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ABSTRACT. Metalloporphyrin inhibitors of heme oxy
genase have been studied for use in the prevention of 
hyperbilirubinemia of the neonate. One report has sug
gested that incorporation of these drugs into liposomes can 
increase their localization to the spleen, dramatically re
ducing heme oxygenase activity in that important heme
degrading organ. We sought to further increase porphyrin 
delivery to the spleen by using reticuloendothelial blockade 
with blank liposomes 2 h before injection of 0.3 JLm ex
truded zinc protoporphyrin liposomes (L-ZnPP). Control 
adult rats without hemolysis had splenic heme oxygenase 
activity of 1.07 ± 0.09 nmol carbon monoxide (CO)/h/mg 
protein. Rats treated with L-ZnPP alone had splenic heme 
oxygenase activity of 0.53 ± 0.16 nmol CO/h/mg protein 
6 h after L-ZnPP dosing. However, rats treated with 1000 
JLmol of blank liposomes per kg to saturate the reticulo
endothelial system 2 h before L-ZnPP administration had 
splenic heme oxygenase activity of 0.25 ± 0.16 nmol CO/ 
h/mg protein at t = 6 h, which is significantly less than 
that of the L-ZnPP alone group (p < 0.05). In adult rats 
treated with heat-damaged red blood cells (RBC) to simu
late hemolysis, treatment with 10 of aqueous ZnPP 
per kg or 10 JLmol of untargeted L-ZnPP per kg did not 
produce a difference from control in total body bilirubin 
production as estimated by CO excretion. However, ROC
treated rats given 1000 of blank liposomes per kg 2 
h before L-ZnPP administration produced significantly less 
CO than control, aqueous ZnPP-treated, and untargeted 
L-ZnPP-treated rats from 8 to 12 h after RBC treatment. 
In addition, splenic heme oxygenase activity in ROC
treated rats receiving 10 JLmOI of targeted L-ZnPP per kg 
was completely eliminated 12 h after RBC treatment. 
These results indicate that targeting of L-ZnPP to the 
spleen with reticuloendothelial blockade leads to improved 
in vivo suppression of total body bilirubin production in 
adult rats treated with heat-damaged RBC. More complete 
inhibition of splenic heme oxygenase is the likely mecha
nism for this impro,·ed therapeutic effect. (Pediatr Res 34: 
1-5, 1993) 
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Neonatal hyperbilirubinemia continues to be a common con
cern, with more than 6% of newborns developing significant 
jaundice (serum bilirubin above 220 JLmol/L) nationwide (I). 
Bilirubin is produced from heme by a two-step pathway of which 
HO (EC 1.14.99.3) is the rate-limiting enzyme (2). In the neonate, 
bilirubin produced in the RES from senescent fetal RBC cannot 
be excreted by the immature conjugating mechanisms of the 
neonatal liver, leading to blood bilirubin levels far above those 
of normal adults. Severe neonatal hyperbilirubinemia is associ
ated with kernicterus and death, although the pathophysiology 
of this process is still being studied and debated (3-6). Current 
treatments for neonatal jaundice, such as phototherapy, focus 
on increasing the clearance of bilirubin from the blood. An 
experimental treatment for neonatal jaundice is being investi
gated that would use analogs of heme to competitively inhibit 
HO (7, 8). This approach is attractive because elevated bilirubin 
levels can be prevented. 

A variety of metalloporphyrin HO inhibitors have been studied 
in several animal models (7-11). The first trial ofSnPP in human 
neonates ( 12), however, was clinically unremarkable ( 13). Per
haps this was because insufficient amounts of metalloporphyrin 
were available to heme-degrading tissues of the RES at the low 
doses of 1-2 llmol SnPP per kg used in that study. One obvious 
way to increase the drug localized to the RES would be to increase 
the dose. However, this might lead to an increase in adverse 
reactions as well. Liposomal incorporation may make it possible 
to increase the amount of porphyrin localized to the RES without 
dose escalation. 

Liposomes are artificial lipid vesicles with one or more con
centric bilayers composed mainly of phospholipid and choles
terol. They can be used to encapsulate drugs in the aqueous 
volume, the lipid bilayer itself, or a combination of both (14). 
Their usefulness for the delivery of many drugs has been limited 
because most liposomes are quickly scavenged by RES ( 15). 
Landaw eta!. ( 16) incorporated SnPP into unsized multilamellar 
vesicles ofEPC and demonstrated increased localization ofSnPP 
to the spleen as compared with SnPP administered in the aqueous 
form, with a concomitant decrease in splenic HO activity. In 
addition, they showed decreased biliary bilirubin output in bile 
duct-cannulated rats treated with liposomal tin mesoporphyrin. 



2 HAMORI ET AL. 

Although liposomes are cleared from the blood by the RES, 
they actually accumulate poorly in the spleen relative to the liver 
in most circumstances. In general, more than 50% of an injected 
liposome dose will be taken up by the liver (Kupffer's cells), with 
only 10% going to the spleen ( 17). Targeting strategies can be 
used to increase the liposome dose delivered to the spleen. Our 
goals in the present study were: 1) to formulate and characterize 
a stable preparation of L-ZnPP; 2) to assess whether L-ZnPP 
could be targeted effectively to the spleen using reticuloendothe
lial blockade; and 3) to study in adult rats with and without 
hemolysis the therapeutic efficacy of targeted versus non targeted 
L-ZnPP, as reflected by suppression ofVeCO. 

MATERIALS AND METHODS 

Animals. Our animal use protocol was approved by the Stan
ford University Division of Laboratory Animal Medicine. Adult 
male Wistar rats (Simonsen Laboratories, Inc., Gilroy, CA) 
weighing 275 to 325 g were used. They were housed at 25 ± I ·c, 
with a 12-h light cycle starting at 0700 h, and maintained on a 
diet of Wayne MRH 22/5 Rodent Blox (Continental Grain Co., 
Chicago, IL) and unlimited water. They were fasted for 12 h 
before experimentation. Once experimentation was begun, they 
were kept in subdued light. 

Liposomes. EPC and EPG were purchased from A vanti Polar 
Lipids, Birmingham, AL. Cholesterol was obtained from Sigma 
Chemical Co., St. Louis, MO. ZnPP was from Porphyrin Prod
ucts, Inc., Logan, UT. All chemicals used were of reagent grade 
or better. Initial encapsulation studies of ZnPP were done using 
the ethanol injection method (18). Briefly, lipid and porphyrin 
powders were dissolved in ethanol to a volume of 10% of the 
final desired volume. This mixture was then injected slowly into 
vigorously stirred 100 mM potassium phosphate buffer, pH 7.4, 
to form liposomes. Although this method allowed us to study 
the bilayer binding characteristics of the porphyrin, we encoun
tered difficulties with size stability that were likely due to inade
quate solvent removal by dialysis. Thus, for animal studies, ZnPP 
liposomes were made by the thin film method ( 19). The total 
lipid concentration was 50 mM. EPC and EPG in a 4: I molar 
ratio were dissolved in chloroform and evaporated to a thin film 
under vacuum on a rotary evaporator. The dry film was addi
tionally placed at a vacuum of 5 mtorr for at least 12 h to remove 
residual solvent. ZnPP was made into a 3.2 mM solution by 
dissolving 20.0 mg of the powder into 500 JLL 10% (vol/vol) 
ethanolamine with stirring. The volume was brought to 7.5 mL 
with distilled water, and 1.0 mL of I M potassium phosphate 
buffer, pH 7.4, was added. The pH was titrated to 7.4 with I M 
HCI, and the final volume was brought to 10.0 mL with distilled 
water. The ZnPP solution was added to the dry lipid film and 
the mixture placed on a wrist shaker for 30 min. The resultant 
liposomes were sequentially extruded under nitrogen pressure 
three times through two stacked 0.4-JLm polycarbonate filters 
(Nucleopore Corp., Pleasanton, CA) held in a commercially 
available extrusion cell (Lipex, Vancouver, Canada). The mean 
particle size was approximately 0.3 Jlm as measured with a 
Coulter submicron particle sizer (Coulter Electronics, Inc., Hi
aleah, FL). In the phase contrast optical microscope, the tail 
(diameter?: 0.5 JLm) of the size distribution could be observed. 
No large liposomes or aggregates were seen. The fluorescence 
mode showed a uniform glow indicating homogeneous incor
poration of the porphyrin molecules into the liposomes. Blank 
liposomes for saturation of the RES were made to a concentra
tion of I 00 mM total lipid from EPC:EPG:cholesterol (I: I: I) by 
the same method with hydration with normal saline. Blank 
liposomes were also extruded to a size of0.3 Jlm. The liposomes 
were stored for up to I wk at 4-s·c. The size distribution and 
drug concentration did not change over this time period. 

ZnPP assay. Liposomes were assayed for ZnPP concentration 
spectrofluorimetrically using 90% ethanol/10% I M HCI (vol/ 

vol) as a solvent. The emission at 603 nm with excitation at 407 
nm was read and compared with a standard curve. 

Octanoljwater partition coefficient. A small amount of aqueous 
ZnPP was diluted with water to 1.0 mL total volume. One mL 
of 1-octanol was added, followed by vigorous mixing for at least 
I min. The phases were separated by centrifugation at 3000 X g 
for 15 min. The amount of ZnPP in each phase was quantitated, 
with the partition coefficient being the amount of drug in octanol 
divided by the amount in water. 

Encapsulation efficiency. The percentage of drug encapsulated 
was determined by suspending 100 JLL of liposomes in 900 JLL 
of saline in a microfuge tube and spinning at 15 000 x g for 15 
min. The amount of ZnPP in the pellet and supernatant was 
determined as above with encapsulation efficiency defined as the 
amount of drug recovered in the pellet divided by the total drug. 
For liposomes used in animals, this value was uniformly above 
90%. 

Plasma induced leak assay. Thin film L-ZnPP preparations 
were assayed for leakage in human plasma. The sample was 
diluted 10-fold in normal saline and mixed I: I with pooled 
human plasma. The mixture was incubated for I h at 37"C, then 
separated on a 20-cm Bio-Gel A 15 M column (Biorad Labora
tories, Richmond, CA) eluted with degassed normal saline. Frac
tions of 0.5 mL were collected and assayed for ZnPP concentra
tion. Encapsulation efficiency was defined as the ratio of the first 
peak (liposomes) to the total recovered drug. For these thin film 
preparations, 40 to 50% of the drug was found to leak out in I 
h. 

Hemin solution. Hemin for simulation of hemolysis was made 
into a 6 mM solution similar to ZnPP. Thirty Jlmol hemin per 
kg body weight were injected by the i.p. route. 

Damaged RBC. Fresh blood from two donor rats was collected 
by cardiac puncture into acid citrate dextrose. The RBC were 
isolated by centifugation at 3000 X g for 15 min, and incubated 
at 49.5 ± OSC for 20 min (20). The cells were washed twice 
with 1.5 volumes of normal saline and resuspended in one 
volume of normal saline for injection of 1.5 mL via the tail vein. 
The total Hb was measured by the cyanmethemoglobin proce
dure (Bulletin 525, Sigma Chemical Co.). The amount of heme 
injected was approximately 30 Jlmol/kg body weight. 

VeCO. The in vivo total body bilirubin production was esti
mated using measurements of the VeCO. This technique has 
been described in detail elsewhere ( 10, II). 

HO assay. The HO activity of supernatant fractions of ho
mogenized liver and spleen centrifuged at 15 000 X g for 15 min 
was determined using a gas chromatographic assay described 
previously ( 10, II, 21 ). 

Experimental procedure. Our targeting method was first as
sessed in adult rats without hemolysis. An initial VeCO was 
determined. Control animals received either an RES saturating 
dose of 1000 Jlmol total lipid per kg i.p. as blank liposomes or 
an equal volume of saline i.p. followed 2 h later by an i.p. dose 
of blank liposomes equal to 150 Jlmol total lipid per kg. Experi
mental animals were given either an RES saturating dose of 
blank liposomes or an equal volume of saline, followed 2 h later 
by I 0 Jlmol L-ZnPP per kg. Six h after L-ZnPP treatment, the 
animals were again assayed for VeCO, killed, and the livers and 
spleens were assayed for HO activity. 

The assessment of L-ZnPP in a hemolytic model was done by 
two methods: first, using an i.p. dose of hemin solution; second, 
using an i.v. dose of heat-damaged RBC. Both sets of experiments 
were done using essentially the same protocol. An initial VeCO 
was determined at t = 0 h. A dose of 30 Jlmol hemin per kg 
( -1.5 mL i.p.) or approximately 30 JLmol RBC heme per kg ( 1.5 
mL i.v.) was administered to each animal. At this time, animals 
also received either an i.p. injection of saline or an i.p. dose of 
1000 Jlmoi total lipid per kg as blank liposomes to saturate the 
RES. At t = 2 h, the VeCO was again measured, after which the 
animals were given an i.p. dose of 10 Jlmol L-ZnPP per kg, an 
equal volume of blank liposomes, or 10 Jlmol aqueous ZnPP per 



ZnPP LIPOSOMES TARGETED TO THE SPLEEN 3 

kg. Bihourly VeCO readings were then performed until CO 
excretion returned to near baseline levels. Animals that had been 
given damaged RBC were killed at t = 12 hand assayed for HO 
activity in the liver and spleen. 

Statistics. The data are expressed as a mean± SD; the number 
of determinations is given in parentheses. Data were analyzed 
using a one-way analysis of variance. Statistical differences be
tween groups were determined using the Scheffe F-test. 

RESULTS 

Table I shows the encapsulation of ZnPP into liposomes by 
the ethanol injection method. The optimum encapsulated drug 
to lipid ratio was about I: 16, allowing greater than 90% of the 
drug to be encapsulated with no need for free drug removal. The 
octanol:water partition coefficient of ZnPP was found to be 3.2 
± 0.2 (not shown), which indicates that most of the encapsulated 
ZnPP is located in the bilayer of the liposomes ( 17). 

The effect of targeting ZnPP liposomes to the spleen of adult 
rats without hemolysis is shown in Table 2. The HO activity in 
the spleens and livers of both L-ZnPP-treated groups was signif
icantly ( p < 0.0 I) lower than that of the controls. In addition, 
the splenic HO activity in the rats receiving a predose of blank 
liposomes to saturate the RES was significantly (p < 0.05) lower 
than that of animals who had received a predose of saline before 
administration of L-ZnPP. Six h after L-ZnPP administration, 
the VeCO of the saline-pretreated group had dropped to 79% of 
its initial value, and the VeCO of the liposome-pretreated group 
had dropped to 72% of its initial value. The VeCO of the control 
group did not change over this time period. The difference in 
VeCO between the two L-ZnPP-treated groups and the control 
group was significant at p < 0.0 I. 

Figure lA shows the results of the VeCO readings of animals 
that had been treated with an i.p. dose of hemin to simulate 
hemolysis. An initial rise in the VeCO was seen in all animals. 
Administration of L-ZnPP at t = 2 h blocked further rises in the 
VeCO over the next 10 h. L-ZnPP-treated rats, pretreated with 
saline, produced significantly (p < 0.01) less CO than liposome
treated controls at t = 6 and t = 8 h. L-ZnPP-treated rats 
pretreated with the blank liposomes produced significantly less 
CO than controls from t = 4 to t = 8 h. Aqueous ZnPP at a dose 
of 10 administered at t = 2 h produced no statistical 
difference from control in this model. Both groups of animals 
dosed with L-ZnPP showed statistical difference (p < 0.01) from 
the aqueous ZnPP-treated group, the saline-predosed group at t 
= 8 h, and the liposome-predosed group a t = 4, 6, and 8 h. 
There was no statistical difference between L-ZnPP-treated rats 
predosed with saline, and those predosed with an RES saturating 
dose of blank liposomes over the course of this experiment. 

Figure IB shows the results of VeCO determinations in ani
mals treated with damaged RBC to simulate hemolysis. All rats 
given damaged RBC showed a rapid rise in the VeCO. Animals 
given a pretreatment of blank liposomes to saturate the RES 2 h 
before L-ZnPP showed a more rapid decline in VeCO from t = 
6 to 12 h than did control, aqueous ZnPP-treated, or saline
pretreated L-ZnPP-treated animals. Lipid-pretreated animals 
produced significantly (p < 0.05) less CO at t = 8, 10, and 12 h 
after RBC treatment compared with all other groups. 

Table 3 shows the liver and spleen HO activity of the animals 
from Figure lB killed at t = 12 h. All ZnPP-treated groups had 
significantly decreased liver HO activity relative to controls. In 
addition, both L-ZnPP-treated groups had significantly de
creased splenic HO activity relative to controls. In the lipid 
pretreated group, splenic HO activity was completely eliminated. 

DISCUSSION 

The encapsulation of porphyrins into liposomes is not a new 
idea. The work of Jori et a/. with porphyrin liposomes for use in 
photodynamic destruction of tumors ( 18, 22, 23) has been exten
sive. This article provides the second report of the use of porphy
rins and liposomes toward the goal of preventing jaundice in 
neonates. We have shown that ZnPP can be incorporated into 
liposomes of EPC and EPG with good efficiency by both the 
ethanol injection and thin film methods. Our thin film prepara
tions were easily extruded to 0.3 without loss of drug or 
encapsulation efficiency. Because the negatively charged EPG 
was included in the bilayer, our liposomal suspension did not 
aggregate even after a week of storage, and our experience with 
other negatively charged preparations leads us to believe that this 
formulation could be stored much longer. Furthermore, when 
prepared with the proper cryoprotectant, we have found that 
similar preparations are easily lyophilized, increasing shelf-life 
dramatically. In contrast, neutral EPC preparations are in general 
quite unstable and would be expected to form uninjectable 
aggregates in a matter of days. 

In adult rats without hemolysis, a dose of 10 L-ZnPP 
per kg suppressed the VeCO and liver and spleen HO activity to 
a level comparable to that reached using an aqueous dose of 40 

ZnPP per kg ( 10). Our results also indicate that reticulo
endothelial blockade with blank liposomes 2 h before adminis
tration of L-ZnPP increases the degree to which splenic HO is 
inhibited. Interestingly, it was difficult to correlate this increased 
splenic HO inhibition with increased therapeutic efficacy as 
renected by suppression of the VeCO. 

We believe that, because bilirubin production in the adult rat 
without hemolysis is rather limited, this model was not sensitive 
enough for us to discern a true difference. Yet, the results also 
indicate that there was essentially no benefit seen due to targeting 
ofZnPP to the spleen in the inhibition of the VeCO of adult rats 
when i.p. hemin was given to simulate hemolysis. However, 
when damaged RBC were injected i.v. as a hemolytic challenge, 
the results were strikingly different. Liposomal ZnPP produced 
no difference from control unless a pretreatment of blank lipo
somes was given to saturate the RES. This raises the question of 
which of these two hemolytic models is more representative of 
jaundice in the neonate. 

Serum albumin is a well-described carrier of endogenous por
phyrins. Yet, few studies of the pharmacodynamics of injected 
exogenous porphyrins have been reported. The photosensitizer 
hematoporphyrin injected as an aqueous solution associates 
heavily with plasma lipoproteins, especially HDL, in which it 
can circulate for extended periods of time (23). Other evidence 
indicates that hemopexin would carry a substantial portion of 
SnPP injected as an aqueous solution (24). The degree of por
phyrin association with lipoproteins and hemopexin is related to 

Table I. Encapsulation ofZnPP into ethanol injection liposomes of varying formulation• 

Formulation 

EPC:Ch (n = 3) 
EPC:EPG:Ch (n = 3) 
EPC (n = 3) 
EPC (n = 2) 
EPC:EPG (n = 3) 

Molar ratio 

55:45 
45:10:45 

100 
100 

80:20 

[Lipid] [ZnPP) Encapsulation 
(!lmol/mL) efficiency(%) 

25 1.6 50± 8 
25 1.6 56± 6 
25 1.6 95 ± 4 
25 3.2 67 
25 1.6 96 ± 3 

*[Lipid], lipid concentration; [ZnPP), ZnPP concentration; Ch, cholesterol. 

Drug: lipid 

1:31 
1:28 
1:16 
1:12 
1:16 

t This reflects the ratio of encapsulated drug to total lipid. Calculation is as follows: [ZnPP] x encapsulation efficiency/[Lipid]. 
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Table 2. Effect ofZnPP liposomes on total body bilirubin production and tissue 110 activity in adult rat* 

HO activity (nmol CO/h/mg protein) VeCO (11L CO/kg/h) 

Group Spleen Liver t = 0 h t- 6 h 

Control (n = 4) 1.07 ± 0.09 0.37 ± 0.04 19.1 ± 1.6 19.2 ± 0.5 
Saline+ L-ZnPP (n = 5) 0.53 ± 0.16t 0.06 ± 0.02t 18.8 ± 1.3 14.8 ± 2.0t 
Liposome + L-ZnPP (n = 5) 0.25 + 0.16H 0.06 + 0.02t 19.1 + 1.1 13.8 + l.lt 

*An initial VeCO was determined and the animals were predosed with 1000 !'mol total lipid per kg as blank liposomes or saline as indicated. 
Two h_ later, were given 10 !'mol L-ZnPP per kg or an equal volume of blank liposomes. Six h later, the VeCO was again measured, and 
the ammals were k11led and assayed for HO in the indicated tissues. 

t p < 0.01 relative to controls, SchefTe F-test. 
t p < 0.05 relative to the saline-pretreated group, SchefTe F-test. 

Hcmc(A) 

Blank L(JI ) L-ZnPP(D •> +
RBC(B) +Blank L(.6.) 
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70 salinc(.6.. D ) 
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0 70 
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0 2 4 6 8 10 12 

hours 
Fig. I. CO production in adult rats with simulated hemolysis. An 

initial VeCO was determined at t = 0 h. All animals were then treated 
i.p. with either 30 !'mol hemin per kg body weight (A) or i.v. with 
approximately 30 !'mol heme per kg in the form of heat-damaged RBC 
(B). The two arrows above panel A indicate what pretreatment and 
treatment, respectively, each group of animals, represented by the sym
bols, received at the indicated time point. At t = 0, animals represented 
by • were pretreated with 1000 !'mol total lipid per kg body weight as 
blank liposomes (Blank L) per kg body weight (n = 4). Animals repre
sented by • were given 10 !'mol aqueous ZnPP (Aq ZnPP) per kg body 
weight (n = 4). Liposome encapsulated ZnPP (L-ZnPP) was given to 
both the saline-pretreated (n = 3, D) and the liposome-pretreated (n = 
3; •> animals. VeCO readings were continued until t = 12 h.(* indicates 
p < 0.01 compared with controls; t indicates p < 0.01 compared with 
saline-pretreated L-ZnPP-treated group; # indicates p < 0.05 compared 
with aqueous ZnPP group). 

Table 3. Heme oxygenase activity (nmol CO/h/mg protein) in 
tissues of adult rats from Figure 1 B killed at t = 12 h* 

Group 

Control (n = 4) 
Aqueous ZnPP (n = 4) 
Saline+ L-ZnPP (n = 3) 
Liposomes + L-ZnPP (n = 3) 

* ND, none detected. 

Spleen 

1.33 ± 0.44 
0.73 ± 0.20 
0.25 ± 0.07t 

NDtt 

t p < 0.01 compared with control, SchefTe F-test. 

Liver 

0.31 ± 0.05 
0.23 ± 0.03t 
0.12 ± 0.02t 
o.o9 ± o.02H 

* p < 0.0 I compared with aqueous ZnPP group, SchefTe F-test. 

hydrophobicity (23, 24). Because hemin, like SnPP and hema
toporphyrin, is hydrophobic, it likely would associate with 
plasma lipoproteins and hemopexin after injection and would be 
cleared from the circulation by the hepatocyte, not the RES 
macrophage. Thus, injection of aqueous hemin would preferen
tially stimulate liver, specifically hepatocyte, HO activity. In 
contrast, heat-damaged RBC are cleared from the circulation by 
the macrophages of the RES, particularly those in the spleen 
(20). A similar mechanism is responsible for clearing damaged 
RBC from the circulation of the neonate with hemolytic disease 
( l ). Thus, injection of heat-damaged RBC into the rat is probably 
a better model for studying neonatal jaundice than injection of 
aqueous hemin. When we focus only on the results of the VeCO 
readings in animals treated with damaged RBC, we see a clear 
benefit of targeting ZnPP to the spleen. 

In general, we have demonstrated more complete inhibition 
of liver HO activity than of splenic HO activity in vivo with 
administration of aqueous ZnPP ( 10, 11 ). As mentioned earlier 
this is probably due to delivery of the majority of injected 
porphyrin to the hepatocyte by hemopexin and lipoproteins. 
However, a large portion of the heme from senescent RBC is 
probably converted to bilirubin in the spleen (I). In the present 
study, the splenic HO activity that was not eliminated in the 
aqueous ZnPP-treated group and the saline-predosed L-ZnPP
treated group from Figure lB was evidently enough to allow 
those animals to keep pace with controls as far as total body CO 
production. Because the splenic HO activity of the liposome
pretreated rats represented in Figure !B was totally eliminated 
a significant decrease in total CO production was observed 
t = 8 to 12 h relative to the other three groups. These results 
confirm the hypothesis of Landaw et a/. ( 16) that delivery of 
adequate porphyrin to the spleen represents a major stumbling 
block to the optimum use of metalloporphyrin HO inhibitors as 
a therapy for neonatal jaundice. 

We have demonstrated in a rodent model that active targeting 
of L-ZnPP to the spleen using reticuloendothelial blockade can 
increase HO inhibition there, with a corresponding decrease in 
VeCO when damaged RBC are injected as a hemolytic challenge. 
This targeting method, however, is cumbersome and might have 
adverse consequences, such as increased risk of infection in the 
high-risk neonate. Recent work using sterically stabilized lipo
s'?mes with extended blood circulation times (Stealth liposomes, 
L1posome Technology, Inc., Menlo Park, CA) has shown that 
almost 50% of an injected dose of large liposomes can be 
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delivered to the spleen, with most of the balance being delivered 
to the liver and less than 10% going to other tissues (25, 26). 
This phenomenon depends on the size of the liposome and the 
use of special lipids in the bilayer (27). The use of Stealth 
liposomes to encapsulate relatively lipid-soluble metallopor
phyrin inhibitors ofHO such as ZnPP might increase the potency 
of these drugs by allowing maximum delivery of inhibitor to 
heme-degrading tissues. At the same time, porphyrin would not 
be delivered to tissues where it might cause adverse reactions. 
We would predict large increases in the therapeutic efficacy of 
these drugs were this proved to be the case. 
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