducted for rat G3PDH with 1 min at 94°C, 1 min at 60°C,
and 1 min at 72°C. The PCR products were separated on a
1.5% agarose gel (GibcoBRL). The ethidium bromide–stained
gel was photographed under UV light with the DC120 Digital
Zoom Camera (Eastman Kodak, Rochester, NY, U.S.A.).

EMSA. Cells grown in serum-free medium were stimulated
with meconium for 15, 30, and 60 min. Nuclear extracts were
prepared as described (13), and nuclear protein concentrations
were determined using the bicinchoninic acid kit (Pierce,
Rockford, IL, U.S.A.). The nuclear extract (3 mg of protein)
was preincubated for 10 min in the reaction buffer [10 mM
HEPES, pH 7.9, 10% glycerol, 60 mM KCl, 5 mM MgCl2, 0.5
mM EDTA, 1 mM DTT, 1 mM phenylmethylsulfonyl fluoride,
and 2 mg poly (dI-dC)], followed by incubation for 30 min at
room temperature with 50,000 cpm of 32P-labeled NF-kB
probe (double-stranded oligonucleotides containing an NF-kB
consensus binding site: 5'-AGTTGAGGGGACTTTC-
CCAGGC-3', Promega, Madison, WI, U.S.A.). After 30 min at
room temperature, samples were separated on a 4% native
polyacrylamide gel in low ionic strength buffer (22.3 mM
Tris-borate, 0.5 mM EDTA, pH 8). Dried gels were autoradio-
graphed with intensive screens at 280°C. In some cases, the
incubation of nuclear extracts with 32P-labeled NF-kB probe
was performed in the presence of excess unlabeled NF-kB
probe or the irrelevant oligonucleotide, AP-1 (Promega).

Transactivation of NF-kB and immunolocalization of
iNOS. Cells (3000/well) were plated on glass coverslips and
incubated with meconium, 5 mg/mL, 30 min for NF-kB and
24 h for iNOS. After treatment, the cells were fixed with cold
methanol and acetone. Intracellular p65 and iNOS were visu-
alized by indirect immunofluorescence using polyclonal rabbit
anti-p65 antibodies (Santa Cruz Biotechnology, Santa Cruz,
CA, U.S.A.) and polyclonal rabbit anti-macrophage iNOS
antibodies (Affinity BioReagents, Golden, CO, U.S.A.), fol-
lowed by FITC-labeled goat anti-rabbit IgG (Dako, Copenha-
gen, Denmark).

Data analysis. Data from pooled experiments were reported
as the mean 6 SEM NO2

2 concentrations (micromolar). Data
were analyzed by Student’s t test or one-way ANOVA. A p ,
0.05 was considered to be significant.

RESULTS

NO production and iNOS expression. Meconium stimu-
lated the production of NO from the alveolar macrophages in
a dose- and time-dependent manner (Fig. 1). All tested con-
centrations .1 mg/mL meconium stimulated the production of
NO compared with the control samples (p , 0.05) at 24 h. Five
milligrams per milliliter meconium itself contains 5.06 6 0.79
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mM NO2
2. The NO production was already stimulated after

4 h incubation with 5 mg/mL meconium (p , 0.05) and
continuously increased during the studied 48 h (p , 0.05). The
capability of meconium to stimulate NO production was fur-
ther enhanced in the presence of IFN-g (100 IU/mL, p , 0.05;
Fig. 1A).

Because iNOS is regulated mainly at the transcriptional
level, iNOS transcripts were examined by RT-PCR. Meconium
stimulated macrophages to express higher levels of iNOS
mRNA compared with untreated macrophages (Fig. 2). The
iNOS protein was also shown in the meconium-stimulated cells
with immunostaining techniques (Fig. 3A).

To detect whether meconium has a direct effect on iNOS
expression, we used the protein synthetase inhibitor CHX to
block the de novo synthesis of, for example, cytokines. As
shown in Figure 2, the induction of macrophage iNOS expres-
sion by meconium was not dependent on cytokine production.

NF-kB expression. The effect of meconium on the NF-kB
signal transduction pathway in the alveolar macrophages was
determined by EMSA. No clear effect was seen after a 15-min
treatment with meconium. After 30 and 60 min, the NF-kB
binding complexes observed were substantially enhanced in
the nuclear extracts of the macrophages (Fig. 4). The specific-

ity of the NF-kB–DNA complex was ascertained by competi-
tion study. As shown in Figure 4, the indicated NF-kB–DNA
complexes were removed by excessive cold NF-kB probe but
were not affected by excessive AP-1 probe. The activated
expression of NF-kB was also determined by immunostaining
in terms of the translocation of p65 in cells treated by meco-
nium for 30 min and in untreated cells. In the untreated
macrophages, p65 was sequestered in the cytoplasm; whereas
in the cells treated with meconium (5 mg/mL), translocation of
p65 into the nuclei of the macrophages was seen (Fig. 3B).

Down-regulation of NO production by steroids. Budes-
onide (1024–10210 M) and dexamethasone (1024–1026 M)
significantly inhibited NO production stimulated by meconium
(p , 0.05; Fig. 5). Budesonide ($1026 M) was more potent
than dexamethasone at the same concentration (p , 0.05).

Figure 1. A, NO production after 24 h stimulation in the rat alveolar macro-
phage cell line with LPS (100 ng/mL), meconium (1–25 mg/mL), and meco-
nium (5 mg/mL) in combination with IFN-g (100 IU/mL). Control denotes the
concentration of NO2

2 in 5 mg/mL meconium. NO activity was assessed by
determining NO2

2 concentration in conditioned medium. B, NO production
after stimulation with 5 mg/mL meconium at different times. NO production
increases with time.

Figure 2. Expression of iNOS in the macrophages studied with RT-PCR after
stimulation with 5 mg/mL meconium alone or together with IFN-g (100
IU/mL) or CHX (1 mg/mL).

Figure 3. A, immunostaining of the rat alveolar macrophages for iNOS after
stimulation with 5 mg/mL meconium compared with unstimulated cells.
Original magnification 3500. B, immunostaining for NF-kB expression after
30-min incubation with 5 mg/mL meconium compared with unstimulated
cells. The intracellular location of p65 was detected by indirect immunofluo-
rescence with an anti-p65 antibody. Arrowheads indicate the transactivated
NF-kB. Original magnification 3500.
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DISCUSSION

We have, for the first time, shown that meconium could
induce iNOS gene expression and lead to high output of NO
from alveolar macrophages in a dose-dependent way. CHX did
not affect the iNOS mRNA expression, indicating that meco-
nium had a direct effect, not via cytokine production, on the
NO production. Both budesonide and dexamethasone down-
regulated the meconium-stimulated NO production. Likewise,
NF-kB was also activated by meconium.

The mechanisms for the development of MAS are not
completely understood. After meconium aspiration, an in-
tense inflammatory response occurs, with polymorphonu-
clear lymphocytes found diffusely through the lungs. This
inflammatory reaction, supposedly initiated by meconium-
induced activation of pulmonary macrophages (14), is asso-
ciated with increased pulmonary vascular permeability,
leading to proteinaceous exudation into the alveolar spaces,
and thereby inactivation of pulmonary surfactant and de-
creased lung compliance. In vitro studies have indicated that

the neutrophils and plasma proteins accumulating in the
alveoli as a result of the inflammatory response are potential
inhibitors of surfactant (15), which may also explain why
meconium can inactivate surfactant (16). It has previously
been shown that meconium could stimulate IL-8 expression
(17) and inhibit neutrophil oxidative burst and phagocytosis
(18), and high levels of IL-6 in meconium-stained amniotic
fluid have been detected (19). Meconium aspiration may
also cause apoptosis in epithelial cells (20). All these in-
flammatory reactions, together with our present findings,
may be part of the pathologic basis of MAS and lead to not
only structural changes in the neonate, such as complete
obstruction of the upper airways, atelectasis, pulmonary
interstitial emphysema, or chemical pneumonitis, but also
several physiologic changes, such as hypoxemia, hypercap-
nia, acidosis (21, 22), persistent pulmonary hypertension,
and even death (23–25). There exist several mechanisms
through which relatively high levels of NO produced by
iNOS can mediate lung injury (7). Reaction of NO with
superoxide anions produces peroxynitrite, which is a highly
oxidative species that is capable of nitrating tyrosine resi-
dues of numerous proteins, leading to the formation of
nitrotyrosine. High levels of nitrotyrosine formation have
been shown to be involved in acute lung injury in humans
and LPS-injected animals.

Clinical studies have suggested that NO is an important
inflammatory mediator in critically ill patients (26–28), espe-
cially in neonatal fulminant early onset pneumonia (29). Like-
wise, monocytes and tissue macrophages isolated from patiens
with rheumatoid arthritis, tuberculosis, and malaria display
higher levels of iNOS and generate increased levels of NO in
vitro (30). It is known that there are species differences of NO
production. Weinberg (30) has reviewed the reports from 1989
to 1998 regarding NO production and iNOS expression in
human mononuclear phagocytes in which there were some
difficulties in detecting NO production, partly depending on the
method used. Rodent mononuclear phagocytes have been used
for many in vitro studies (31, 32), mainly because they are
more sensitive.

NO has now acquired considerable notoriety as a represen-
tative of a new class of messenger molecules that are respon-
sible for various functions in many different tissues. Although
the physiologic production of NO plays a key role in the
host-defense response against various intracellular pathogens,
its overproduction may be responsible in part for the patho-
physiology of infection (33). NO is produced by cells respon-
sible for a number of different functions in the vascular endo-
thelium (34), cells of the immune system (35), smooth muscle
(36), and cardiac muscle (37). High-output NO may cause
increased permeability of vascular endothelial cells, inhibit
leukocyte adhesion, degrade carbohydrates, inhibit lipid per-
oxidation, and cleave DNA via nitrosation, nitration, and oxi-
dation, and thus may lead to the pathophysiologic changes in
MAS.

There are reports of clinically beneficial effects of NO
inhalation with some limitations and side effects. Nitric oxide
therapy seems to reduce the need for extracorporeal membrane
oxygenation (38), but has no apparent effect on mortality in

Figure 4. NF-kB binding complexes studied by EMSA. After treatment with
meconium for 30 and 60 min, NF-kB binding complexes were substantially
enhanced. No alteration was observed after 15 min. The indicated NF-kB–
DNA complexes were removed by 503 excessive cold NF-kB probe but not
by excessive AP-1 probe.

Figure 5. Down-regulation of 5 mg/mL meconium-stimulated NO production
in the rat alveolar macrophage cell line by different doses of budesonide and
dexamethasone.
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critically ill infants with hypoxic respiratory failure (39). Treat-
ment with high-frequency oscillatory ventilation plus inhaled
NO is often more successful than treatment with high-
frequency oscillatory ventilation or inhaled NO alone in severe
persistent pulmonary hypertension of the newborn (40). Early
continuous NO inhalation controls the rise in pulmonary artery
pressure and improves the efficiency of arterial oxygenation,
and further prevents the increase in epithelial apoptosis, but
does not protect against early inflammatory damage caused by
meconium aspiration (41). In the newborn pig model of MAS,
short-term exposure to inhaled NO does not decrease pulmo-
nary artery pressure or improve oxygenation (42). The dual
effects of NO, the difference between exogenous and endoge-
nous NO, the functional site of NO, and the local concentration
of NO need to be further investigated.

NF-kB is known to be a ubiquitous rapid-response transcrip-
tion factor expressed in a wide variety of cells and involved in
the generation of a number of inflammatory gene products
(10). A number of endogenous and exogenous stimuli can
induce NF-kB activation. The NF-kB site in the iNOS pro-
moter region is essential for LPS- or oxidative stress-induced
NO production (5). The role of NF-kB in iNOS gene expres-
sion has been well elucidated. Stimulation of macrophages
with LPS or other cytokines leads to activation of NF-kB and
subsequently binding to the kB response element of the iNOS
promoter. It has, however, been unclear whether meconium is
able to activate NF-kB. Our data demonstrate that meconium is
a potent activator of NF-kB, as evidenced by our finding that
meconium could trigger a rapid and intense NF-kB activation
in macrophages. This suggests that NF-kB activation may be a
key mechanism responsible for the meconium-induced iNOS
expression pathway. In addition, the potential role of NF-kB in
inflammation and immune modulation in MAS is not limited to
transcriptional activation of iNOS. In fact, NF-kB has been
shown to exert a crucial role in the inducible expression of
many inflammatory genes encoding transcriptional factors,
adhesion molecules, cytokines, and growth factors (43). There-
fore, meconium-induced NF-kB activation in macrophages
may represent a key mechanism responsible for the inflamma-
tory reaction associated with MAS.

Management of MAS patients is with mechanical ventilation
and the administration of exogenous surfactant or extracorpo-
real membrane oxygenation (44). Despite significant advances,
MAS still causes important morbidity and mortality. Budes-
onide (an inhaled steroid) and dexamethasone (a systemic
steroid) have been used to inhibit the inflammatory response,
and they can down-regulate the proinflammatory cytokine
production in vitro (45, 46). The present study shows that they
also inhibited the meconium-stimulated NO production and
suggests that steroids could be used in the treatment of MAS.

In conclusion, our findings show that meconium is a potent
inflammatory stimulus, resulting in iNOS expression, leading
to overproduction of NO from the macrophages, which could
result in MAS.
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