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In recent years, impressive advances have occurred in our
understanding of transcriptional regulation of cardiac develop-
ment. These insights have begun to elucidate the mystery of
congenital heart disease at the molecular level. In addition, the
molecular pathways emerging from the study of cardiac devel-
opment are being applied to the understanding of adult cardiac
disease. Preliminary results support the contention that a thor-
ough understanding of molecular programs governing cardiac
morphogenesis will provide important insights into the patho-
genesis of human cardiac diseases. This review will focus on
examples of transcription factors that play critical roles at various
phases of cardiac development and their relevance to cardiac
disease. This is an exciting and burgeoning area of investigation.

It is not possible to be all-inclusive, and the reader will note
important efforts in the areas of cardiomyocyte determination,
left-right asymmetry, cardiac muscular dystrophies, electrophys-
iology and vascular disease are not covered. For a more complete
discussion, the reader is referred to recent reviews including the
excellent compilation of observations assembled by Harvey and
Rosenthal (1). (Pediatr Res 48: 717–724, 2000)

Abbreviations
DGS, DiGeorge syndrome
SRF, serum response factor
TGF, transforming growth factor
ECM, extracellular matrix

Cardiac morphogenesis. Most forms of congenital heart
disease result from aberrations in cardiac morphogenesis in-
cluding errors in cardiac septation, valve formation and proper
patterning of the great vessels. These defects can be related to
specific stages of cardiac development and to specific molec-
ular pathways (known and unknown) functional at each stage
(for review, see (2, 3)). A schematic representation of early
heart development is depicted in Figure 1. Early in gestation
(day 18 in humans or day 7.5 in mouse), cardiac primordia can
be identified as bilaterally symmetric components derived from
the lateral plate mesoderm. By day 22 (day 8.5 in the mouse)
these primordia migrate medially and fuse to form a single
heart tube composed of two cell layers (myocardium and
endocardium) separated by a vast extracellular matrix, the
cardiac jelly. The midline heart tube folds upon itself (cardiac
looping) and distinct regions corresponding to future chambers
are discernible. By day 25 in humans (day 10.5 in mouse),

localized swellings of the extracellular matrix are invaded by
underlying endothelial cells to initiate the formation of the
endocardial cushions that will later condense to form the
mature cardiac valves. Thereafter, a series of complex septa-
tion events results in delineation of the cardiac chambers. By
day 34 (day 11.5 in the mouse), neural crest cells have mi-
grated from the dorsal neural tube along aortic arches 3, 4, and
6 and have invaded the outflow tract of the heart. These cells
are required to induce septation of the single great vessel
emerging from the embryonic heart (the truncus arteriosus),
thus forming the aorta and pulmonary artery (4). They contrib-
ute to the mesenchymal elements of the ductus arteriosus and
great vessels and initiate remodeling of the aortic arches.
Cardiac neural crest differentiates into a subpopulation of
arterial smooth muscle cells. At birth, the ductus arteriosus
closes, thus completing the formation of separate pulmonary
and systemic circulations.

Fusion of cardiac primordia. Specific transcriptional regu-
lators have emerged as critical factors for many of these
developmental events (see Fig. 1). For example, the GATA4
transcription factor appears to be required for midline fusion of
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the primitive bilateral heart tubes (5, 6). GATA transcription
factors are defined by the presence of a zinc finger DNA
binding domain that recognizes a “GATA” DNA sequence
motif. GATA1, 2, and 3 are important during hematopoietic
development (7, 8), while GATA4, 5, and 6 are expressed in
the heart (9, 10). Inactivation of GATA4 in the mouse results in
early embryonic lethality. Cardiac progenitors are specified,
and bilateral primordia can be identified, but a midline cardiac
tube fails to form (5, 6). GATA factors may have later func-
tions during cardiac development, and may be redundant with
one another. Potential GATA binding sites have been found in
many cardiac specific gene promoters, and GATA4 is capable
of synergizing with other transcription factors such as Nkx2.5
and serum response factor (SRF) to activate cardiac-specific
gene expression (11, 12). GATA4 may have critical noncardiac
functions as well. GATA4 may be required in noncardiac cells
(including endoderm) for midline fusion of cardiac primordia
since chimeric rescue experiments in the mouse (in which the
embryonic endoderm is derived from wild-type cells) rescues
midline fusion even though the cardiac cells themselves are
GATA4 deficient (13).

Elucidation of molecular pathways regulated by GATA4 in
cardiomyocytes has led to important observations that may
relate to our understanding and treatment of cardiac hypertro-
phy and heart failure (14). GATA-associated factors (such as
Friend-of-GATA (FOG) or FOG2) may be involved in Tetral-
ogy of Fallot, coronary vascular anomalies or other congenital
defects. Both FOG2 and nuclear factor of activated T cells 3
(NFAT3) have been identified as potential heterodimerization
partners for GATA4 (14). Since NFAT3 is activated by cal-
cineurin in response to changes in intracellular calcium, it is
possible that an NFAT3-GATA4 transcriptional complex me-
diates some aspects of the hypertrophic response triggered by
rising intracellular calcium. Perhaps this pathway results in the
well described re-initiation of the “fetal gene program” char-

acteristic of cardiac hypertrophy and subsequent heart failure,
though this model remains controversial (15–21).

Chamber specification. A growing number of transcription
factors are expressed in chamber-specific patterns, and are
likely to be responsible for specifying chamber identity. Car-
diac chambers are morphologically distinct even at early stages
of development (Fig. 1) (2, 3). It is becoming evident that these
differences are unlikely to be explained by differences in
hemodynamics. Rather, programmed differences in gene ex-
pression appear to determine cell fate and regional identity.
This paradigm is reminiscent of neuronal cell fate determina-
tion mediated by the overlapping pattern of Hox gene expres-
sion (the “Hox code”) along the anteroposterior neural axis of
the embryo (for review, see (22)). Recently, a novel Iroquois-
related homeobox gene, Irx4, has been described that exhibits
ventricular-specific expression during development (23). Tis-
sue-specific gene inactivation and transgenic over-expression
experiments will be important to determine if Irx4 is involved
in ventricular specification.

The basic helix-loop-helix transcription factors dHand and
eHand are expressed predominantly in right and left ventricles
during mouse development (24). In chick embryos, their cham-
ber-specific expression pattern is less distinct. dHand deficient
embryos form a poorly developed right ventricle, though the
tissue appears to be correctly specified (25). Hypoplastic right
and left ventricle syndromes may be related to mutations in
these or similar factors (26). In addition, dHand is expressed in
regions populated by neural crest cells, and analysis of poten-
tial downstream genes regulated by dHand has provided can-
didate genes for DiGeorge syndrome.

Looping morphogenesis. Inactivation of the Nkx2.5 ho-
meobox gene in the mouse results in failure of looping mor-
phogenesis (27, 28). This gene encodes a DNA binding protein
containing a 60 amino acid helix-turn-helix motif related to
homeobox-containing (HOX) genes that regulate early embry-

Figure 1. Schematic representation of cardiac development. Approximate human and murine gestational ages are indicated above the drawings and transcription
factors discussed in the text are listed below. A schematic cross section through an early embryo is shown in the first panel to indicate the bilaterally symmetric
cardiac structures composed of an endocardial tube (En) separated by an extracellular matrix (ECM) from the myocardial precursors (M). Bilateral dorsal aortae
(DAo) are indicated. The second panel shows a frontal view of the midline cardiac tube. Gene expression analysis reveals early specification of chambers
including right ventricle (RV) and left ventricle (LV). Panels 3 and 4 represent frontal and left lateral views, respectively, of a looped heart tube. The
pro-epicardial organ (ProE) is located posteriorly and gives rise to epicardial cells (Ep, shown in brown) that migrate over the ventricles, as indicated by arrows.
Panels 5 and 6 depict vascular remodeling. The aortic arches in panel 5 (numbered) are populated by neural crest cells (NC, arrows) and are color coded to match
the mature arterial segments indicated in panel 6. TA, truncus arteriosus. RSC, right subclavian artery. RCC, right carotid artery. LCC, left carotid artery. LSC,
left subclavian artery. DA, ductus arteriosus. Ao, aorta. PA, pulmonary artery. (Modified from (1, 111)).
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onic patterning. It is closely related to the tinman gene of the
fruit fly Drosophila melanogaster (29). In the fly, tinman is
required for formation of the dorsal vessel, a structure that
appears to represent the evolutionary ancestor of the mamma-
lian heart. Many related Nkx genes are expressed in mammals
in overlapping patterns (30), but Nkx2.5 appears to play a
unique function in cardiac development. It is expressed from
the earliest stages of cardiomyocyte determination. Although
mutant embryos are able to form a primitive heart tube and
express cardiac specific genes including myosin, they die
during mid-gestation and the heart fails to loop normally (28).
The transcriptional regulation of Nkx2.5 expression is complex.
A series of elegant reports, reviewed elsewhere (31), indicate
that chamber-specific expression is regulated by distinct en-
hancer sequences. This suggests that chamber-specific up-
stream factors that mediate Nkx2.5 expression exist in a region-
specific fashion. These factors are also likely to participate in
defining chamber-specific identity (e.g., atrial versus ventricu-
lar, right ventricular versus left ventricular). Recently, hypo-
morphic alleles and heterozygous loss-of-function of Nkx2.5
have been shown to result in atrial septation defects and
conduction abnormalities in humans (32, 33).

Valvulogenesis. Endocardial cushion defects and congenital
valvular abnormalities, including pulmonic and aortic stenosis,
bicuspid aortic valve, mitral valve prolapse and cleft mitral
valve, are common. Abnormalities of recently described mo-
lecular pathways are likely to account for at least some of these
cases. Transcriptional regulators such as NFATc, the Sry-
related homeobox gene Sox4, and the downstream modulator
of TGFb superfamily signaling Smad6 are required for proper
endocardial cushion formation and maturation (34–37). Mem-
bers of the TGFb family of secreted growth factors, the type III
TGFb receptor, and the EGF receptor are also involved (38–
40). These receptors may mediate intracellular signals through
the small GTP binding protein ras, since mutation in the
ras-GAP protein encoded by the Neurofibromatosis gene NF1
disrupt valvulogenesis (41–43). Interestingly, there appears to
be an increased incidence of valvular pulmonic stenosis in
patients with von Recklinghausen Neurofibromatosis associ-
ated with mutations in the NF1 gene (44–46). It will be of
interest to determine whether somatic mutations in the NF1
gene account for some sporadic cases of pulmonic stenosis.

Inactivation of the murine bicoid type homeobox gene Pitx2
also results in enlargement of the endocardial cushions, though
Pitx2 itself is expressed in the myocardium overlying the
cushion region (47–49). Pitx2 plays an important role in
left-right patterning and homozygous deficient mice also dis-
play a hypoplastic right ventricle and atrio-ventricular septal
defects. Heterozygous mutations in the human homologue of
Pitx2, RIEG, cause Rieger syndrome characterized by tooth
and eye developmental defects (50). Cardiac and laterality
defects are not commonly associated with Reiger syndrome.

Epicardial-derived cells contribute to the forming endocar-
dial cushions and coronary vessels. The epicardium is derived
from cells emerging from the pro-epicardial organ which is
located posterior to the forming heart (Fig. 1, panel 4). Cells
migrate from this embryonic structure and envelop the myo-
cardium in a caudal-to-rostral direction. Some epicardial cells

invade the myocardium and populate the endocardial cushions.
Others contribute to the formation of intramyocardial capillar-
ies (51). Signals mediated by retinoic acid (RA) are probably
critical for this process as suggested by the expression of a
critical enzyme in RA biosynthesis, retinaldehyde dehydroge-
nase type II (RALDH2) (52). The product of the Wilms’ tumor
gene WT1, a nuclear transcription factor, is also required for
epicardial development (53) as is FOG2 (54). An exciting area
of active research relates to the role of epicardial cells in
myocardial maturation, coronary artery development and val-
vulogenesis. This process, as well as cardiac neural crest
function, may be altered by mutations in retinoic acid receptors
in mice (55, 56), and by teratogens such as retinoic acid or by
vitamin A deficiency in humans.

Outflow tract septation and patterning of the great vessels.
Neural crest cells populate many regions of the developing
embryo and differentiate into numerous cell types, forming the
peripheral nervous system, melanocytes, and contributing to
the thyroid, parathyroid and thymus glands. Classic studies
performed in developing chick embryos demonstrated that
neural crest cells migrate from the neural tube, along the aortic
arches, and populate the outflow tract and outflow endocardial
cushions during mid-gestation (4). Ablation of a discreet subset
of cranial neural crest cells before emergence from the neural
tube results in predictable cardiac malformations including
persistent truncus arteriosus, double outlet right ventricle, in-
terrupted aortic arch and related defects (4). In mice, mutations
in the paired-box-containing gene Pax3 result in similar defects
(57). In both ablated chicks and Pax3-deficient (Splotch) mice,
defects in thymus, thyroid and parathyroid derivatives are also
apparent. This phenotype in Splotch mice is strikingly remi-
niscent of human patients with DiGeorge syndrome (see be-
low). While mutations in PAX3 have not been shown to cause
DiGeorge syndrome in man, it is likely that similar molecular
and developmental pathways are affected, making Splotch mice
a potentially useful model for the study of neural crest related
cardiac defects. Using a neural crest-specific element in the
Pax3 promoter to direct expression of Cre recombinase in
transgenic mice, cardiac neural crest cells have been fate-
mapped to the aorto-pulmonary septum, aortic arches, ductus
arteriosus and outflow endocardial cushions (Fig. 2 (58), and
JAE, unpublished results). Later in development, they differ-
entiate into smooth muscle cells in the aortic arch and head
vessels. These regions of the forming vasculature seem partic-
ularly sensitive to genetic perturbations. They are affected by
several signaling cascades including those mediated by the
endothelin receptor A (59), endothelin 1 (60), endothelin con-
verting enzyme 1 (61) and by the winged helix transcription
factors Foxc1 (Mf1) and Foxc2 (Mfh1) (62). Mutations in
these genes in mice lead to interruptions of the aorta. Interest-
ingly, mutation of the secreted semaphorin signaling molecule
Sema3C also leads to interrupted aortic arch (L. Feiner, JAE
and J. Raper, personal communication). Semaphorins act in the
CNS to mediate axon pathfinding by causing growth cone
collapse, and may similarly function during cardiac develop-
ment to direct neural crest migration. A potential Sema3C
receptor, PlexinA2, is expressed by cardiac neural crest cells
(JAE, unpublished results). Future studies will be needed to
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determine whether mutations in any of these genes account for
interruptions or coarctations of the aorta in humans.

DiGeorge Syndrome. DiGeorge Syndrome (DGS), also
known as velocardiofacial syndrome (VCFS), has received a
good deal of attention in the past few years (for reviews see
(63–68)). It is one of the most common congenital defects
occurring with a frequency of 1/4000 live births. It is charac-
terized by a constellation of abnormalities suggestive of defec-
tive cranial neural crest function particularly with respect to
neural crest populating aortic arches 3 and 4. These include
cardiac outflow tract anomalies, abnormal facies, thymic hyp-
oplasia, cleft palate, hypocalcemia and a microdeletion on
chromosome 22, hence the acronym CATCH22. The microde-
letion can result in haploid insufficiency of up to 30 genes (69,
70).

Understanding the etiology of DGS has been confounded by
several observations including the fact that the severity of the
phenotype is not related to the size of the deletion. DGS
patients can carry deletions of up to 3 megabases. However,
there are patients with considerably smaller deletions with
equally severe phenotypes. In fact, a balanced translocation
between chromosome 2 and 22, ADU (t2;22) that did not
involve a loss of DNA resulted in a mild DGS phenotype (71).
Theoretically, this translocation should have resulted in the
disruption of a single gene. This was not the case. The break
point did not appear to affect any specific gene directly (72–
74). These observations have led investigators to propose the
existence of “functional architecture” within this region of
chromosome 22, the disruption of which leads to aberrant
regulation of a gene or genes required for cranial neural crest
function. The complexity of the situation is further documented
by reports showing DGS-like phenotypes resulting from hap-
loid deletions involving chromosome 10p (75, 76). Clearly, the
genetic control of outflow tract assembly is such that pertur-
bations of the function of any one or combination of several
genes can result in phenotypes associated with DGS (see
previous discussion).

Several hypotheses have been put forth to explain the etiol-
ogy of DGS. The simplest is that there is a “DiGeorge gene”

within the deleted region of 22q11.2 whose function is dosage
dependent. That is, loss or mutation of one copy of the gene
changes the amount of product available adversely affecting a
crucial step in cranial neural crest function. This has led to the
search for patients with mutations in candidate genes. An
interesting candidate gene was proposed by Yamagishi et al.
(77). They identified Ufd1L as a probable downstream target of
dHand, a gene required for early heart development (see
above). Ufd1L is the mouse homolog of the yeast ubiquitin
fusion degradation protein 1 gene. It encodes a protein possibly
required for targeting proteins for degradation. Thus, a defi-
ciency in this protein might lead to the accumulation of un-
wanted proteins resulting in cell death (apoptosis) or aberrant
differentiation. A screen of 182 DGS patients revealed UFD1L
was included in all deletions. Most interesting, one patient was
discovered with a deletion of UFD1L, and while a portion of
the gene CDC45L immediately proximal to UFD1L was also
missing, UFD1L appeared the more likely causal target (77). In
an attempt to confirm this observation, many groups have
screened patients for single mutations in UFD1L (for example
see (78)). To date, none have been found. Further, mice
carrying a heterozygous deletion in this gene showed no
evidence of a DGS phenotype despite a 50% reduction in
message (79).

Another interesting candidate gene is HIRA, which encodes
a transcription factor that interacts with Pax3 (80). Treatment
of chick embryos with antisense ribonucleotides targeting
chHira mRNA results in outflow tract abnormalities, particu-
larly persistent truncus arteriosus, that resemble those accom-
panying DGS (81). However, no patients with point mutations
in HIRA have been reported. A variety of other candidate genes
are found within the 22q11.2 deletion (see Table 1). These
include genes encoding putative transcription factors, extracel-
lular matrix molecules, cell surface receptors, transport pro-
teins, and protein kinases. Again, no single mutations leading
to DGS have been identified. Further, where tested, mice
heterozygous for mutations in genes homologous to those
found within the DiGeorge region display no abnormal phe-

Figure 2. Fate-mapping of cardiac neural crest cells. Mouse embryos carrying Cre recombinase under the control of the neural crest-specific element of the
Pax3 promoter were crossed with transgenic mice carrying a Cre-reporter that expresses b-galactosidase (b-gal) in response to Cre activity. Once Cre
recombinase is activated by the Pax 3 promoter, b-gal is expressed. It will continue to be expressed constitutively by that cell and by all daughter cells. Hence,
the fate of the Pax3 expressing neural crest precursors can be followed during cardiovascular development. (A) At embryonic day 12.5 neural crest cells (arrow)
contribute to the forming aorto-pulmonary septum at the level of the aortic valve (AV) and pulmonic valve (PV). (B) At embryonic day 18.5, neural crest
descendants contribute to the wall of the aorta (Ao), to the tips of the pulmonic valve and to the cushions of the ductus arteriosus (DA). (C) Immunohistochemistry
using a smooth muscle actin (SMA) specific antibody demonstrates that b-gal positive neural crest descendants become smooth muscle cells in the aortic arch.
b-gal positive cells do not contribute to the smooth muscle of the descending aorta beyond the ductus arteriosus. This transition point is indicated by arrows in
C.
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notypes. Thus, to date, there is no strong evidence for the
existence of a single “DiGeorge gene.”

Another approach to understanding the etiology of DGS has
been to create an animal model carrying deletions that involve
clusters of genes similar to those deleted in DiGeorge patients.
This approach depends upon the conservation of synteny be-
tween human and mouse chromosomes. The “DiGeorge re-
gion” of human 22q11 is conserved within mouse chromosome
16. The relative order of most genes within the syntenic region
is conserved with certain blocks of genes being inverted in the
mouse with respect to the centromere-telemere orientation
(Fig. 3) (82–85). The function of genes within this complex
has been tested in mice by deleting entire segments of chro-
mosome 16 corresponding to those noted in DGS patients. In
one case, mice carrying deletions of a region within the
“minimal DiGeorge critical region” (MDGCR) were con-
structed (86). The MDGCR represents the smallest portion of
the 22q11.2 deletion common to most DiGeorge patients.
While animals homozygous for the 150-Kb deletion died early
in gestation, heterozygous animals were without significant

morphogenetic phenotypes. This is consistent with the recent
identification of DGS patients with deletions completely out-
side the MDGCR (87).

In another study, animals carrying a larger 1.2 megabase
deletion were constructed (Fig. 3). In this case, heterozygous
deleted animals survived and displayed heart anomalies result-
ing from abnormal remodeling of the fourth brachial arch
arteries reminiscent of vascular anomalies accompanying DGS
(79). The phenotype was reversed by duplication of the deleted
region proving that it was caused by haploid insufficiency of
one or more genes within this deleted region and not by a
position effect. Interestingly, in the genetic backgrounds re-
ported, the defects were specific for aortic arch IV derivatives
and did not include many OFT defects, facial dysmorphias,
cleft palate, thyroid or parathyroid hypoplasias characteristic of
DGS. Thus, while this deleted region includes genes required
for certain aspects of aortic arch development, there must be
additional genes residing outside this region that act as modi-
fiers and are important to other aspects of early heart and facial
morphogenesis relevant to the DGS. This presumption is sup-

Table 1. Genes within the region of chromosome 22q11 commonly deleted in DiGeorge syndrome listed in order from centromere to
telomere (see Fig. 3)

Gene RNA Expression in situ Expression Function References

IDD/LAN All tissues Adhesion receptor? SEZ-12 seizure protein (72–74)
TSK1 Pseudogene in human Adult testis Serine/threonine kinase (85)
TSK-2 Testis Adult testis Serine/threonine kinase (69)
DGS-H Skeletal muscle, heart Unknown (69)
DGS-I/ES2 All tissues Homology to hypothetical C elegans protein (69, 88)
GSCL Brain, primordial germ cells Member of GSC transcription factor family (85, 89)
CTP All tissues Mitochondrial citrate transport protein (90, 91)
CLTCL All tissues, High in skeletal

muscle
Clathrin-like heavy chain (69, 92, 93)

DVL22 All tissues, high in skeletal
muscle, heart

Homology to 3UTR of Dishevelled (94)

22k48 Novel intercistronic transcript. Possibly
involved in protein trafficking

(95)

HIRA/TUPLE All tissues Embryonic cranial neural folds,
BA 1 and 2, neural crest, limb

Transcription factor, interacts with PAX3 (96, 97)

UFD1L All tissues, high in skeletal
muscle, heart, pancreas

E9.5-E11.5 brain, lungs cardiac
outflow, otocyst, eye

Homology to yeast ubiquitin fusion
degradation 1 protein

(98)

CDC45L Homolog of yeast CDC45 involved in
initiation of DNA synthesis

(99)

TMVCF E9.5 mouse; adult lung, heart,
skeletal muscle

Predicted transmembrane protein (100)

CDCrel-1/H5 Cell division cycle related protein (101)
GP1Bb, H5 Part of platelet von Willebrand factor receptor

complex
(102)

TBX1 BA 1–3, otic vesicle, jugular
lymph sacs, lung, tongue

Homology to DNA binding domain of
Brachyury T, transcription factor

(103)

T10 Low general expression, high in
fetal liver

Serine/threonine rich, unknown (104)

COMT Neuronal, placental, and other
tissues

Catechol-o-methytransferase (105)

ARVCF All fetal and adult tissues Catenin family member (106)
RANBP1 Ran GTPase receptor, nuclear transport (82)
N41 All tissues unknown (107)
DGCR-6 All tissues, high in skeletal

muscle, heart
Homology to Drosophila gdl, human LAMC1 (108)

LZTR-1 All tissues, fetal liver Transcription factor (109)
ZNF74 E10-E12 (mouse), not adult 12 zinc finger motifs (110)

RNA expression by Northern blot analysis is summarized (column 2) in addition to RNA and/or protein expression as detected by in situ hybridization or
immunohistochemistry (column 3). Known or presumed functional data is listed in column 4. BA 5 branchial arches.
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ported by preliminary evidence that thymus hypoplasia be-
comes apparent when these mice are crossed onto different
genetic backgrounds (A. Baldini, personal communication).
Additional engineered deletions, in progress in several labs
around the world, will continue to refine the region of mouse
chromosome 16 containing genes critical for cardiovascular
development and neural crest function (see Fig. 3). For in-
stance, a group at Albert Einstein University has created a
deletion that removes the genes between Idd and Arvcf that
does not produce any DiGeorge-like characteristics in the
heterozygous state. However, a larger deletion extending from
Idd to Hira does produce interrupted aortic arch (A. Skoultchi,
R. Kucherlapati, personal communication). Systematic
complementation of genes across the deletion should lead to
the identification of those critical to the DGS phenotype. Thus,
while the origin of DGS remains a mystery, critical and
informative experiments are underway. The ability to construct
elegant animal models, the completion of the human genome
project and our emerging understanding of chromosomal struc-
ture and gene regulation, suggest that we should soon begin to
understand the molecular origin of dysmorphias characteristic
of DGS.

In summary, transcription factors that play critical functions
at specific stages of cardiac development are emerging from
basic studies, providing excellent candidate genes responsible
for various forms of congenital and adult cardiac diseases.
While complete loss-of-function in animal models often results
in severe cardiac morphogenetic defects, more subtle muta-
tions are being found in humans with milder forms of structural
heart disease. Molecular pathways deciphered from the study
of developmental processes may be reiterated during patho-
logic adult cardiac conditions. The further study of molecular

determinants of embryonic cardiac development offers a ratio-
nal approach for the identification of disease causing genes.

Acknowledgment. Drawings shown in Figure 1 were created
by Paul Schiffmacher.
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