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ABSTRACT. \\'e have previously shown that generation 
of superoxide anion occurs in cerebral cortex during as- 
physia/reventilation in newborn pigs and that a high dose 
of indomethacin (5 mg/kg i.v.) abolishes superoxide anion 
production. The purposes of this study were I)  to determine 
whether the generation of superoxide anion occurs primar- 
ily during asphyxia or whether reventilation must take 
place, 2) to investigate the effects of indomethacin pretreat- 
ment at  a therapeutic dose of 0.2 mg/kg i.v. on superoside 
anion generation, and 3 )  to investigate the effects of oxy- 
purinol, an oxygen free radical scavenger, on superoxide 
anion production during asphyxia/reventilation. Superox- 
ide anion production on cerebral cortex was determined by 
superoxide dismutase-inhibitable nitroblue tetrazolium 
(NBT) reduction using closed cranial windows. Superoxide 
anion generation during asphyxia without reventilation was 
4 f 2 pmol NBT/mm2 per 20 min, which was significantly 
lower than during asphyxia/reventilation (16 +. 4 pmol 
NBT/mm2 per 20 min) but comparable to the control group 
(3 f 1 pmol NBT/mm2 per 20 min). Indomethacin given 
at  therapeutic dosage before asphyxia/reventilation de- 
creased superoxide anion production to 3 f 1 pmol NBT/ 
mm2 per 20 min, values not significantly different from the 
control group and from piglets pretreated with oxypurinol 
a t  a dose of 50  mg/kg i.v. (4 f 2 pmol NBT/mm2 per 20 
min). \Ve conclude that in newborn pigs I) superoxide 
anions are generated largely during reventilation rather 
than during asphyxia; 2) the therapeutic dose of indometh- 
acin (0.2 mg/kg) is effective in inhibiting the superoxide 
anion generation during asphyxia/reventilation; and 3 )  ox- 
ypurinol reduces the superoxide anion accumulation on 
cerebral cortex during asphysia/reventilation. (Pediatr Res 
34: 366-369,1993) 
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Oxygen free radicals are generated on cerebral cortex during 
asphyxia/rcventilation ( I), ischemia/repcrfusion (2), seizures (3). 
concussive brain injury (4), and acute hypertension (5). Free 
radicals could be involved in cerebrovascular alterations by its 
effects on cerebral vascular tone and reactivity (6. 7) and on 
changes in the permeability of the blood-brain barrier (8). Oxygen 
free radicals are largely produced by the cerebral cortex via the 
prostaglandin H synthase pathway, and their production could 
be inhibited by administration of indomethacin (1-3). a cycloox- 
ygenase inhibitor, administered at a high dose of 5 mg/kg i.v. 
Another potential source of superoxide anion production is the 
xanthine oxidase pathway (9). However, the concentration of 
xanthine oxidase in brain is thought to  be low compared with 
other tissues ( lo .  11). Xanthine oxidase is inhibited by allopuri- 
no1 and its potent metabolites oxypurinol, which are also both 
free radical scavengers ( 10). 

Premature and full-term infants may experience asphyxic in- 
sults in the perinatal period, resulting in the generation of oxygen 
free radicals (1). Oxygen free radicals may contribute to  post- 
ischemic brain edema (12) and complications of IVH (13). 
Because of the deficiency in endogenous oxygen free radical 
scavengers in premature babies (14). their ability to  inactivate 
potentially toxic radicals is less efficient compared with older 
individuals. A large number of premature babies develop symp- 
tomatic patent ductus arteriosus, and for ductal closure infants 
are frequently given indomethacin at a dose of 0.2 mg/kg i.v. 
(1 5). It is not known whether this small dosage of indomethacin 
would be sufficient to  inhibit superoxide anion production on 
the brain surface that is generated largely via metabolism of 
arachidonic acid via prostaglandin H synthase. 

We hypothesize that in newborn pigs I )  oxygen free radicals 
are produced largely during reventilation and not during the 
period of asphyxia: 2) indomethacin at therapeutic dosage de- 
creases oxygen free radical generation during asphyxia/reventi- 
lation; and 3) oxypurinol pretreatment prevents the superoxide 
anion accumulation on cerebral cortex during asphyxia/ 
reventilation. 

MATERIALS A N D  METHODS 

This protocol was reviewed and approved by the Animal Care 
and Use Committee of the University of Tennessee, Memphis. 
A total of 43 newborn pigs (weight, 680 to 2000 g) of either sex, 
1 to  5 d of age, were anesthetized with ketamine hydrochloride 
(33 mg/kg i.m.) and acepromazine (3.3 mg/kg intramuscularly). 
Anesthesia was maintained with a-chloralosc (50 mg/kg i.v. 
initially and then 10 mg/kg/h i.v.). A catheter was inserted into 
the femoral artery to  record the blood pressure and to draw blood 
samples. The animals were ventilated with room air using a 
piston-type ventilator (Harvard Apparatus Co., Inc., South Na- 
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tick, MA). Temperature was maintained at  37 to 38°C by using 
a water-circulating heating pad. 

Closed cranial windows as  described previously (1-3) were 
implanted over each parietal cortex. The window made of a 
stainless steel ring with a premounted glass coverslip was ce- 
mented in place with dental acrylic. Three needles pierced the 
ring to  allow injection of aCSFand NBT/SOD undcr the window 
and flushing of the brain surface with aCSF. The space under 
the window was filled with aCSF [Na' 150 mmol/L, K' 3 mmol/ 
L. Ca2+ 1.25 mmol/L. Mg" 0.6 mmol/L, C1- 132 mmol/L, 
glucose 3.7 mM. urea 6 mM. HC03- 25 mmol/L: pH 7.33, P C O ~  
6.1 kPa (46 m m  Hg). Po2 5.7 kPa (43 m m  Hg)]. The volume 
directly below the window was approximately 0.5 mL. Data on 
control and asphyxia/reventilation groups have been published 
previously (1) although all of these experiments were performed 
during the same period. 

E,~pcrit?~cntuldc>.sigtl. After placement of dual cranial windows. 
20 to 30 min were allowed for stabilization. Each animal received 
pancuronium bromide, 0.1 mg/kg i.v. to  prevent resistance 
against the respirator. In this study. 43 piglets were assigned into 
five groups: control ( / I  = 7). asphyxia without reventilation (/I = 
9), asphyxia with reventilation ()I = I I), indomethacin treatrnent 
before asphyxia/reventilation (/I = 4), and oxypurinol treatment 
before asphyxia/reventilation (/I = 10). lndomethacin and oxy- 
purinol both cross the blood-brain barrier ( 16. 17). T o  measure 
SOD-inhibitable NBT reduction in all groups (NBT, Sigma 
Chemical Co., St. Louis. MO), 2.4 m M  dissolved in aCSF was 
placed under one window and NBT (2.4 m M )  plus SOD (Sigma 
Chemical Co.) (60 U/mL) under the other window at the begin- 
ning of each experiment in the control animals and before 
asphyxia in the other animals. 

The control animals were ventilated with room air for 20 min. 
The asphyxia without reventilation group had 20 min ofasphyxia 
induced by turning off the ventilator and occluding the endotra- 
cheal tube: no attempt was made to resuscitate the piglets. In 
asphyxia with reventilation group, asphyxia was induced for 5 to 
7 min and ventilation was resumed when the animal exhibited 
severe bradycardia (heart rate 5 2 0  beats/min) and/or when 
blood pressure decreased to 5 2 0  m m  Hg. In the other two groups, 
30 min before asphyxia/reventilation, either indomethacin tri- 
hydrate (gift from Merck Sharp 6: Dohme Research Laboratory. 
Rahway, NJ) 0.2 mg/kg (11 = 4) o r  oxypurinol (Sigma Chemical 
Co.) 50 mg/kg (n = 10) was given i.v. At the end of asphyxia in 
the asphyxia/reventilation group, blood samples were taken for 
blood gases and pH analysis and then animals were reventilated 
with room air. At the end of 20 min of experiments (from the 
start of asphyxia through reventilation), the brain surface was 
flushed with aCSF. The total time the NBT/SOD solutions were 
under the windows was the same for all 43 animals regardless of 
the treatment methods. At the end of experiment, the animals 
were killed by i.v. injection of KC1 and bled. The cortex undcr 
each window was circumscribed using a 15-mm diameter cork 
borer, and the circular area was sliced to a depth ofapproximately 
1 m m  using a sharp blade and then frozen for later analysis. The 
surface area undcr each window was 178 mm', which was exactly 
the same in all samples. 

NBT is a yellow, water-soluble compound that, in the presence 
of reducing agents, is converted to  formazan, an insoluble purple 
precipitate. Although NBT can be reduced by various agents, 
SOD provides specificity for the assay. The SOD-inhibitable NBT 
reduction is determined by the difference in the quantities of 
formazan precipitated on the brain surface under the two win- 
dows. The purple precipitate always is located under each cranial 
window and does not extend beyond the border of the window. 
Consequently, there does not appear to  be significant intermixing 
between windows of fluids injected into the windows. Kontos 
( 1  8) has shown minimal intermixing of NBT solutions between 
windows in cats. By comparing the results from the two windows, 
we measured NBT reduction caused by superoxide anion radicals 

because superoxide anion radicals are dismutated in the presence 
of SOD. 

Formazan was extracted from the brain slices into pyridine 
using the following method. The brain slices were minced. ho- 
mogenized, and disrupted in a mixture of 0.1 N NaOH and 0.170 
SDS in water. The volume was then increased to 3 m L  with 
water, the mixture centrifuged at 20 000 x g for 20 min to 
separate the water-soluble H b  from the formazan, and the re- 
sultant pellet was resuspended in 3 m L  of pyridine. The formazan 
was dissolved in the pyridine during heating at 80°C for 1 h. A 
second centrifugation (10 000 x <y for 10 min) removed any 
remaining particulate matter. The concentration of formazan in 
the resultant solution was determined (against a standard curve) 
spectrophotometrically at 515 nm. Formazan for use in the 
standards was prepared freshly by reducing NBT dissolved in 
aCSF (0.2 mg/mL) with ascorbate (1 mg/mL). The standard 
then was handled identically and simultaneously with the sam- 
ples and diluted in pyridine to  produce concentrations from 100 
ng/mL to 2 mg/mL. The concentration of formazan against the 
light absorption is linear over this range. Values are presented as 
pmol NBT rcduced/mm2 in 20 min. 

Statistical unrr1j:~is. All values are presented as means + SEM. 
Comparisons between two groups were made using I tests for 
planned comparisons (paired or  unpaired, as appropriate). Com- 
parisons among more than two populations used analysis of 
variance followed by 1 tests with Bonferroni correction. A p value 
<0.05 was considered significant. 

R~~slrlts. All groups of piglets started with comparable values 
of arterial blood pressure, pH, and gases (Table I). Table 1 also 
shows the values of arterial blood pressure, pH, and gases at the 
end of asphyxia immediately before reventilation: in the group 
with asphyxia without reventilation. arterial blood was sampled 
when there were n o  detectable heart rate and blood pressure. 
The piglets subjected to asphyxia without reventilation had no 
measurable heart rate or blood pressure in 12 to 15 min of 
asphyxia. 

SOD-inhibitable NBT reduction was significantly increased in 
piglets that were exposed to asphyxia/reventilation when com- 
pared with the control group ( I 6  + 4 \!cr.urs 3 + 1 pmol NBT/ 
mm2 per 20 min, Fig. I). Figure I shows the mean + SEM of 
SOD-inhibitable NBT reduction in the control group, asphyxia/ 
reventilation, asphyxia/no reventilation, indomethacin pre- 
treated and oxypurinol pretreated groups (before asphyxia/reven- 
tilation). Piglets that were asphyxiated but not resuscitated had 
SOD-inhibitable NBT reduction of 4 + 2 pmol NBT/mm2 per 
20 min, similar to  control animals. Treatment of piglets with 
indomethacin at a dosage of 0.2 mg/kg i.v. or oxypurinol50 mg/ 
kg i.v. before asphyxia/reventilation decreased the superoxide 
anion radical production to 3 + 3 and 4 + 2 pmol NBT/mm2 
per 20 min. respectively: values were comparable with control. 

DISCUSSION 

Based on our findings in newborn pigs, superoxide anions are 
generated on the brain surface largely during reventilation after 
asphyxia rather than during asphyxia: generation of superoxide 
anion is inhibited by pretreatment with a therapeutic dose of 
indomethacin; and oxypurinol reduced the superoxide anion 
accumulation on cerebral cortex during asphyxia/reventilation. 

Oxygen free radicals are known to be generated in the brain. 
kidneys, heart, lungs, intestines (I 8-20), and other organ systems 
during a variety of insults. Superoxide anion is produced on the 
cerebral cortex during asphyxia/reventilation (I), ischcmia/re- 
perfusion (2). seizures (3). concussive brain injury (4). and acute 
hypertension (5). Oxygen free radicals are toxic to cells (18, 21) 
and can be involved in loss of cerebrovascular reactivity (6, 7) in 
the development of cerebral edema after recovery from ischemia 
(12) and in postasphyxic hypoperfusion (22, 23). During as- 
phyxia/reventilation the SOD-inhibitable NBT reduction was 
significantly increased to 16 pmol NBT/mm2 per 20 min. Gen- 
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Table 1. /irferial bloori nresslrrc, n f f ,  ar~d  us ra1lrc.s fbr nivlcts* 
Before asphyxia End of asphyxia 

Arterial blood Pace: Pao2 Arterial blood Pace: Pao2 
pressure (kPa) Arterial pH (kPa) (kPa) prcssure (kPa) Arterial pH (kPa) (kPa) 

Control 8.7 + 0.3 7.41 + 0.06 4 + 0.1 1 1  + 0.5 
Asphyxia without reventilation 9.9 + 0.8 7.45 f 0.05 4 + 0. l 1 1 + 0.7 0 7.01 + 0.07 9 + 0.7 0.7 + 0.3 
Asphyxia with reventilation 8.1 + 0.4 7.54 + 0.04 4 + 0.1 1 1  + 0.5 2.7 + 0.4 7.25 + 0.05 7 f 0.4 1.0 + 0.2 
Indomethacin/asphyxia with 10.7 + 0.3 7.42 + 0.04 5 + 0.4 9 + 0.9 2.0 + 0.3 7.15 + 0.04 10 + 1.0 0.4 + 0.06 

reventilation 
Oxypurinol/asphyxia with re- 9.5 + 0.4 7.38 + 0.01 4 + 0.1 10 + 0.7 1.9 + 0.4 7.05 + 0.06 8 + 0.5 0.5 + 0.1 

ventilation 

* Values are mean + SEM. Conversion factor: mm Hg = kPa/0. 1333. Pace:. partial pressure of arterial carbon dioxide; Pao?. partial pressure of 
arterial oxygen. 

Control 

Asphyx~a w~thout 

Fig. I .  SOD-inhibitable NBT reduction in control (11 = 7). asphyxia 
without reventilation (11 = 9). asphyxia/reventilation (11 = 1 1). asphyxia/ 
reventilation after indomethacin 0.2 mg/kg (11 = 4), and asphyxia/ 
reventilation after oxypurinol 50.0 mg/kg (11 = 10) pretreated piglets. 
Values are mean + SEM. *, p < 0.05 compared with control; ++, p < 
0.05 compared with asphyxia without reventilation group: +++. p < 0.05 
compared with indomethacin and oxypurinol pretreatment groups. 

eration of a similar quantity of superoxide on the cerebral surface 
from topical xanthine oxidase and hypoxanthine produced ultra- 
structural changes in pial microvessel endothelium (24). 

Neonates are at  high risk for hypoxic-ischemic insults. Many 
investigators have linked sequelae of these insults with the pro- 
duction of oxygen free radicals (1, 2, 22). Thiringer el 01. (23) 
reported that treatment of asphyxiated newborn lambs with 
oxygen free radical scavenger limited loss of somatosensory 
evoked potentials and preserved increased postasphyxia cerebral 
blood flow for a longer period. Rosenberg ' t  al. (22) found that 
administration of SOD and catalase prevented postasphyxia 
hypoperfusion in lambs. Palmer ct ul. (12) reported a de- 
crease in postischemic brain swelling after treating rat pups with 
allopurinol. 

Superoxide anion production by the cerebral cortex in our 
piglets during asphyxia without reventilation was not signiti- 
cantly different from what was generated in control piglets. 
However, the level was much less than that produced during 
asphyxia with reventilation ( I )  and also during reperfusion after 
recovery from 20 min of global brain ischemia (2). Using the 
chemiluminescence method, Imaizumi et al. (25) observed free 
radical production in rat brain during early hypoxia. During 
early hypoxia and early reoxygenation, reactive hyperemia occurs 
(26) and more oxygen is available for oxygen free radical gener- 
ation. The difference between our findings and those of Imaizumi 
et al. ( 2 5 )  may be attributable to  a combination of severe hypoxia 
and hypotension in our experiments resulting in severe ischemia 

and probably insufficient cerebral oxygen for arachidonic acid 
metabolism before reventilation. The rats in the experiment of 
Imaizumi ct 01. (25) remained normocapnic and normotensive 
throughout the experiments thus presumably maintaining con- 
tinual though reduced oxygen delivery. In contrast, our piglets 
were severely asphyxiated creating severe hypoxia and hypoten- 
sion. This combination would result in very low oxygen delivery. 
Further, the additional severe acidosis and hypercapnia could 
possibly potentiate the free radical generation by lipid peroxida- 
tion if reperfusion were allowed (27). 

Severe asphyxia o r  ischemic insult to  the brain results in release 
of arachidonic acid (28). In early asphyxia, there is a reactive 
hyperemia (22, 26) that increases cerebral oxygen availability. 
During resuscitation, resurgence of blood flow and an increased 
oxygen availability allow the metabolism of accumulated arachi- 
donic acid to  prostanoids (29) and oxygen free radicals ( I ,  2). In 
piglets, superoxide anion generation in the brain caused by 
ischemia, seizures, and extravascular blood, as well as asphyxia/ 
reventilation, is prevented through administration of a high dose 
of indomethacin (1-3, 30). Because available evidence indicates 
that indomethacin lacks free radical scavenging properties, we 
believe that the effect of indomethacin on cerebral superoxide 
anion generation results from inhibition of cyclooxygenase activ- 
ity. A free radical scavcngcr would eliminate superoxide anion 
radicals regardless of their source. Kontos ct ul. (31) observed 
absence of an effect of indomethacin on superoxide production 
bv xanthine oxidase or  activated ~olvmomhonuclear  cells. Ku- 
kieja ' t  (11. (32) observed that indokeihacin inhibited generation 
of oxygen free radicals via cyclooxygenase pathway but not 
through the lipooxygenase pathway. Also Mirro ct (11. (30) dem- 
onstrated that indomethacin decreased superoxide anion pro- 
duction by platelets but not the superoxide anion production by 
granulocytes, lymphocytes, and monocytes. Based on our present 
results, the therapeutic dose of indomethacin at 0.2 mg/kg ap- 
pears as effective as the higher dose (1-3) in preventing super- 
oxide anion generation on the cerebral cortex during asphyxia/ 
reventilation. 

Another possible route for oxygen free radical generation is 
via the xanthine oxidase pathway (9. 19). When the blood flow 
is decreased and there is insufficient oxygen available, depletion 
of ATP occurs and AMP accumulates that is later catabolized to 
adenosine, inosine, and hypoxanthine (33). With reperfusion 
and reoxygenation, xanthine oxidase catabolizes hypoxanthine 
to  xanthine and xanthine to uric acid, with oxygen free radicals 
being generated in the process (34, 35). Oxypurinol is a major 
metabolite of allopurinol (36). Studies have shown that oxypu- 
rinol at the same molar concentrations as allopurinol could be 
up  to 10 times as potent as allopurinol for eliminating superoxide 
production (37, 38). We observed attenuation of superoxide 
anion accumulation on cerebral cortex during asphyxia/reven- 
tilation when piglets were pretreated with oxypurinol; however, 
the mechanism of inhibition appears different from that of  
indomethacin because oxypurinol is not a prostaglandin H syn- 
thase inhibitor. Although allopurinol and oxypurinol are both 
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xanthine oxidase inhibitors (36). they arc also oxygcn free radical 
scavengers ( lo) .  Oxypurinol eliminates hydroxyl radicals that are 
not produccd via xanthine oxidase pathway, and it also scavenges 
the myeloperoxidase-derived oxidant hypochlorous acid (10). 
Therefore, the inhibition of superoxide by oxypurinol can be 
explained by its scavenging effect. suggesting that indornethacin 
removes superoxide by inhibiting its production, whereas oxy- 
purinol is equally effective by removing supcroxide after it is 
produced. 

Premature infants are at high risk for hypoxic-ischcrnic insults 
and for developing IVH (39). This risk is compounded by their 
low levels of endogenous frcc radical scavengers compared with 
term babies (14). In the clinical setting, the therapeutic dose of 
indornethacin is used widely for ductal closure and is beginning 
t o  be used for IVH prevention (39. 40). The  attenuating effect 
on superoxide anion generation of this small dose of indometh- 
acin may have future therapeutic implication in prevention of 
brain injury associated with IVH and hypoxic-ischemic episodes. 
Allopurinol o r  oxypurinol also could be an alternative drug in 
such research. 

In summary, oxygen frce radicals are produccd largely during 
reventilation after asphyxia rather than during asphyxia per sc: 
a therapeutic dose of indomcthacin inhibits the superoxide anion 
production that occurs during recovery from asphyxia; and ox- 
ypurinol inhibits the superoxide radical accumulation during 
asphyxia/rcventilation. probably by its direct scavenging effect. 

.~ lck t~o~c~/cd~qtn~~t~t .  The authors thank Alex Fedincc and John 
Pirani for their technical assistance. 
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