
003 I-3998/93/340 I-0098$03.00/0 
PEDIATRIC RESEARCH 
Copyright O 1993 International Pediatric Research Foundation. Inc. 

Vol. 34, No. 1. 1993 
Prinlcd in U. S. A .  

Evidence for Human Placental Synthesis 
of 24,25-Dihydroxyvitamin D3 and 

23,25-Dihydroxyvitamin D3 

LEWIS P. RUBIN, BERNICE YEUNG, PAUL VOUROS, LUCY M. VILNER, AND 
G. SATYANARAYANA REDDY 

Department of Pediatrics. IVo'omen and Infants' IIospital of Rhode Island and Brown Ut~iversitjl School of 
Medicine, Providence, Rhode Island 02905 [L.P.R., L.M. V., G.S.R.]; and Departtnent of Cl~onisrry. Nortlleastern 

Universi!p, Boston, ilfassachzrserts 021 15 [B. Y., P. V.] 

ABSTRACT. The two principal dihydroxylated metabo- 
lites of the vitamin D prohormone 25-hydroxyvitamin D3 
[25(OH)D3] are la,25-dihydroxyvitamin D3 [1,25(OH)zD3, 
the active hormone] and 24R,25-dihydroxyvitamin DJ 
[24,25(OH)~D3, a putative regulator of developmental bone 
formation]. Although several studies have demonstrated 
placental synthesis of 1,25(OH)2D3 from 25(OH)D3, pla- 
cental production of 24,25(OH)2D3 has not been thor- 
oughly investigated. Therefore, we studied 25(OH)D3 me- 
tabolism in term human placenta using a villous explant 
model and cultures of isolated tro~hoblast and villous 
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mesenchymal cells. We determined ihat both vitamin D- 
replete and vitamin D-deficient trophoblast metabolize 
25(OH)D3 predominantly via 24-hydroxylation. Placental In birds and mammals, vitamin D3 is 25-hydroxylated in the 
24,25(OH)2D3 was identified by cochromatography with liver and converted to the prohormone 25(OH)D3, which under- 
authentic standard on four different HPLC systems, scan- goes further hydroxylation steps principally in the kidney. The 
ning UV spectrophotometry profile of the metabolite, sen- two major dihydroxylated metabolites produced in the kidney 
sitivity to periodate cleavage, and mass spectrometry of are 1,25(OH)zD3, which is the hormonal form of the vitamin ( I ) ,  
the putative placental 24,25(OH)2D3 and its periodate and 24,25(OH)2D3 (2, 3), a putative regulator of developmental 
cleavage product. We also identified for the first time bone formation (4-13). The biologic roles of the other known 
placental synthesis of 23,25(OH)2D3 using cochromatog- natural dihydroxylated vitamin D3 metabolites, 23,25(OH)2D3 
raphy with authentic standard on two different HPLC and 26,25(OH)2D3, are not well understood. 
systems, scanning UV spectrophotometry, resistance to The observation that nephrectomized, vitamin D3-deficient 
periodate cleavage, and mass spectrometry. When troph- pregnant rats retain the ability to convert ['H]25(OH)D3 to [3H] 
oblast was incubated for up to 4 h with physiologic concen- 1,25(OH)2D3 in vivo (14, 15) raised the possibility that extrarenal 
trations of [3H]25(OH)D:, (6 nM) significant amounts of sites produce 1,25(OH)2D3 during pregnancy. Subsequently, in 
[3H]24,25(OH)2D3 were produced, but [3H]1,25(OH)2D3 vitro la-hydroxylation of 25(OH)D3 has been demonstrated in 
could not be consistently detected. In contrast, when we rat (14, 16), guinea pig (17) and human (18-22) placenta or 
incubated trophoblast with supraphysiologic concentra- decidua. In contrast to placental la-hydroxylation, 24R-hydrox- 
tions of 25(OH)D3 (6-10 pM), both 24,25(OH)2D3 and ylation of 25(OH)D3 has not been thoroughly investigated. Sev- 
1,25(OH)2D3 were synthesized. These results provide un- eral reports have identified placenta as a possible site for 24- 
equivocal evidence for placental synthesis of both hydroxylation (16, 18-21), but none of these studies character- 
24,25(OH)2D3 and 23,25(OH)2D3. These findings also sug- ized the putative placental 24,25(OH)2D3 through more extensive 
gest that supraphysiologic substrate concentrations satu- chromatographic analysis or by mass spectrometry. Moreover, 
rate the placental 24-hydroxylase and may permit accu- recently Hollis et al. (22) failed to demonstrate any 24,25(OH)2D3 
mulation of placental 1,25(OH)2D3 by preventing its fur- production by either human placental homogenates or subcel- 
ther metabolism. Consequently, the identification of this lular fractions, despite evidence for l,25(OH)2D3 production in 
high basal 24-hydroxylase activity in trophoblast may these preparations. These inconsistencies among previous reports 
explain inconsistencies among previous reports regarding prompted us to investigate whether placenta might possess a 
placental 1,25(OH)2D3 production. We speculate that ac- biologically important 25(OH)D3-24-hydroxylation pathway. 
tive placental 24-hydroxylation may serve important func- Like kidney, placenta apparently synthesizes 1,25(OH)2D3 and 
tions in perinatal vitamin D metabolism. (Pediatr Res 34: expresses 1,25(OH)zD3 receptors (23). In kidney, 24R- and la- 
98-104,1993) hydroxylase activities are regulated in a reciprocal fashion (24- 

26); 1,25(OH)2D3 generally suppresses its own synthesis and 
induces 24-hydroxylation by mechanisms that may require the 
presence of functional 1,25(OH)2D3 receptors (25,27). Similarly, 

Received December 12, 1992; accepted February 18, 1993. the elevated maternal plasma 1 ,25(OH)2D3 levels observed dur- 
Correspondence: Lewis P. Rubin, M.D., Department of Pediatrics, W men and ing pregnancy (28-3 1) [and 1 , ~ ~ ( o H ) ~ D ~  produced by placenta Infants' Hospital of Rhode Island, 101 Dudley St., Providence, R102905 1201. 
Supported in part by USPHS Grants K08-HW086 I (L.P.R.) and R29-DK39 138 itself] might be expected to stimulate placental 24-h~drox~lation 

(G.S.R). of vitamin D3 metabolites. 
98 



PLACENTAL 24,25(OH)2D, A1 VD 23,25(OH)*D3 SYNTHESIS 99 

In the present study, we examined human placental 25(OH)D3 
metabolism in several different culture systems. We present 
unequivocal evidence demonstrating that human placenta is a 
site for both 24,25(OH)2D3 and 23,25(OH)2D3 synthesis. 

MATERIALS AND METHODS 

Materials. Cell and tissue culture media were obtained from 
Fisher Scientific (Malvern, PA). Except as noted, enzymes, cell 
culture reagents, and serum were from Sigma Chemical Co. (St. 
Louis, MO). Plasticware was purchased from Costar (Cambridge, 
MA). Crystalline 25(OH)D3, 1,25(OH)zD3, 24,25(OH)zD3, and 
23,25(OH)2D3 were generous gifts from Dr. Milan R. Uskokovic 
of Hoffman-LaRoche (Nutley, NJ). 25-hydroxy-[26,27-methyl- 
'HID3 ([3H]25(OH)D3, 2 1 Ci/mmol) was purchased from Amer- 
sham (Arlington Heights, IL). The purities of the tritiated and 
unlabeled vitamin D3 metabolites were verified by HPLC before 
use. All HPLC solvents were "distilled in glass" spectroscopic 
grade from Burdick & Jackson Laboratories (Muskegan, MI). 

Placental cell and tisst~e (explant) isolation and czlltzrre. Term 
human placentas were obtained at times of elective cesarean 
section in accordance with informed consent procedures ap- 
proved by the Institutional Review Board of Women and Infants' 
Hospital of Rhode Island. Pregnancies complicated by disorders 
of mineral or vitamin D metabolism, hypertension or preeclamp- 
sia, preterm delivery, multiple gestation, or placental or fetal 
anomalies were excluded. All pregnant women received standard 
prenatal nutritional counseling and took a daily multivitamin 
preparation that included 400 IU of vitamin D3. Placentas were 
transferred on ice and dissected under sterile conditions within 
1 h. Decidua basalis was removed from the basal plate and 
discarded. 

Cytotrophoblasts were isolated by the method of Kliman et al. 
(32) with modifications. Briefly, minced villous tissue was di- 
gested with 0.125% (wt/vol) trypsin and 0.02% DNase. A cyto- 
trophoblast-enriched cell fraction was purified by sequential cen- 
trifugations through discontinuous Percoll density gradients. 
Cells isolated in this manner are 295% cytotrophoblasts gauged 
by morphologic and immunocytochemical criteria (33). When 
placed in culture, the mononuclear cytotrophoblasts aggregate, 
then fuse into syncytia approximately 72 h after plating. Cells 
were plated densely in either 35-mm cluster wells (5 to 7 x lo6 
cells/well) or 60-mm culture dishes (lo7 cells/dish) and main- 
tained in DMEM supplemented with 20 mM HEPES, 4 mM L- 
glutamine, antibiotics, and 15% (vol/vol) serum supplement 
(Nu-Serum IV, Collaborative Research, Bedford, MA). The con- 
centration of fetal bovine serum in this complete medium is 
3.75%. Cultures were refed with fresh medium every 24 h. 

Placental fibroblasts were isolated by trypsin-DNase or colla- 
genase-hyaluronidase-DNase (34) dispersion followed by differ- 
ential adhesion in 75-cm2 culture flasks. Fibroblasts were grown 
and serially passaged in DMEM supplemented with 4 mM L- 
glutamine, antibiotics, and 10% fetal bovine serum. Studies of 
25(OH)D3 metabolism were performed upon confluent fibroblast 
monolayers grown in 60-mm culture dishes (third to fifth pas- 
sages). 

Fragments of placental villi measuring 5 2  mm2 (placental 
explants) were dissected from minced placental tissue and washed 
extensively in warm Hanks' buffered salt solution. Explants (51 
g minced villi/100-mm plastic dish) were incubated in serum- 
free DMEM. Medium was changed daily for 1 to 4 d. Tissue 
viability during this period was demonstrated by maintenance of 
regulated expression and secretion of chorionic gonadotropin 
(Rubin LP, unpublished data). 

Incitbations. The assays of 25(OH)D3 metabolism were camed 
out by incubating cells or tissue with graded concentrations of 
['H]25(OH)D3 or unlabeled 25(OH)D3 or both for various time 
intervals at 37°C. Short-term cell and tissue incubations (5 min 
to 4 h) were performed using MEM with Eagle's salts, 20 mM 
HEPES, and 0.1 % BSA in a shaker water bath. Longer incuba- 

tions (20 h) were performed using DMEM with 0.1 % BSA on a 
rocking platform in a humidified 5% (32195% air atmosphere. 
25(OH)D3 was dissolved in ethanol and added to incubation 
media to a final concentration of 50.1 % (vol/vol). At the end of 
each incubation, cells or explants and media were collected 
together and added to one volume of methanol that contained 
authentic vitamin D3 metabolites for HPLC standardization and 
assessment of extraction efficiency. Explants were homogenized 
by using three to four bursts from a Polytron tissue grinder. 

Lipid extraction. Lipid extraction was based on the procedure 
of Bligh and Dyer (39 ,  except that methylene chloride was 
substituted for chloroform. Lipid was extracted in a separatory 
funnel and the organic phase was reduced to dryness under a 
stream of nitrogen. Samples were redissolved in mobile-phase 
solvent and subjected to analytic or preparative liquid chroma- 
tography in 200-pL aliquots. 

Chromatography. HPLC was performed on a Waters model 
600 liquid chromatograph equipped with a model 990 photo- 
diode array detector (Waters Associates, Milford, MA). All ana- 
lytical and semipreparative microparticulate silica gel straight- 
phase columns (4.6 mm x 25 cm) were purchased from Dupont 
Instruments (Wilmington, DE). Flow rate in all instances was 2 
mL/min. Various radioactive vitamin D3 metabolites were iden- 
tified by their retention times, determined by cochromatography 
with unlabeled authentic standards. Timed elution fractions were 
collected and counted by liquid scintillography, and radioactivity 
in each peak was calculated. Additionally, in some experiments 
using micromolar concentrations of 25(OH)D3, metabolism of 
unlabeled 25(OH)D3 was also monitored by scanning spectro- 
photometry of the purified peaks for their UV (205-320 nm) 
profiles. 

Metabolism of [3H]25(OH)D3 to [3H] 1 , 2 5 ( 0 H ) ~ D ~  by placen- 
tal cells or explants was initially analyzed by chromatography of 
the lipid extracts on a Zorbax-SIL column equilibrated with a 
6% isopropano1:hexane solvent system. A peak of [3H] radioac- 
tivity coeluting with the 1,25(OH)2D3 standard, obtained from 
the first HPLC system, was also analyzed by HPLC on a Zorbax- 
SIL column with a 3% isopropano1:methylene chloride solvent 
system and on a Zorbax-CN column with 4% isopropa- 
nol:hexane. 

Production of [3H]24,25(OH)2D3 was initially analyzed using 
a Zorbax-SIL column with a 2% isopropano1:hexane solvent 
system. Aliquots of the apparent 24,25(OH)2D3 peak were sub- 
jected to further chromatographic analysis and purification using 
I)  a Zorbax-SIL column with 2% isopropano1:methylene chlo- 
ride, 2) a Zorbax-SIL column with 5% isopropanol:hexane, 3) a 
Zorbax-CN column with 3% isopropanol:hexane, and 4) an 
amino column with 2% isopropano1:hexane. 

Production of 23,25(OH)2D3 also was initially analyzed chro- 
matographically on a Zorbax-SIL column with 2% isopropa- 
nokhexane. Further purification was achieved using a 1 % isopro- 
pano1:methylene chloride solvent system. Purified 23,25(OH)2D3 
and 24,25(OH)2D3 peaks were dried, resuspended, and analyzed 
by mass spectrometry. 

Periodate cleavage. Putative 24,25(OH)2D3 or 23,25(OH)2D3 
was subjected to periodate cleavage (36) by adding 10 pL of 5% 
aqueous sodium metaperiodate to 0.5 pg of purified sample or 
standard dissolved in 15 pL of methanol. Reactions were camed 
out for 30 min at room temperature. The soluble material was 
subjected to chromatography on a Zorbax-SIL column eluted 
with 2% isopropanol:hexane. Purified periodate cleavage product 
peaks were dried, resuspended, and analyzed by mass spectrom- 
etry. 

Mass spectrometry. Material derived from HPLC-purified 
peaks with the scanning UV trace characteristics A,,, = 265 nm, 
X,i, = 228 nm was subjected to electron impact mass spectrom- 
etry using a VG-7OSE double-focusing mass spectrometer with 
an E/B configuration (VG Analytical, Manchester, UK) and 
fitted with a direct insertion probe. Samples (-0.5 pg) in hex- 
ane:isopropanol:methanol (241511) were introduced, and the 
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probe was heated from 30°C to 350°C over 30 min. Ionization 
voltage was 70 eV. Ions emerged at approximately 10 to 15 min 
after probe heating commenced. 

Statistical analysis. Comparisons of production of 25(OH)D3 
metabolites were performed using the Wilcoxon signed-rank test. 
p < 0.05 was considered significant. 

RESULTS 

Time-course studies using physiologic concentrations of 
25(OH)D3 (6 nM). When vitamin D-depleted trophoblast or 
villous explant cultures were incubated with 6 nM [3H] 
25(OH)D3, there was detectable synthesis of a metabolite that PEAK(X) 

comigrated with 24,25(OH)2D3 on Zorbax-SIL chromatography 300- 

(Fig. 1A). Preincubation of trophoblast or explants with -; 
1 ,25(OH)2D3 increased the conversion of ['H]25(OH)D3 to [3H] ,,, 
24,25(OH)2D3 from 8.2 to 13.1 % of applied radioactivity (Table 
1). During time-course experiments extending to 4 h, a peak of 
radioactivity frequently eluted in the expected position of n 
1,25(OH)2D3. As shown in Figure lA, another peak, which 2 
emerged consistently within 1 to 2 min before the expected 
position of 1,25(OH)2D3, was distinguishable as a different com- 
pound by its slightly different retention time compared with the 
authentic l,25(OH)2D3 internal standard. Based upon its chro- 
matographic behavior in the hexane-based HPLC solvent system 0 
(37,38), this placental metabolite may represent 19-nor-10-keto- 
25(OH)D3. No significant metabolism of [3H]25(OH)D3 was 
detected using cultured placental mesenchymal core cells (fibro- 
blasts) (Fig. 1 B). 

Incubation of trophoblast and villous explants with supraphys- 
iologic concentrations of 25(OH)D3 (6-1 0 pM). To produce pg = 
quantities of the apparent placental dihydroxylated vitamin D3 soo. 
metabolites for further analysis, trophoblast or villous explants 
were incubated for 20 h in the presence of micromolar concen- 
trations of 25(OH)D3. Figure 2 shows chromatographic charac- 
terization of [3H] 1,25(OH)2D3 produced by incubating syncytio- 
trophoblast with 6 pM 25(OH)D3 including 8 pCi of ['HI 
25(OH)D3. Placental production of a metabolite comigrating 
with authentic 1,25(OH)2D3 was identified using three different 
HPLC systems. Because trophoblast and villous explant cultures 
produced nearly identical 25(OH)D3 metabolic profiles, we used 
villous explants to produce placental vitamin D3 metabolites in 
a quantity sufficient for their structural identification. Villous 
explants were incubated with 10 pM 25(OH)D3 including 4 pCi 
of [3H]25(OH)D3. Chromatography of the placental lipid extract 
is shown in Figure 3. Using this 2% isopropano1:hexane solvent ELUTION TIME (min) 
system, only two 25(OH)D3 metabolite peaks, which eluted in 
the positions of 23,25(OH)2D3 and 24,25(OH)2D3, respectively Fig. 1 .  Representative chromatograms of the lipid extracts (cells plus 
(middle panel), exhibited UV absorbance spectra with a A,,, at medium) of syncytiotrophoblast (A)  and placental fibroblast (13) cultures. 
265 nm and a Amin at 228 nm (top panel), consistent with Cells were incubated for 4 h with 6 nM 25(OH)D3 (including 40000 
relatively pure compounds containing the vitamin D cis- cpm/well of [3H]25(OH)D3). Recoveries were >90% of applied radioac- 
5,7, 10(19)-triene chromophore. The bottom panel shows that tivity. The HPLC system consisted of a Zorbax-SIL column equilibrated 
the tritiated substrate was metabolized predominantly to [3H] with 6% isopropano1:hexane. The peaks eluting in the positions of the 
23,25(OH)2D3 and [3H]24,25(OH)2D3. Further attention was purified 25(OH)D3,24,25(OH)2D3, and 1,25(OH)2~, synthetic standards 
focused on these probable 24,25(OH)2D3 and 23,25(OH)2D3 are SO labeled. Peak X may correspond to 19 -nor - l0 -ke to -25 (0~ )~~  (see 
peaks. text). 

Identijlcation of placental 24,25(0H)2D3. The putative 
24,25(OH)2D3 peak was subjected to further preparative chro- cleavage), 253 (27 1-H20), 136 (cis-triene cleavage), and 1 18 (1 36- 
matography using a methylene chloride-based solvent system, HzO) mimic the published mass spectrum for this compound 
then subjected to periodate cleavage. Both the native metabolite (39). 
and its periodate cleavage product eluted as single peaks with the IdentiJication of placental 23,25(OH)2D3. These placental 
expected retention times (Fig. 4) and were then subjected to mass 25(OH)D3 incubations produced a second metabolite in a molar 
spectrometry. Injection of approximately 0.5 pg of placental ratio of approximately 1:10 compared with 24,25(OH)2D3. This 
24,25(OH)2D3 emitted a molecular ion at m/z 416 and charac- metabolite was further characterized as 23,25(OH)2D3 by HPLC 
teristic fragment peaks similar to the mass spectrum reported by using hexane- and methylene chloride-based solvent systems 
Holick et al. (39) (data not shown). The mass spectrum of the and by demonstrating the compound's resistance to periodate 
24,25(OH)2D3 periodate cleavage product (Fig. 5) showed a cleavage (data not shown). The mass spectrum of this placental 
molecular ion at m/z 356, which results from cleavage of the 23,25(OH)2D3 peak (Fig. 6) revealed a molecular ion at m/z 41 6. 
C24-C25 bond yielding the corresponding 24-aldehyde. The frag- Diagnostic fragments were emitted at 383 (loss H 2 0  and CH3), 
mentation peaks at 323 (loss Hz0 and CH3), 271 (side-chain 253 (side-chain cleavage), 136, and 118, consistent with a dihy- 
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Table I. EJSect of 1,25(OH)2D3 on prodttction of rH]24,25(OH)2D3 by syncytiotrophoblast* 

Condition 
Conversion [3H]25(OH)2D3 to 
13H124.25(OH)2D3 in 4 h (%) 

Culture in vitamin D-deficient media for 72 h 8.2 + 0.5 
Preincubation with 50 nM 1,25(OH)~D3 for the final 16 h of culture 13.1 + I . l t  

* Results are given as mean + SEM; n = 3. 
t p < 0.01 comparing trophoblast cultured with and without 1,25(OH)zD3 preincubation. 

FRACTION NO. 

Fig. 2. Chromatographic detection of [3H]1,25(OH)2D3 produced by cultured syncytiotrophoblast. Cultures were incubated with 6 pM 25(OH)D3 
(including 8 pCi of [3H]1,25(OH)2D3). Bars represent the amount of tritiated material in eluent fractions obtained by analysis of the lipid extract 
(cells plus medium) on three different HPLC systems. One twentieth of the total 'H radioactivity was injected in each case: A, Zorbax-SIL column 
eluted with 6% isopropanol:hexane; B, Zorbax-SIL column eluted with 3% isopropanol:methylene chloride; C, cyanide column eluted with 4% 
isopropano1:hexane. Arrows indicate elution positions for the cochromatographed synthetic 1,25(OH)~D3 standard (detected by UV absorbance at 
265 nm). 

droxylated vitamin D3 derivative possessing an intact triene. 
Distinctive 23,25(OH)2D3 mass spectrum fragmentation peaks 
(which are not observed with other dihydroxylated vitamin D3 
metabolites) were emitted at m/z 324 (C23-C24 cleavage with 
proton transfer from the larger to the smaller fragment and loss 
H2O) and 309 (C23-C24 cleavage, proton transfer, and loss CH3) 
(40). This placental metabolite mass spectrum is very similar to 
previously reported 23,25(OH)2D3 mass spectra (40-42). 

DISCUSSION 

Placental 24,25(OH)2D3 synthesis was tentatively identified in 
several studies of placental 25(OH)D3 metabolism (1 6, 18-2 l), 
but in a recent study, Hollis et al. (22) suggested that human 
placenta may not express the enzymatic pathways necessary to 
synthesize 24,25(OH)zD3. The present investigations used co- 
chromatography with internal authentic standards to advantage 
to identify placental 24,25(OH)2D3 more precisely and to localize 
its production to cyto- and syncytiotrophoblast. We identified 
the compound unequivocally by its UV spectrum and by mass 
spectrometry of both the native metabolite and its periodate 
cleavage product. Therefore, the disparity between our results 
and those of Hollis et al. (22) is difficult to explain. It is possible 
that their method of tissue preparation, which involved slow 
freezing and thawing of placental homogenates in the absence of 
protease inhibitors, may have permitted significant degradation 
of placental enzymes. 

Renal 24-hydroxylation appears to be catalyzed by a distinct 
cytochrome P450 enzyme encoded by a novel gene (43, 44). 
Ordinarily, 24-hydroxylase activity is not activated unless vita- 
min D target cells are stimulated by the administration of 
1,25(OH)2D3 (27). This proved to be the case for placental 
fibroblasts, because the cells metabolized 25(OH)D3 when they 

were preincubated with 1,25(OH)zD3 but not after culture in 
vitamin D-deficient media. In contrast, we have shown that a 
remarkable feature of trophoblast 24-hydroxylation is its high 
basal activity, even when culture conditions should have depleted 
the tissue of vitamin D metabolites. It is also unlikely that 
1,25(OH)2D3 present at the time of tissue harvesting was retained 
during the 2- to 4-d culture interval, because placenta in vitro 
very rapidly and efficiently metabolizes 1,25(OH)2D3 via the 
C24 and C23 oxidation pathways (45). 

In the intact, vitamin D-replete kidney, synthesis of 
24,25(OH)2D3 is the major pathway for 25(OH)D3 metabolism 
(46). In vitro administration of exogenous 1,25(OH)~D3 in a 
dose-dependent fashion increases recovery of 24,25(OH)zD3 and 
decreases recovery of 1,25(OH)zD3 in kidney (25, 26) and in 
extrarenal sites of 1,25(OH)2D3 synthesis (47, 48). In contrast to 
kidney, placenta apparently uses 24-hydroxylation as the pre- 
dominant 25(OH)D3 metabolic pathway regardless of the vita- 
min D status of the tissue. 

Conceivably, this high basal 24-hydroxylase activity explains 
why we could not consistently demonstrate 1,25(OH)2D3 pro- 
duction when placenta was incubated with physiologic concen- 
trations of 25(OH)D3, despite the use of very sensitive and 
specific HPLC systems to analyze vitamin Dl metabolites. These 
data are consistent with two previous reports that could not 
convincingly demonstrate 1,25(OH)zD3 production either by 
human placenta incubated with 6 nM 25(OH)D3 (20) or by rat 
yolk sac (a human placental homolog) incubated with 10 nM 
25(OH)D3 (49). In fact, all analytical characterization of placental 
25(OH)D3-1-hydroxylation in vitro has derived from studies of 
placental homogenates incubated with concentrations of 
25(OH)D3 (40-1 50 pM) (16, 19,2 1,22), which are much greater 
than the apparent Km for the 24R- and la-hydroxylases [235 
nM and 890 nM, respectively, for the rat renal mitochondria1 
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Fig. 3. HPLC analysis of the lipid extract of human trophoblast tissue. 
Placental explants were incubated for 20 h with 10 pM 25(OH)D3 
(including 4 rCi ['H]25(OH)Dd. Middle panel, one tenth of the lipid 
extract (tissue plus medium) was chromatographed on a Zorbax-SIL 
column eluted with a 2% isopropano1:hexane solvent system. UV ab- 
sorbance was recorded at 265 nm. Top panel, scanning spectrophotom- 
etry (205-320 nm) of each peak detected on the A265 trace indicates that 
three peaks contain the signature vitamin DJ triene chromophore, 
namely, nos. 2, 7, and 8, which eluted in the expected positions of 
25(0H)D~, 23,25(OH)?D~, and 24,25(OH)2D~, respectively. Bottom 
panel, the corresponding elution profile for the 'H radioactivity verifies 
that ['H]25(OH)D3 was metabolized to putative ['H]23,25(OH)zD~ and 
['H]24,25(0H)2D,. 

enzymes (50)]. Only in this fashion, i.e. when we administered 6 
to 10 pM 25(OH)D3 to cultured trophoblast or villous explants, 
could we consistently isolate a metabolite that possessed the 
chromatographic properties of 1,25(OH)zDs in three different 
HPLC systems. Our results suggest that this substrate range, 
which exceeds plasma 25(OH)D3 concentrations several-fold, 
saturates placental 24-hydroxylase and permits placental 
1,25(OH)zD3 accumulation by inhibiting the further metabolism 
of 1,25(OH)~D3 by 24-hydroxylation. Because trophoblast 24- 

ELUTION TIME (rnin) 

Fig. 4. HPLC identification of placental 24,25(OH)*D~ and its per- 
iodate cleavage product. Placental explants were incubated for 20 h with 
10 pM 25(0H)D~. The lipid extracts were purified on a Zorbax-SIL 
column using a 2% isopropanol:hexane, and the putative placental 
24,25(OH)zD3 peak was then rechromatographed using a methylene 
chloride-based solvent system. The final purified placental metabolite 
eluted as a single peak ( A )  with a retention time identical to that of the 
24,25(OH)2D3 standard (B). A portion of the putative placental 
24,25(OH)2D~ peak was then subjected to periodate cleavage as described 
in Materials and Methods. Sensitivity to periodate was demonstrated by 
HPLC using a 2% isopropano1:hexane solvent. The periodate cleavage 
products of the purified placental 24,25(OH)zD3 (C) and of the 
24,25(OH)2D3 standard (D) eluted as single peaks with identical retention 
times in this system. 

M I 2  
Fig. 5. Mass spectrum of the purified human placental 24,25(OH)2D~ 

periodate cleavage product, 25,26,27-tri~nor(OH)~D~-24-al. Structure of 
the compound and fragmentation pattern are shown in the insert. 

hydroxylase activity apparently is not saturated under physio- 
logic conditions, we speculate that 1,25(OH)~D3 synthesized 
locally in placenta may be rapidly catabolized, principally via 
C24 oxidation. Our preliminary observations indicate that this 
occurs when placenta is exposed to exogenous 1,25(OH)zD3 (45). 

We speculate that another consequence of this high placental 
24-hydroxylase activity might be the effective partition of the 
maternal and fetal circulations with respect to vitamin D3 me- 
tabolites. Human placenta performs a similar function in peri- 
natal corticosteroid metabolism. In that instance, high levels of 
fetal plasma cortisone have been explained by the activity of 
placental I lp-dehydrogenase, which converts maternal cortisol 
to fetal cortisone (51, 52). Similarly, placental 24-hydroxylase 
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