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ABSTRACT. Glycogen storage disease (GSD) type 1 b is 
accompanied by decreased respiratory burst activity in 
peripheral blood phagocytic cells (i.e. monocytes and neu- 
trophils). To  elucidate whether this depressed respiratory 
burst was due to an intrinsic defect of phagocytic cells or 
due in part to in viva host factors, we esamined superoside 
anion (02-)  production in monocytes from five G S D  l b  
patients cultured 9 d in ritro to allow for differentiation 
into macrophages (hlDhI). 0 2 -  production in h l D h I  was 
measured in response to concanavalin A, fhlet-Leu-Phe, 
and phorbol myristate acetate (PhIA) stimulation. GSD 
1 b hIDhl  had significantly depressed 0 2 -  generation with 
fhlet-Leu-Phe and concanavalin A stimulation; however, 
unlike peripheral blood monocytes, G S D  l b  h l D h l  re- 
sponded to Ph lA stimulation with 02- production compa- 
rable to healthy control donors. The cytokine interferon-y 
(IFN-y) has been shown to enhance 0 2 -  production in 
hIDhl .  \\'hen G S D  1 b h l D h l  were cultured in the presence 
of IFN-y (1 x lo5  U/L), 0 2 -  production in response to 
fhlet-Leu-Phe, concanavalin A, and PhIA was enhanced 
to rates similar to those of control RIDXI cultured in the 
presence of IFN-y. Thus, the respiratory burst defect 
observed in circulating phagocytic cells is also present in 
ritro in cultured G S D  I b  h lDhl .  However, in contrast to 
circulating phagocytic cells, depressed 0 2 -  production in 
GSD 1 b hIDhI  is selective to receptor-mediated activation, 
but not to P M A  stimulation. This defect is correctable 
after short-term treatment with IFN-y, suggesting a role 
for IFN-7 in treating the phagocytic defect in this disease. 
(Pediatr Res 34: 265-269, 1993) 
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In both GSD l a  and I b, hepatic defects prevent the conversion 
of glucose-6-phosphate to  glucose resulting in hypoglycemia dur- 
ing fasting ( 1, 2). In GSD la, the enzyme glucose-6-phosphatase 
is defective ( I ,  2), whereas in G S D  I b, the glucose-6-phosphate 
translocase is affected (3-5). The clinical features of GSD I b are 
similar to  those of GSD la  with the exception that patients with 
GSD I b are often neutropenic and suffer from recurrent bacterial 
infections suggesting an impairment in their immune system (6- 
1 1 ) .  - - ,- 

There is evidence of functional defects in the phagocytic cells 
from GSD Ib  patients that limit their ability to destroy invading 
microorganisms. Multiple functional abnormalities have been 
identified including chemotaxis, bactericidal activity, respiratory 
burst activity, and glucose transport ( 12- 18). We previously 
demonstrated that the defect in respiratory burst activity was 
associated with impaired calcium mobilization and decreased 
intracellular calcium stores (18, 19). It is not apparent whether 
these phagocytic cell dysfunctions are a result of multiple defects 
o r  of a more fundamental membrane defect. 

Previous studies on the rcspiratory burst of monocytes from 
GSD Ib  patients have focused exclusively on  circulating cells 
( 15. 18): however, it1 vivo, the circulating monocytes migrate into 
tissue, where they adhere and over time differentiate into mature 
macrophages (20). Both cell adherence and differentiation mod- 
ulate the kinetics of the 02- generation ( 2  1-24). It is not known 
whether GSD Ib  macrophages also have defective respiratory 
burst activity. 

Macrophages can be functionally modified it1 tdtro through 
exposure to cytokines. such as IFN-y. IFN-y is a potent macro- 
phage activator that is secreted by T cells. Among its varied 
effects, it1 vitro incubation with IFN-y has been shown to stim- 
ulate cell differentiation and enhance rcspiratory burst activity 
in MDM (25-27). In addition, IFN-y has been used it1 vivo to  
improve respiratory burst activity in patients with chronic gran- 
ulomatous disease, leprosy, and HIV infection (28-3 1).  

The purposes of this study were 1 )  to  determine whether the 
respiratory burst activity in macrophages was also defective in 
GSD Ib  and 2) to  establish the efficacy of IFN-y treatment on 
the depressed respiratory burst in GSD I b. Similar to  circulating 
phagocytic cells. MDM from GSD Ib  patients had a selective 
defect in 0 2 -  generation in response to  the ligands fMet-Leu-Phe 
and Con A. Accordingly, GSD Ib  phagocytic cells have an 
intrinsic defect in respiratory burst activity that is not dependent 
on cellular environment. However, unlike the peripheral blood 
phagocytic cells, MDM from G S D  Ib  patients d o  not have a 
depressed respiratory burst in response to PMA. Therefore, the 
defect in GSD I b respiratory burst activity in response to PMA 
stimulation is corrected after i n  vitro culture and cell differentia- 
tion. I n  v i f ro  culture of MDM from G S D  Ib  patients with 
IFN-y enhanced 0 2 -  production to levels similar to  controls in 



response to either Wet-Leu-Phe or Con A. Moreover, a com- 
parison of the cell cultures revealed that GSD I b MDM showed 
morphologic differences in comparison to control cells that were 
ameliorated by IFN-y treatment. Thus, MDM from GSD Ib 
patients have a selective defect in respiratory burst activity to 
ligand stimulation that can be corrected in vitro with IFN-y. 

MATERIALS A N D  METHODS 

Study population. The study population consisted of five un- 
related GSD Ib patients: two men aged 28 and 24 y and three 
girls aged 4, 9, and 13 y. Written permission was obtained from 
patients or their parents for all blood samples in accordance with 
policies of the Institutional Review Board at the Children's 
Hospital of Philadelphia. Control blood samples were obtained 
from healthy adults routinely used as donors in our laboratory. 

Monocyte isolation and cliltzire of AfDAf.  Monocytes were 
isolated from heparinized venous blood (1 x lo4 U/L) and 
cultured as previously described (32). Mononuclear cells, sepa- 
rated from whole blood by Ficoll-Hypaque centrifugation, were 
suspended in Dulbecco's Modified Eagle Media (DMEM; 
GIBCO Laboratories, Grand Island, NY). The cell suspension 
was plated onto gelatin-coated tissue culture flasks and incubated 
at 37°C for 45 min in 5% C02. Nonadherent cells were removed 
by several washings. Adherent monocytes were detached by 
incubation with 5 mM EDTA in DMEM with 10% horse serum 
(HS; GIBCO Laboratories), washed, and resuspended in DMEM 
supplemented with 10% FCS (Hyclone Laboratories, Logan, 
UT), 10% HS, L-glutamine (4 mM), penicillin ( I  x lo5 U/L), 
and streptomycin (100 mg/L). Cells were plated at 2.0-3.5 x 10' 
cells/polylysine-coated glass coverslip/well in 24-well tissue cul- 
ture plates. After 24 h of incubation at 37°C in 5 %  COz, non- 
adherent cells were removed by aspiration and fresh medium 
was added in the presence or absence of 1 x lo5 U/L of 
recombinant human IFN-y (1 x lo5 U/L = 100U/mL) (Hoff- 
man-La Roche, Nutley, NJ). Cell cultures were maintained at 
37°C in 5% C 0 2  for 9 d. 
02- generation. The generation of 0 2 -  by MDM was measured 

on the 9th d of culture in the well plate as superoxide dismutase- 
inhibitable cytochrome c reduction by endpoint analysis (33). 

DNA assay. DNA from MDM cultures was assayed according 
to a procedure adapted from West et a/. (34). Ten mM EDTA, 
pH 12.3, were added to each well and incubated for 90 min at 
37'C. After the plates were cooled on ice, the pH was lowered to 
pH 7.0 with 1 M KH2P04. The supernatants were incubated for 
20 min with 9.0 x lo-' M Hoescht no. 33258 (bisBenzimide; 
Sigma Chemical Co., St. Louis, MO) and diluted in 100 mM 
NaC1-I0 mM Tris, pH 7.0. Fluorescence was measured using an 
excitation wavelength of 350 nm and an emission wavelength of 
455 nm. A standard curve from 0.3 1 to 10 pg DNA was prepared 
from calf thymus DNA and sample concentrations were calcu- 
lated allowing for a linear conversion of log(fluorescence) to 
log (~g  DNA). 

Materials. PMA was purchased from Sigma, stored as a con- 
centrated stock solution in DMSO, and diluted before use. N e t -  
Leu-Phe (Sigma) was stored in stock solution of ethanol and 
diluted in buffer before use. Con A (Sigma) was prepared fresh 
before use. 

RESULTS 

Stimulation of MDM by a variety of stimuli elicits the assem- 
bly and activation of the NADPH oxidase, which catalyzes the 
reduction of oxygen to 02-, the respiratory burst (35). We 
compared the respiratory burst activity of GSD I b and control 
MDM activated by Net-Leu-Phe and by Con A, both surface 
receptor-mediated agonists, and also by the phorbol ester PMA, 
which acts at a site distal to plasma membrane receptors, thereby 
bypassing part of the receptor-activated signaling pathway. As 
shown in Figure IA, stimulation of control MDM with either 

A F M L P  Con A P MA 

STIMULUS 

B F M L P  Con A PM.4 

STIMULUS 

Fig. I .  :1. 0:- generation in control and GSD Ib  MDM. MDM were 
cultured for 9 d. 02- was determined on d 9 as superoxide dismutasc- 
inhibitable cytochrome c reduction by endpoint analysis after 60 min of 
stimulation in response to PMA (0.1 mg/L). Wet-Leu-Phe M), or 
Con A (100 mg/L). Con A was added after a 5-min incubation of M D M  
with 5 mg/L cytochalasin B. Values are mean f. SEM of triplicate 
determinations for three to four individual patients with matched con- 
trols and are expressed as nmol 02-/pg DNA. *, p < 0.02 in Wet-Leu- 
Phe-stimulated control MDM 11s GSD Ib  MDM; **, p < 0.03 in Con 
A-stimulated control MDM vs C S D  Ib  MDM. U .  0 2 -  generation in 
control and C S D  I b  MDM cultured with IFN-y. MDM were cultured 
for 9 d in thc presence of IFN-y ( 1  X 10' U/L). 0 2 -  was deterrnincd on 
d 9 ofculture in response to PMA, Wet-Leu-Phe, and Con A as described 
in 11. Values are mean + SEM of triplicate determinations for three to 
four patients with matched controls and are expressed as nmol 02-lpg 
DNA. 

PMA, Wet-Leu-Phe, or Con A results in 02- production. Max- 
imal 02- production was obtained with PMA (1.35 + 0.18 nmol 
02-/pg DNA control MDM, mean + SEM, n = 4, which is 
equivalent to 12.7 nmol 02-/lo6 cells). This rate of PMA- 
triggered Oz- production in MDM is less than that of 0:- 
production in freshly isolated monocytes and neutrophils as 
previously reported (I 8, 19, 22-24). 

Wet-Leu-Phe M)-stimulation of GSD Ib MDM had 
significantly depressed Or- generation as compared with controls 
(0.25 + 0.05 nmol 02-/pg DNA GSD I b MDM vcrslrs 0.6 1 + 
0.1 nmol 02-/pg DNA control MDM, n = 4, p < 0.02). This 
reduction in 02- production in GSD Ib MDM (42% of controls) 
was similar to the reduction in respiratory burst activity we 
reported in GSD I b monocyte suspensions (32% of controls, 11 

= 3 patients) and neutrophils ( 1  7% of controls, 11 = 3 patients) 
(18, 19). Defective generation of 01- was also observed in GSD 
Ib MDM stimulated with Con A (0.1 1 + 0.03 nmol 02-/pg 
DNA GSD Ib MDM versus 0.53 + 0.12 nmol 02-/pg DNA 
control MDM, p < 0.03, t~ = 3). In contrast, there was no 
difference between the rates of 02- generation elicited by PMA 
in MDM from GSD I b patients and control donors (I .35 + 0.18 
nmol 02-/pg DNA and 1.30 f 0.14 nmol 02-/pg DNA, respec- 
tively, r r  = 4). Thus, MDM from GSD I b patients have a selective 
impairment of 02- production in response to Wet-Leu-Phe and 
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Con A but not to  PMA stimulation compared with healthy DISCUSSION 
controls. 

previous studies have demonstrated that the addition of We and others have documented the defective respiratory burst 

IFN-y during cell culture enhances the respiratory burst activity in  circulating ~ h a g o c f l i c  cells from GSD I b  patients (10, 

of MDM upon subsequent (26, 27). Control MDM 1 1 .  14, 15, 18, 19). The results of the Present study demonstrate 

cultured in the presence o f ~ ~ - y  had increased respiratory burst that MDM cells from GSD I b patients are also defective in their 
activity independent of the stimulus used ( ~ i ~ .  18). ~h~ 02- ability to generate 0 2 -  in response to  ligand (I.(.. met-Leu-Phe 
generation in control cells cultured with IFN-y was increased in and Con A) stimulation. The reproducibility of the observed 
response to  PMA (59%, p = NS), fMet-Leu-Phe (79%. p < 0.04), depressed respiratory burst in G S D  Ib  ~hagocytic  cells cultured 
and con A (245%, < 0.01) with control short-term in vilro indicates that the defect is intrinsic and is not 
MDM cultured in the absence of IFN-y. IFN-y also increased a solely of in \'is0 host factors. 
Oz- production in G S D  l b  MDM stimulated with f M e t - ~ e u - ~ h e  This study also demonstrates that the PMA-stimulated respi- 
(259%, p < 0.01), Con A (1700%, p < 0.0 I), or PMA (67%, p < ratory burst activity in GSD l b  MDM is equivalent to  that of  
0.01) compared with GSD Ib  MDM cultured with medium control~.  Seger CJt a/. (10) observed normal NADPH-dependent 
alone (Fig. 1 B). There was no significant difference between the 0 2 -  production in neu t ro~hi l  lysates from a single GSD l b  
02- generated by IFN-y-treated G S D  I b  MDM by PMA, m e t -  patient, which is consistent with our observation. These results 
Leu-Phe, and Con A and their respective controls. Thus, in vilro suggest that the components that makc up  the NADPH oxidase 
treatment of MDM with IFN-7 corrected the defective response are present in the cell and are fully functional. Thus, the GSD 
to fMet-Leu-Phe and Con A stimulation in MDM from GSD l b  I b patient's phagocytic cell defect differs from chronic granu- 
patients. lomatous disease, which is distinguished by absent protein com- 

Figure 2 shows representative phase-contrast photomicro- ponents of  the NADPH oxidase enzyme complex and in which 
graphs of MDM from control and G S D  Ib  patients cultured in long-term in viva therapy with IFN-y failed to  improve the 
the presence or  absence of I x lo5 U/L IFN-y. The control blunted respiratory burst (37-39). 
cultured MDM demonstrated the morphologic changes that The basis for the observation that PMA-stimulated 02- pro- 
accompany maturation of monocytes into MDM (Fig. 28):  duction is defective in freshly isolated monocytes from GSD I b 
evidence of cytoplasmic spreading and increased cell diameter patients but not in rilro in MDM is not apparent but may be a 
(36). In contrast, the GSD Ib  M D M  had smaller cell diameter result of alterations in the cellular environment. The presence of 
and less cytoplasmic spreading (Fig. 2A). GSD Ib  MDM cultured an inhibitory factor or the absence of a growth factor in the 
in the presence of IFN-y responded with morphologic changes plasma of these patients may be responsible for the depressed 
similar to  those of control cells cultured with IFN-y addition PMA-triggered OZ- production. Alternatively, monocyte adher- 
(Fig. 2 C  and D). Thus, the changes in respiratory burst activity ence and differentiation induces alterations in protein synthesis 
of the GSD Ib  MDM upon 1FN-y treatment are paralleled by and cellular metabolism (22, 36). This results in decreased res- 
morphologic changes. piratory burst activity compared with peripheral blood mono- 

Fig. 2. Effect of IFN-7 on morphology of control and GSD Ib MDM. Phase contrast photomicrographs were taken on d 9 of culture. /I, GSD 
Ib MDM and B, control MDM cultured in medium alone (x400). C. GSD Ib MDM and D, control MDM cultured in the presence of IFN-y (1 x 
10' U/L) (X400). 



cytes and enhanced membrane depolarization and Ca" mobili- 
zation upon stimulation (21-24). Thus, cellular alterations in- 
duced by cell adherence or differentiation may restore the PMA- 
stimulated respiratory burst upon GSD Ib monocyte maturation. 

IFN-y addition during cell culture enhanced the respiratory 
burst activity in both control and GSD Ib MDM, thereby 
correcting the defective Met-Leu-Phe- and Con A-elicited res- 
piratory burst activity in GSD Ib MDM. There are several 
different sites where IFN-y could alter respiratory activity in 
these patients' MDM; these include a direct effect on components 
of the NADPH oxidase enzyme complex, its assembly in the 
plasma membrane, or the signaling pathways that regulate the 
respiratory burst. 

During monocyte maturation to macrophage, there is a down- 
modulation in the cells' ability to generate 0 2 -  (23, 24). This has 
been attributed to down-modulation of the mRNA for constit- 
uents of the NADPH oxidase, specifically the membrane-asso- 
ciated gp91 and the cytosolic p47 components (40, 41). The 
culture of monocytes with IFN-y during maturation increases 
the expression of gp91 and p47, paralleling the increase in 
respiratory burst activity in these cells (40, 41). In addition, 
IFN-y alters the signaling pathways involved in regulating res- 
piratory burst activity, specifically modulation of intracellular 
Ca2+ levels. Incubation with IFN-y increased the free intracellular 
CaZ+ levels in human monocytes (42) and in the monocytic cell 
line U937 (43). Furthermore, Ca2+ ionophores and phorbol 
esters, together, mimic the IFN-y-enhanced cytocidal activity in 
macrophages (44). As stated previously, our results suggest that 
the respiratory burst defect is not due to decreased expression of 
the components of the NADPH oxidase itself. Thus, although 
up-regulation of gp91 and p47 after IFN-y treatment may be 
responsible for the overall increase in the potential rate of the 
respiratory burst, it is more likely that IFN-y corrects the respi- 
ratory burst defect in GSD Ib MDM by modulation of receptor 
expression and/or the signal transduction pathway through 
changes in intracellular Ca2+ levels. 

The morphologic changes associated with IFN-y treatment of 
GSD Ib MDM suggests an IFN-y-mediated effect on signal 
transduction. GSD I b MDM did not show cytoplasmic spreading 
or morphologic alterations concomitant with monocyte differ- 
entiation unless cultured in the presence of IFN-y, which then 
resulted in morphologic changes similar to control cells. After 
adherence, a rise in intracellular Ca2+, similar to that in respira- 
tory burst activity, is a necessary precedent to spreading in 
neutrophils (45). We have previously demonstrated depressed 
Ca2+ mobilization in GSD Ib monocytes that is associated with 
decreased intracellular Ca2+ stores. This is suggestive of a com- 
mon signaling defect affecting cytoplasmic spreading and respi- 
ratory burst activity in GSD Ib patients, possibly at the level of 
or before Ca2+ mobilization. 

The mechanism(s) by which IFN-y corrects the deficient li- 
gand-elicited respiratory burst in GSD Ib MDM remains to be 
elucidated. Defining the specific alteration(s) by which IFN-y 
normalizes the deficient respiratory burst activity in GSD l b  
MDM will provide further insight into the defect in GSD Ib 
respiratory burst activity. In summary, the 02- production in 
MDM from GSD I b patients was depressed in response to fMet- 
Leu-Phe and Con A but not PMA stimulation. This selective 
defect in ligand-triggered 0 2 -  generation can be corrected in vitro 
with IFN-y, which suggests that IFN-y should be considered for 
the treatment of this defect in patients with GSD 1b. 
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