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The mechanisms underlying failure in sudden infant death
syndrome may involve inadequate compensatory motor re-
sponses to a hypotensive challenge; the insult may result from a
shock-like sequence, or from a ventilatory challenge that leads to
a hypotensive event. Structures ordinarily not considered in
mediating breathing or cardiovascular control, especially cere-
bellar-related structures, may play a critical role in compensatory
responses, and underlie the position-dependent risk for SIDS.
Dysfunction in affected brain areas appears to arise prenatally
from a compromised fetal environment, with a nicotinic compo-
nent contributing to the deficient mechanism.

Physiologic characteristics of infants who later succumb to
SIDS, and cardiovascular events associated with the fatal sce-
nario suggest a failure of interaction between somatomotor and

autonomic control mechanisms in infants at risk for the syn-
drome. A failure of compensatory motor actions to overcome a
profound hypotension, perhaps mediated by cerebellar mecha-
nisms that regulate blood pressure, may underlie the fatal event.
(Pediatr Res 48: 140–142, 2000)

Abbreviations
SIDS, sudden infant death syndrome
RVLM, rostral ventral lateral medulla
fast. nuc., fastigial nucleus
lat. retic. form., lateral reticular formation
inf. olive, inferior olive
IML, intermediolateral

Any determination of mechanisms underlying the sudden
infant death syndrome (SIDS), the sudden and unexplained
death of an infant occurring in the 1st year of life, must
consider some of the known characteristics associated with the
syndrome. These characteristics include enhanced risk with the
prone sleeping position (1, 2), a substantially increased inci-
dence following prenatal or postnatal tobacco exposure (3), a
temporal association with sleep, periods of tachycardia before
the fatal event (4), and an incidence confined principally
between the 2nd and 4th months of life. Less well-documented
associations, but findings repeatedly encountered in reports, are
profuse sweating (5) and abnormally high core or environmen-
tal temperatures (6). Among the characteristics associated with
the fatal event, a remarkable, often short-lasting bradycardia,
accompanied by hypotension, sometimes in the presence of
continued respiratory efforts, has been reported (7, 8).

The findings of tachycardia and profuse sweating before
death implicate initial exaggerated sympathetic nervous system
activity, while bradycardia and hypotension during the fatal event
suggest that a subsequent sympathoinhibition, but parasympa-
thetic nervous system recruitment accompany the fatal event; this
sequence parallels the trend of events that are associated with
shock from blood loss or deep pain (9). The possibility of a
perfusion failure represents a departure from current interpreta-
tions of the mechanism of death as resulting primarily from a
respiratory collapse. The sudden bradycardia also argues against
particular arrhythmia failures, such as prolonged Q-T intervals
(10) that normally result in death by ventricular fibrillation. Al-
though a proportion of SIDS deaths may result from suffocation,
ventricular fibrillation, CO2 intoxication, or hypoxia, a proportion
may also result from a sympathoinhibition, precipitated by a
shock or shock-like scenario. The significant element in this
scenario is a profound loss of blood pressure, and an apparent
inability to restore or induce compensatory responses to assist
restoration of vascular tone. It may be the case that the initial
hypotension may be triggered by a number of mechanisms other
than the classic shock sequence of sympathoexcitation followed
by sympathoinhibition. Marked blood pressure falls occur spon-
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taneously during rapid eye movement sleep, for example, and
hypotension follows sustained hypoxia.

The range of circumstances surrounding the fatal event in
SIDS suggest a heterogeneous group of disorders, some of
which appear to be of a respiratory origin, eg those associated
with infant faces embedded in restricted air space of pillows or
bedding (11). The airflow restriction may be of an internal
obstructive nature, as indicated by increased incidence of
obstructive apnea in infants who succumb (5). Other fatal
events appear to be of cardiovascular nature, eg bradycardia
and hypotension during the fatal event (8); the different sce-
narios suggest that infants may succumb through several fail-
ure modes, and that the capability to adequately recover from
a challenge may be a more significant issue for survival than
the particular mechanism of failure. Arousal mechanisms from
sleep have been implicated as a common vehicle for recovery
from compromising events (12), and are undoubtedly a signif-
icant issue in restoration of compensatory forebrain and other
influences that assist recovery of vital processes. The concept
of “arousal” should perhaps be extended to include restoration
or activation of somatic muscle tone in addition to transition of
sleep state. Recruitment of muscle tone is essential for respi-
ratory challenges, eg head turning from an obstruction, en-
hanced tidal volumes to hypercapnia or hypoxia, or appropriate
responses to a blood pressure loss. This last interaction impli-
cates a role for somatic musculature on autonomic functioning
(sympathetic control). The relationships derived from animal
studies suggest that effective compensatory responses to loss of
blood pressure involve somatomotor action, and especially the
respiratory somatic musculature to restore blood pressure. Cats
subjected to blood loss, for example, successfully respond to
the hypotension and are able to restore blood pressure by
enhanced inspiratory and expiratory efforts, tachypnea, and exag-
gerated extensor skeletal muscle action (13). Those successful
compensatory motor responses are associated with substantial
activity changes on the rostral ventral medullary surface, an area
classically implicated in blood pressure regulation. However, the
recovery efforts obviously also recruit motor areas that receive
signals from central structures indicating low blood pressure, and
activate muscles for recovery; the recovery response is particu-
larly apparent for respiratory muscles (14).

Neural mechanisms responsible for compensatory responses
to a hypercapnic, hypoxic, or bradycardic/sympathoinhibitory
challenge may involve brain sites not normally considered as
“respiratory,” “arousal,” or “cardiovascular” areas. A principal
focus in respiratory control studies has been to determine brain
areas responsible for central pattern generation underlying
regular breathing rhythm, and that attention has usually been
directed to the medulla. Issues of blood pressure control sim-
ilarly focus on medullary reflex loops. However, a major
interest for SIDS research is determining which brain struc-
tures are recruited to restore breathing when pattern generators
fail, ie from an apneic episode, or which neural sites compen-
sate for blood pressure falls incompatible with survival; those
structures may lie outside normally considered medullary sites.
Recent evidence from functional magnetic resonance studies in
normal subjects (15) and in children afflicted with congenital
central hypoventilation syndrome (16), as well as electrophys-

iological recording and lesion studies in animals, implicate
portions of the cerebellum, especially the cerebellar fastigial
nucleus, in modulating appropriate responses to O2 and blood
pressure challenges. Bilateral lesions of the fastigial nucleus
result in a fatal progression after blood pressure lowering (17,
18), or uncorrected influences from hypercapnia on breathing
(19). Regions within the cerebellum are often associated with
an “error correction” role, ie the correction of appropriate
motor output after sensing of aberrant afferent signals. That
“error correction” is classically associated with motor perfor-
mance, and tested clinically with a motor task, such as finger
pointing. Comparable regulatory roles for the cerebellum ap-
parently extend to blood pressure and breathing control (15).

Cerebellar compensatory reactions to hypotension or hyper-
tension are likely mediated through afferent activity from the
inferior olivary nucleus via climbing fibers to Purkinje cells
and the fastigial nucleus of the cerebellum, and output to
vestibular sympathetic pathways, as well as somatomotor re-
gions. Portions of the inferior olive, a major input relay to the
cerebellum, show significant gliosis in infants who have suc-
cumbed to SIDS, and isolated cases of inferior olive hypoplasia
are associated with profound respiratory dysfunction (20).
More recent findings indicate deficiencies in SIDS victims in
muscarinic and kainate receptors within the ventral medullary
surface (21, 22) and serotonergic receptors in medullary sites
including the inferior olive and caudal medullary raphe regions
associated with hypotension and sympathoinhibition (23, 24).
The inferior olive also shows increased c fos expression to a
variety of manipulations that trigger vasodepression (Bandler
and Keay, Department of Anatomy and Histology, University
of Sydney, NSW, Australia, personal communication, 1999).
Delayed maturation of cerebellar regions has been observed in
SIDS victims (25). Vestibular contributions to blood pressure
regulation are well-known, since body positioning requires
rapidly acting compensation of regional blood pressure to
assist appropriate perfusion, frequently operating in a “feed-
forward” or anticipatory fashion (26, 27). Deficiencies in such
regulation are frequently observed clinically, for example, in
rapid rising from a supine to vertical position.

A cerebellar/vestibular role for compensatory responses to
cardiovascular or breathing challenges may participate in the
position-dependent risk factor for SIDS. Afferent position in-
formation from the position-sensitive receptors travel by way
of the vestibular nuclei and inferior olive to the cerebellum,
which then projects to reticular and rostral ventrolateral med-
ullary sympathetic areas via vestibular nuclei (27). Such ves-
tibular contributions may be the significant factor underlying
the substantial prone versus supine position differences in
cardiovascular and breathing control in low birth weight in-
fants (28); the blood pressure response to head-up tilt is greatly
reduced in full-term infants in the prone position as well (29).
Cerebellar-mediated vestibular input from rocking also reduces
obstructive apneic events (30).

A substantial number of cerebellar developmental abnormal-
ities have been identified, including intracerebellar hemorrhage
(31); some of these aberrations are associated with marked
respiratory disturbances; other case reports describe significant
cardiovascular disturbances following midline cerebellar stim-
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ulation in humans (32). If cerebellar abnormalities are present
in SIDS victims, the resulting physiologic characteristics are
subtle, since cardiac and respiratory patterns that differentiate
future SIDS victims from controls can only be identified with
careful attention to partitioning breathing and cardiac patterns
by sleep state and time-of-night (33). However, the pronounced
influences on vital functions from cerebellar syndromes em-
phasize the potential capacity for more-modest cerebellar de-
ficiencies to disturb physiologic functions. Animal data suggest
that cerebellar mechanisms are particularly recruited during
extreme challenges, rather than during routine regulation of
breathing and blood pressure (17, 19).

The epidemiologic evidence for SIDS suggests a prominent
role for prenatal nicotine exposure and low maternal hematocrit
(34). Recent animal evidence demonstrates the importance of
adrenal catecholamine release on autoresuscitation from hypoxia,
and that prenatal nicotine exposure compromises autoresuscita-
tion, possibly by interference with cardiac conductance changes
associated with altered adrenal catecholamine outflow (35–37).
The potential role of loss of protective vagal influences on cardiac
conduction disturbances has been outlined earlier (38).

However, prenatal or postnatal central damage could also
affect compensatory recovery mechanisms. Cerebellar Purkinje
cells receive afferents from the climbing fibers of the inferior
olive and are especially sensitive to neurotoxic damage from
agents such as harmaline (39), perhaps because of the unique
limited geometry of the afferent system. It appears that the
peculiar arrangement of Purkinje fibers poses a risk for exci-
totoxic injury from a variety of challenges, including hypoxic
exposure, nicotine, or harmaline. Harmaline exposure results in
aberrant responses to blood pressure challenges that are com-
parable to lesions of the fastigial nucleus of the cerebellum. In
rats, it appears that such disturbances are time-dependent, with
recovery by alternate pathways several weeks after damage
(40). It may be the case that repetitive hypoxic insults occur-
ring postnatally, or fetal damage to this blood pressure/
breathing regulatory system from nicotine exposure establishes
a less-than-optimal system for responding to ventilatory or
blood pressure challenges; the time-dependent response capa-
bility may be an issue, because of the narrow window of SIDS
risk (between the second and fourth months of life).
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