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THE STUDY BY de Ungria and colleagues makes several im-
portant contributions. It furthers our understanding of

iron’s role in the developing brain, bridges basic brain research
and developmental cognitive neuroscience, and focuses atten-
tion on perinatal iron deficiency. Each of these areas is note-
worthy.

In the last decade there has been an exciting burst of research
on iron’s role during brain development. Recent work in the
rodent model shows that brain iron is essential for normal
myelination (1–4). In the rat, there is an influx of transferrin
and iron into the brain in the immediate postnatal period. As
iron and its transport and storage compounds are redistributed
in the brain, myelinogenesis and iron uptake are at their peak.
In addition, the regulatory genes and proteins controlling these
processes are starting to be characterized. Older research also
pointed to iron’s role in CNS neurotransmitter function, espe-
cially implicating the D2 receptor of the dopaminergic system
(see reviews (5, 6)). After almost 20 y of little or no new work,
there now are modern studies in this area, confirming dopami-
nergic alterations in iron deficiency (7, 8) and indicating that
the neurotransmitter story is likely to be more complex.

The study by de Ungria et al. adds neuronal metabolism to
the list of CNS functions impaired by early iron deficiency.
The investigators used cytochrome c oxidase (CytOx), an
iron-dependent enzyme involved in oxidative phosphorylation,
as a quantifiable marker of neuronal metabolic activity. They
systematically assessed regional differences in brain iron con-
centration and CytOx activity in young rats born to dams on
iron-deficient or iron-sufficient diets throughout gestation and
early lactation. The result that neuronal metabolism was most
markedly reduced in all regions of the hippocampus is impor-
tant and novel. This finding extends our appreciation of the
vulnerability of the developing hippocampus. Hippocampal
changes have now been described in a wide variety of early
insults, including hypoxia-ischemia or hypoglycemia (9–12),
several developmental neurotoxins (13), and nutrient deficien-
cies, such as lack of iron. However, the absence of correlation
between reductions in iron concentration and CytOx activity in

the de Ungria study was an unexpected result that raises further
questions. If differing amounts of available iron do not account
for differences in reduced CytOx activity, then what is the
mechanism? What are the connections, if any, between the
functions of iron in the hippocampus and myelination or
neurotransmitter function?

Differential effects on the hippocampus appeared specific in
this study. However, the hippocampus is not the only area of
the brain affected by early iron deficiency. For instance, the
nucleus accumbens showed normal CytOx activity in the de
Ungria study, but a decrease in dopamine D2 receptor levels in
this structure was reported in earlier research in the post-
weanling iron-deficient rat (14). Such observations are remind-
ers of the multiple roles that iron plays in the developing CNS,
the importance of systematic investigation of different brain
regions, and the need for further studies that carefully vary the
developmental stage at which iron deficiency occurs and its
effects are assessed.

The study makes a contribution beyond showing that neuronal
metabolism is affected by iron deficiency. It is an interesting and
powerful demonstration of the fruitfulness of interdisciplinary
perspectives. Although other studies also demonstrate such cross-
fertilization (eg linking slower nerve conduction in iron-deficient
infants to basic science work on iron’s role in myelination (15)),
the productive back-and-forth between the bedside and the labo-
ratory is exceptionally well-illustrated by the team involved in the
de Ungria study. The study’s fundamental hypothesis was that
perinatal iron deficiency would differentially reduce neuronal
metabolic activity in areas of the brain involved in memory
processing. This hypothesis grew out of a close collaboration
between Georgieff, a neonatologist, Nelson, a developmental psy-
chologist, and their colleagues in a variety of disciplines. Geor-
gieff and associates had observed that newborn infants of diabetic
mothers (IDMs) had lower levels of iron in liver, heart, and brain
(16), postulating that abnormal maternal glucose metabolism cre-
ated chronic fetal hypoxemia, with concomitant increase in red
cell mass and depletion of iron stores. Nelson’s expertise in the
development of memory (17) led them to wonder whether de-
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creased brain iron might affect memory functions that depend on
certain developing brain regions, especially the hippocampus. The
group has been pursuing related studies of these issues, using
advanced basic science techniques in the rodent model to answer
mechanistic questions and applying sophisticated developmental
cognitive neuroscience approaches to assess memory functions in
human infants with particular perinatal risks (18, 19). Thus, the
result of this multidisciplinary collaboration is sophisticated clin-
ically derived, hypothesis-driven CNS research that breaks new
ground in nutrition, brain development, and behavior.

The study’s observation of the vulnerability of the develop-
ing hippocampus to early iron deficiency, combined with
earlier work showing lasting deficits in brain iron in the rodent
model (20–24), may also help make sense of some previous
research findings. Rodents that were iron deficient in early
development appear to have lasting difficulty with spatial
navigation (23), a capacity considered to entail normal hip-
pocampal functioning. Young adolescents who were iron de-
ficient as infants show poorer spatial memory (25), which
might also relate to the role of the hippocampus in spatial tasks
(26). These studies did not include “hippocampal” tasks spe-
cifically, but future research should certainly do so, given the
findings of the de Ungria study.

A third important contribution of studies such as the one by
de Ungria et al. is to focus attention on prenatal and perinatal
iron deficiency. Recent research in rodents, primates, and
humans points to impaired iron transport across the placenta in
several prenatal conditions. Examples include diabetes melli-
tus, prenatal alcohol exposure, intrauterine growth retardation,
and maternal stress (16, 27, 28). In some of these conditions,
there is direct evidence of decreased brain iron (16, 27) or
iron-deficiency anemia in the offspring (28). There are also iron
alterations in perinatal hypoxia-ischemia (29, 30), and perinatal
iron deficiency increases the vulnerability of the rat hippocam-
pus to hypoxia-ischemia (29). Taken together, these studies
raise the possibility that iron deficiency plays an important role
in the adverse outcomes observed in these conditions.

These studies also demand that we rethink the traditional
dogma that the human fetus suffers few ill effects of maternal
iron deficiency, unless severe. Infants born to mothers with
nutritional iron deficiency in pregnancy are rarely anemic, but
they may have lower iron stores and/or develop iron deficiency
sooner postnatally (see reviews (31, 32)). There is now solid
evidence that brain iron deficiency can occur even with a
normal Hb level. In young animals of every species tested to do
date, iron is prioritized to the red cells over all other organs,
including brain (16, 33–35). If the developing human hip-
pocampus and other CNS functions are vulnerable to perinatal
iron deficiency, as the de Ungria study shows in the rat, there
are major public health implications. WHO estimates that more
than 30% of pregnant women in developing countries has
iron-deficiency anemia (36), and one in four to five babies
develops iron-deficiency anemia (37, 38). Anemia is a late
manifestation of iron deficiency, and iron deficiency without
anemia is even more widespread. If subtle effects of iron
deficiency in infancy lay the ground for later problems in
cognitive and behavioral functioning, then a large unrecog-
nized population of children could be at risk due to perinatal

iron deficiency, a nutritional problem that can be prevented or
treated.
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