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Low birth weight is an important risk factor for type 2
diabetes in later life. Maturity-onset diabetes of the young has
been linked to genetic sequence abnormalities in transcription
factors known to be involved in endocrine pancreatic develop-
ment. These observations suggest that both the maternal envi-
ronment and the fetal genome can influence the number and/or
function of pancreatic b cells in early life, and that this has
life-long implications for postnatal diabetes. This article reviews
the evidence that suggests that b cells derive from a neogenic
process within the pancreatic ductal epithelium, controlled by
specific transcription factors and locally acting peptide growth
factors. In rodents, many of the fetal phenotypes of b cells are
destroyed during neonatal life in a developmental apoptosis and
are replaced by a second wave of neogenesis. This results in
islets with insulin release characteristics suited to postnatal life.
The timing and amplitude of these ontological events are altered
by nutritional sufficiency, and this may be mediated by changes
in pancreatic growth factor expression, particularly of the IGF

axis. Because b-cell plasticity after the perinatal period is lim-
ited, a dysfunctional programming of b-cell ontogeny may
present a long-term risk factor for glucose intolerance and type 2
diabetes. This critical window of pancreatic development is
likely to occur in third trimester of human development. (Pediatr
Res 48: 269–274, 2000)

Abbreviations
MODY, maturity-onset diabetes of the young
IUGR, intrauterine growth restriction
Shh, Sonic hedgehog gene
PP, pancreatic peptide
FGF, fibroblast growth factor
DTA, diphtheria toxin
HNF, hepatocyte nuclear factor
PTF1, pancreatic transcription factor 1
VEGF, vascular endothelial growth factor

INTRAUTERINE GROWTH RESTRICTION AND
GLUCOSE HOMEOSTASIS IN ADULTS

IUGR is a risk factor for both perinatal disease and diseases of
later life. Barker et al. showed that a strong inverse correlation
exists between mortality from cardiovascular disease below age
65 and birth weight (1). Similarly, the relative risk for prevalence
of syndrome X, consisting of type 2 diabetes, hypertension and
hyperlipidemia, is 18-fold higher in males born ,2.5 kg com-
pared with those .4 kg (1, 2). The at-risk individuals were thin at
birth with a low ponderal index. Impaired glucose tolerance can
be detected as early as 7 y of age in children who at birth had low
weight and were thin (3). This implies that a programming of the
metabolic axis can occur in early life, which is modulated by the

intrauterine environment. For type 2 diabetes this may result from
an altered development and insulin-secreting capacity of the en-
docrine pancreas, or by altered insulin sensitivity of target tissues.
It is possible that perturbations of prenatal growth may lead to
inappropriate b-cell ontogeny and result in a population of b cells
qualitatively ill suited to subsequently manage metabolic stress. A
reduced availability of insulin prenatally is a major contributor to
IUGR. This can be experimentally demonstrated in extreme form
using insulin gene knockout mice (4) whose birth weight was
25% less than heterozygote littermates at birth; it is also demon-
strated by the severe growth retardation of human infants with
pancreatic agenesis (5). Insulin deficiency may result from
either genetic mutations in transcription factors active during
b-cell formation, or from altered expression of transcription
factors and peptide growth factors due to environmental influ-
ences in utero.

Intrauterine growth restriction in rat or man results in a
reduced population of pancreatic b cells at birth (6, 7). Mater-
nal calorie restriction by 50% in rat from d 15 of gestation until
term showed that b-cell mass was reduced in the newborn due
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to a reduction in the number of islets (8). If normal diet was
restored at birth, the b-cell mass returned to that of controls by
weaning. However, continuation of energy restriction during
neonatal life leads to irreversible changes in b-cell mass. A
reduction of dietary protein to 8% throughout gestation caused
relative growth restriction at birth with reduced b-cell mass
and islet cell size (9, 10). Again, if nutritional restriction was
lifted at birth, the islet morphology recovered, but if extended
to weaning the changes were irreversible. Such animals are
susceptible to glucose intolerance in later life (10). These
models show a strong effect of maternal environment on fetal
islet development, but also that the neonatal period is a time of
islet plasticity that will have life-long consequences for glucose
homeostasis.

ONTOGENY OF THE ENDOCRINE PANCREAS

The pancreas arises from embryonic mid-gut endoderm. In
the mouse, the dorsal pancreatic bud appears at embryonic
(E)9.5 closely followed by the ventral bud, and these fuse at
embryonic d E16–17 (11). As each bud grows it forms highly
branched structures and the acini and ducts become distin-
guishable at d E14.5. Endocrine cells can be found from the
earliest stages of bud development and by d E15.5 make up
10% of the pancreas. Initially, they are seen as individual cells
or small clusters close to the pancreatic ducts, and only form as
mature islets in the final few days of gestation. This is achieved
by early third trimester in the human fetus. The growth and
cyto-differentiation of the pancreas depends on mesenchymal-
epithelial interaction. Pancreatic mesenchyme accumulates
around the dorsal gut epithelium and induces pancreatic bud
formation and branching (12–15). The earliest signal may be
derived from the notochord, whereby notochordal repression of
endodermal Shh expression permits pancreas development
(16–18). Hebrok et al. (17) found in the chick that activin-bB
and fibroblast growth factor-2 (FGF-2) are notochord factors
that can repress endodermal Shh and thereby permit expression
of pancreas genes, including Pdx-1 and insulin. The earliest
morphogenetic signaling in pancreas formation therefore de-
pends on interplay between peptide growth factors and tissue
transcription factors, an interaction that is apparent throughout
islet formation.

Teitelman et al. (19) suggested that the precursor cells of the
endocrine pancreas coexpress insulin, glucagon, and also the
neuronal proteins tyrosine hydroxylase and neuropeptide Y.
These proteins were first detectable by immunocytochemistry
on d E9.5 in mouse, whereas PP was detected only at birth.
However, Herrera et al. (20) found PP immunopositive cells as
early as d E9.5. The expression of the A chain of the DTA
placed under the control of elastase I in transgenic mice, thus
killing cells expressing elastase 1, produced animals with a
rudimentary pancreas and only a few ductal cells and islets of
Langerhans. Elastase I is normally expressed in the exocrine
tissue. This suggested that the early disruption of the elastase-
expressing cells dramatically affected endocrine pancreatic
development. Herrera et al. (21) produced transgenic mice
expressing the DTA gene placed under the control of the
insulin, glucagon, somatostatin, or PP promoters. They dem-

onstrated that only the PP promoter decreased endocrine cell
type number within the islets, suggesting that the PP cells
might be the endocrine precursor cells.

The differentiation of the endocrine pancreas is ongoing at
birth in rodent species. Neogenesis of islets continues through
neonatal life but ceases shortly after weaning (22). In the rat
fetus the cellular area staining immunopositively for insulin
increases twofold over 2 d just before term, deriving both from
b-cell replication and ductular neogenesis (23). Conversely,
the rate of mitosis in adult pancreatic b cells is normally low
(24). This fundamental change in cell phenotype has been
linked to a transient wave of apoptosis that occurs in neonatal
rat islets 2 wk after birth (25–27), and the replacement of these
lost b cells with new islets by ductular neogenesis. This partial
replacement of b cells may generate a cell population suited to
metabolic control in later adult life. Because the final popula-
tion of b cells will have only limited potential for regeneration
in the adult animal, any aberrant apoptotic deletion of fetal-
type cells, or the parallel neogenesis of adult-type islets, is
likely to alter the ability of the animal to deal with metabolic
stress. The mechanisms leading to such cellular pathologies are
likely to involve an altered expression of transcription and/or
growth factors.

The development of ductal epithelial cells into an endocrine
lineage, and ultimately into b cells, is likely to involve a
specific sequence of expression of transcription factors, inter-
linked with locally acting growth factor signals. A fundamental
branch point is the progression of a pluripotential epithelial cell
to either the endocrine or exocrine lineage (Fig. 1). One of the
most important transcription factors identified so far for the
endocrine lineage is Pdx-1, also known as STF-1, IDX-1, or
IPF-1 (28). In animals with a targeted deletion of Pdx-1,
pancreatic buds form but no further differentiation or morpho-
genesis occurs (29). Expression of Pdx-1 in undifferentiated
ductal epithelium is associated with the glucose transporter
GLUT 2, which by fetal d 15 in the rat has been lost from
acinar cells, but is retained by developing b cells. Pdx-1
therefore appears to have a dual role of an inducer of an early
endocrine cell lineage from ductal epithelial cells, and in the
maturation of b cells and the control of insulin gene expres-
sion. A single deletion of a nucleotide in man leads to the
complete agenesis of the pancreas (5). Pdx-1 expression is
directed by at least two other nuclear transcription factors,
HNF-3b and BETA-2/NeuroD (28). Conversely, PTF1 is able
to transactivate the 59 regions of genes that are specifically
expressed in the exocrine tissue. Mice carrying null mutations
of the p48 sub-unit of PTF1 did not have any pancreas,
although groups of endocrine cells were detected, notably in
the spleen (30). This result shows that PTF1 is a key factor for
exocrine development.

What then are the trophic signals that determine the choice
of endocrine or exocrine lineage, and the expression of tran-
scription factors such as Pdx-1 or PTF1? They are likely to
include growth factors expressed within the pancreatic stroma
adjacent to the ductal epithelium, such as FGF-7 and VEGF
(Table 1). Systemic injection of FGF-7 into adult rats for up to
2 wk caused a rapid increase in DNA synthesis within the
ductal epithelium, which was seen within 24 h (31). Pancreatic
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duct hyperplasia followed, but not a progression to increased
numbers of endocrine cells. However, when FGF-7 was ex-
pressed within the embryonic liver of transgenic mice, pancre-
atic duct hyperplasia was seen with increased numbers of
ductal cells containing immunoreactive insulin (32). VEGF is
a potent mitogen for endothelial cells using two high-affinity

tyrosine kinase-type receptors, Flt-1 and Flk-1. Flk-1 mRNA is
expressed within RINm2F islet cells, as well as in fetal rat
islets where VEGF is able to increase insulin content (33). In
intact fetal rat pancreas, immunoreactive Flk-1 was localized to
pancreatic ductal cells and vascular endothelium, suggesting
that ductal cells may also be a target for VEGF action. VEGF
was found to enhance ductal cell replication and insulin con-
tent, implying that a b-cell neogenesis was also occurring (34).
In adult human islets and insulinomas, VEGF was localized to
b cells, whereas in the human fetus it was found within
immature islets (35, 36). Although VEGF must be a prime
candidate for initiating an angiogenic growth response in sup-
port of an increasing islet cell mass, it may also act directly as
a mitogen and morphogen for ductal epithelial cells.

Once ductal epithelial cells have entered the endocrine
lineage they become further differentiated into the separate
endocrine cell types, a process controlled by the Pax transcrip-
tion factors, of which Pax-4 and Pax-6 are expressed in the
developing pancreas (Fig. 1). In the early mouse embryo Pax-4
was detected in insulin-containing cells, and after birth remains
restricted to the b cells (37). Conversely, Pax-6 coexpressed
with glucagon-containing cells, but after d E15.5 was found in
all the endocrine cells (38). Deletion of Pax-4 caused a com-
plete loss of pancreatic b cells and d cells, but an increased
number of a cells. Conversely, functional deletion of the Pax-6
gene in mouse decreases the presence of all four endocrine cell
types in the pancreas, with the presence of a cells being totally
abolished (39, 40). Pax-6 has been shown to transactivate both
the glucagon and insulin genes promoters. Mice lacking both
Pax-4 and Pax-6 failed to develop any mature endocrine cells
in the pancreas (39). Pax-4 and Pax-6 appear to be important in
distinguishing the a cell lineage from b and d cells, but act in
parallel, not in series with Pdx-1 expression. Other transcrip-
tion factors such as Nkx 2.2, Nkx 6.1, and Isl-1 also play
defined roles, as outlined in Figure 1.

The ongoing proliferation and developmental differentiation
of b cells, once formed, is highly dependent on the expression
of the IGF within the islets (Table 1). Multiple studies indicate
that IGF potentiate b-cell growth, maturation, and function,
and are expressed by b cells throughout life. IGF-II mRNA is
greatest in the fetal pancreas, and declines during the neonatal
period (41, 42). Using in situ hybridization, IGF-II mRNA was
shown to be expressed within islet cells in the fetus and
neonate, and also in focal clusters of ductal epithelial cells.
Levels of IGF-II mRNA in the human fetal pancreas are
100-fold greater than those for IGF-I (43). Exogenous IGF-I or
-II promote increased DNA synthesis by isolated fetal or
neonatal rat islets (44, 45), and isolated a and b cells from rat
islets contain the high-affinity type 1 IGF signaling receptor
(46). Using a transgenic mouse model we showed that an
overexpression of IGF-II caused a four- to fivefold increase in
the mean islet size at birth, affecting all endocrine cell types,
but that the total number of mature islets was not altered (47).
This implies that, in vivo, IGF-II functions as a growth factor
for existing islet cells but does not promote islet neogenesis.

The wave of developmental b-cell apoptosis in the neonatal
rat seen 2 wk after birth (27) coincides temporally with a
diminished pancreatic expression of IGF-II within islets. A

Figure 1. Schematic plan of the likely roles of transcription factors in the
generation of pancreatic endocrine and exocrine lineages from a common stem
cell within the developing pancreas. Early in development, precursor cells
express transcription factors that commit them either to an endocrine (Pdx-1)
or exocrine (PTF-1) lineage. The discrimination depends in part on growth
factor signals from surrounding mesenchyme under the control of transcription
factors such as Isl-1. The early endocrine lineage expresses peptide YY
(PYY1) and later, pancreatic polypeptide (PP1). Before the activation of the
PP gene (PP2) a subpopulation of cells develops into glucagon-secreting a
cells (Glu1). This involves a loss of Pdx-1 expression (Pdx-1-) and the
expression of the transcription factors Pax-6 and Nkx2.2. Precursor cells that
continue to express PP and PYY develop into insulin-expressing b cells with
the transcription factor profile Pdx-11, Pax 41 and Pax 61, and Nkx2.21,
Nkx6.11 and NeuroD1; somatostatin-expressing d cells with the profile
Pdx-12 and Nkx2.22; and PP cells with a profile of Pdx-12 and Nkx2.21.
Insulin secretion from b cells depends on the expression of the additional
transcription factors HNF-1a and -4a, together with Pdx-1, mutations in each
of which are associated with MODY. Exocrine cells remain PTF-11, lose
Pdx-1 expression and synthesize amylase (Amy).

Table 1. Peptide growth factors involved in pancreatic b cell
development

Growth factor Origin Biological actions

FGF-7 Pancreatic stroma Endocrine cell neogenesis
from ductal epithelium

VEGF Pancreatic stroma Endocrine cell neogenesis
and angiogenesis

IGF-II Ductal epithelium and islet
endocrine cells

Islet cell proliferation and
survival in the fetus
and neonate

IGF-I Islet endocrine cells Islet cell proliferation and
survival in childhood
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nadir in total IGF availability may therefore exist in pancreas
when apoptosis is transiently high. IGF inhibit apoptosis in a
wide range of cell types in vitro (48, 49), and it has been
demonstrated that endogenous IGF-II within isolated neonatal
rat islets was able to protect them from cytokine-induced
apoptosis (27). This protection was lost by weaning when islets
no longer expressed IGF-II, but could be replaced with exog-
enous IGF-II. Further functional proof that changes in IGF-II
availability provoke developmental b-cell apoptosis in the rat
was obtained from a transgenic mouse model overexpressing
IGF-II in skin, leading to increased circulating levels that did
not fall postnatally. In these animals the neonatal wave of
b-cell apoptosis is suppressed. There is therefore substantive
data to show that IGF-II has a role in the homeostasis of b-cell
mass in early life, but is predominantly a growth and survival
factor for existing islet cells.

ABNORMAL EXPRESSION OF TRANSCRIPTION
AND GROWTH FACTORS LEADS TO ALTERED
B-CELL MASS AND FUNCTION, AND DIABETES

The consequences of a functional absence of a transcription
factor can be dramatic as a single deletion in Pdx-1 led to the
complete agenesis of the human fetal pancreas (5). Several
other cases of pancreatic agenesis have been described in the
human infant, but no genetic disorder was established. The
phenotype is characterized by severe growth retardation with
term birth weights of 1.7–1.9 kg, poor muscle mass, and an
absence of adiposity, which can be directly related to the lack
of insulin (50–53).

MODY, a form of type 2 diabetes, is a monogenic disease
with autosomal dominant inheritance, and is characterized by
an early onset (childhood, adolescence ,or young adulthood) of
failure of insulin secretion (54). The clinical phenotype is very
variable, perhaps attributed to genetic heterogeneity. The
known genes that are involved in MODY are hepatocyte
nuclear factor 4a (HNF-4a) (MODY 1) (55), glucokinase
(MODY 2) (56, 57), HNF-1a (MODY 3) (58), and Pdx-1
(MODY 4) (59). MODY 4 was observed in patients carrying a
heterozygous mutation in Pdx-1. The resulting phenotype dif-
fered very much between individuals, some being normal,
others being glucose intolerant, suggesting that the penetrance
of this mutation was not complete. Targeted disruption of the
mouse Pdx-1 gene in b cells alone resulted in those animals
progressively becoming diabetic with age (60), showing that
Pdx-1 is required to maintain the b-cell identity by positively
regulating insulin and islet amyloid polypeptide expression,
and by repressing glucagon expression. The expression of the
HNF factors were first found in the liver, but a role in the
pancreas now also seems likely, as in MODY 3 there is an
impaired insulin secretion (61). Mice lacking the HNF-1a gene
showed inadequate insulin secretion and b-cell intracellular
calcium responses after stimulation with nutrient secretagogues
such as glucose (62). A family of patients with MODY 1 has
been described with mutations in HNF-4a who developed
diabetes requiring insulin therapy in 30% of cases (54). Such
patients demonstrate primary defects in b-cell insulin-release
mechanisms (63, 64).

An abnormal b-cell mass may also result from altered
expression of structurally intact transcription factors because of
environmental pressures. Pdx-1 gene expression within islet-
like cell clusters was down regulated by hyperglycaemia (65),
as was HNF-3b but less so BETA-2 (66), and by fatty acids
(66). Low glucose levels will also limit Pdx-1 expression in b
cells (68). Partial pancreatectomy in the juvenile rat leads to a
reduction in the expression of Pdx-1, GLUT 2, and insulin
mRNA (69), most likely due to the associated hyperglycemia.

An altered expression of IGF or IGF binding protein (BP)
associated with IUGR due to neonatal undernutrition may
severely alter b-cell ontogeny after birth, leading to a popula-
tion of b cells less than optimally equipped to handle metabolic
challenge in later life. IUGR in rats, induced either by maternal
fasting (70), maternal diabetes (71), or restricted uteroplacental
blood flow (72), is associated with reduced circulating IGF
levels, pancreatic weights, and pancreatic insulin contents.
Parallel findings exist in human infants following IUGR (73).
A low-protein diet causes an altered b-cell ontogeny in the
fetal and neonatal rat in which the rate of b-cell replication is
decreased, but the incidence of apoptosis is increased (74).
Analysis of the cell cycle kinetics of b cells in situ using
immunologic detection of cell cycle-specific proteins suggests
that the cell cycle length of b cells is prolonged or arrested in
low-protein-fed rats, with an extended G1 phase. This is
associated with a reduced expression of IGF-II within the
pancreatic islets. Thus, IGF-II may not only determine b-cell
mass, but also the phenotype of adult b cells. What could
depress pancreatic IGF-II expression during IUGR? Perhaps a
direct effect of selected amino acids, inasmuch as we have
recently shown that supplementation of the pregnant rat given
a low-protein diet with taurine can reverse the deficit in
pancreatic IGF-II mRNA (75). Another possibility is that a
reduced expression of IGF-II mRNA could be due to increased
levels of circulating corticosteroid in IUGR.

Glucocorticoids have been shown to decrease the expression
of IGF-II and the IGF receptor in late fetal life (76, 77), and a
neonatal increase in corticosterone may precipitate a decrease
in pancreatic IGF-II expression, and a wave of b-cell apoptosis
within islets. In addition, the expression of several IGFBP is
under glucocorticoid control (78). Glucocorticoids are also
capable of down-regulating Pdx-1 expression, mediated by a
blockade of an enhancer region in the Pdx-1 promoter that
recognizes HNF-3b and BETA-2 (79).

ABNORMAL PANCREATIC DEVELOPMENT IN
UTERO AND ADULT DIABETES

Plasticity exists in the fetal and neonatal pancreas allowing
changes in b-cell number through both b-cell replication and
neogenesis, but later becomes restricted. Consequently, any
deficiency in b-cell mass occurring in utero as a result of either
genetic mutations within transcription factors, or maternal
malnutrition or placental dysfunction leading to inappropriate
expression of transcription or growth factors, will have only a
limited opportunity for correction postnatally. In the rat and
mouse at least two developmental windows exist in pancreatic
ontogeny. The first covers the initial embryogenic process of
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endocrine cell formation, and the subsequent cellular expan-
sion of those islets. Insulin release from the b cells within these
fetal-type islets is poorly responsive to glucose, with no acute
release pharmacokinetics, but is very responsive to amino
acids. Shortly after birth a developmental apoptosis appears to
delete many of these b cells and they are simultaneously
replaced with new islets derived from a second wave of
neogenesis. The b-cell population is now sensitive to glucose
with acute, first phase insulin release. This developmental
change may prepare the animal for postnatal metabolism.
Parallel changes may occur in the exocrine pancreas concern-
ing the ontogeny of expression of lipases (80). Early environ-
mental insults may alter the timing or amplitude of develop-
mental changes leaving the individual with a b-cell population
poorly suited both quantitatively and qualitatively for postnatal
life, and ultimately leading to glucose intolerance. The finding
of a similar developmental apoptosis of b cells in the third
trimester human fetus (81) would coincide with the acquisition
of glucose sensitivity by human fetal b cells, the maturation
and functional activation of adipocytes, and the laying down of
white adipose tissue. Thus, the establishment of postnatal
insulin release kinetics and end organ sensitivity may be
coordinated events in the third trimester as the human fetus
prepares itself for extrauterine life. The precise ontogeny is
likely to be controlled by the integrated effects of pancreatic
transcription and growth factors whose expression can be
modulated by nutritional metabolites or glucocorticoid avail-
ability. Abnormal programming of the fetal pancreas could be
a major risk factor for adult diabetes.
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