RENAL FRACTIONAL EXCRETION (FE) OF HUMAN GROWTH HORMONE (HGH) IS CORRELATED TO INULIN CLEARANCE (GFR) AND PROXIMAL TUBULAR FUNCTION. L.B.Zimmerhackl* W.V. Petrykowski, M.Hentschel*, J.Girard ${ }^{1}$, M.Brandis ${ }^{*}$. Depts. of Pediatrics, Universities Freiburg, Germany and Basel ${ }^{1}$, Switzerland

Urinary HGH has been proposed to evaluate HGH secretion. Renal excretion of microproteins, including HGH, depend on GFR and proximal tubular reabsorption. In 15 children with various renal diseases HGH excretion was compared to inulin clearance (GFR) with a mean \pm SEM of $108 \pm 15 \mathrm{ml} / \mathrm{min} * 1.73 \mathrm{~m}^{2}$ (range 22-238) and renal tubular function determined by albumin (ALB) and α_{1}-microglobulin ($\left.\alpha_{1}-M G\right)$ excretion under standardized conditions (fasting, volume load 2% of body weight per h). HGH concentrations $(n=44)$ were measured with two different antibodies by RIA, Nordisk and own (Girard) method. With both assays HGH was significantly correlated to ALB (mean \pm SEM: $628 \pm 342 \mathrm{mg} / \mathrm{l}$) with R of 0,50 ($p<0.001$, Nordisk) and $R=0,41$ ($p<0.01$, Girard), and $\alpha_{1}-M G$ ($7.9 \pm 3.0 \mathrm{mg} / \mathrm{l}$) with $\mathrm{R}=0,42$ and $\mathrm{R}=0,52$ ($\mathrm{p}<0.01$ and $\mathrm{p}<0.001$). FE of HGH was inversely correlated to GFR ($\mathrm{R}=0.61, \mathrm{p}<0.001$) but independant of urinary flow rate. Conclusion: To exclude disturbed renal handing urinary HGH concentrations should be evaluated in conjunction with albumin and $\alpha 1-M G$ to establish glomerular and proximal tubular integrity.

345

PUBERTAL GROWTH, ADULT HEIGHT (AH) AND TARGET HEIGHT (TH) IN 50 PATIENTS TREATED FOR ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) - A LONGITUDINAL STUDY JH. Bramswig. G. Zielinski, G. Schellong, H. Jürgens University Children's Hospital, D-4400 Münster, Germany

Several recent reports have indicated, that early puberty and impaired pubertal growh cur in patients treated for ALL. Rarely a long-term longitudinal follow in tas bee reported including the adolescent growh-spurt, the AH and TH of patients treated with the same protoco
50 patients are in 1 st CCR after treatment for ALL. with the $8 F M-70$ and BFM-76-protocol occur within the 1 st year atter therapy.
All patients received intensive induction chemotherapy and prophylactic cranial irradiation with 18 or 24 Gy. Maintenance chemotherapy consisted of daily purinethol and weekly methotrexate (BMF-76) or weekly methotrexate and cyclophosphamide (BFM-70) as we The total duration of therapy was $21 / 2$ (BFM-70) or $2 \mathrm{vs} .21 / 2$ years (BFM 76). The total duration of therapy was $21 / 2$ ($\operatorname{FFM}-70$) or $2 \mathrm{vs} 21 /$.2 years ($8 F \mathrm{M} 76$).
Pubertal growh was docurnented at different time intervals during puberty including peak height velocity. PHV was $8.8 \pm 2.1 \mathrm{~cm}$ in girls and $9.1 \pm 0.5 \mathrm{~cm}$ in boys, comparing favourably with normal standards of $9.8 \pm 1.2 \mathrm{~cm}$ in boys and $8.1 \pm 1.2 \mathrm{~cm}$ in girls (Buckler, 1990). Normal growth was also noted for other pubertal periods i.e. menarche to AH, PHV to AH etc.. On the other hand the age of PHV was early in girls 10.7 ± 1.4 years vs 12.2 ± 1.0 years (controls) and normal in boys ($13.6 \pm 10.3 \mathrm{vs} 13.9 \pm 0.8$ years). While growth was normal during puberty the mean height-SDS before, after therapy and group of boys and girls. In contrast, normal adult ietight was reached with $179.7+6.4 \mathrm{~cm}$ (boys) and $163.5 \pm 6.1 \mathrm{~cm}$ (girls) which was not different from TH (Tanner method) of $177.5 \pm 4.5 \mathrm{~cm}$ and $163.2 \pm 3.1 \mathrm{~cm}$.
We conclude, that height-SDS for CA is a poor predictor of growth and AH, because it indicates a continuous loss of height potential. Since AK is normal and not different from TH, no major loss of height is present. Thus, TH is the most appropriate method in evaluating growth and estimating AH in patients treated for ALL

PREDICTED HEIGHT AND ADULT HEIGHT IN GIRLS WITH UNTREATEO CONSTITUTIONAL TALL STATURE (CTS). A RETROSPECTIVE ANALYSIS OF THE TARGET HEIGHT (TH), BAYLEY-PINNEAU (BP), ROCHE-Wainer-thissen (rWT) AND tandier-whitehouse (Tw) methods of heicht prediction. B. Oest, - 4400 Münster, Germany

Height predictions are performed in girls with CTS using various methods of height prediction (HP). Rarely, adult height (AH) and predicted height have been analysed in larger group of untreated tall girls to evaluate the accuracy of each prediction method. Adult height was measured in 104 women previously seen for CTS. Bone age (BA) was reevaluated in all patients using the Greulich-Pyle (GP) and Tanner-khitehouse TW2-RUS method of BA determination. CA and BA were not different by more than 1 year (GP-method). HP were performed according to the TH-, BP-, RWT- and TW-Mark I and TW-Mark II methods. In addition, HP were calculated for the TW methods with midpar 12.9 ± 1.4 years $(x \pm$ SO), BA 13.2 ± 1.4 years (GP) and 14.0 ± 1.3 years (TW II-RUS) AH was $179.8 \pm 3.8 \mathrm{~cm} .114$ height predictions were performed $\overline{\mathrm{a}} \mathrm{t}$. different $S A$ groups starting at 10 years.
The BP-method was the only method overestimating AH by $0.5+2.7 \mathrm{~cm}$ (total group). All other methods underestimated AH (RWT $-1.8 \pm 2.3 \mathrm{~cm}$, TW-Mark $\operatorname{I~}-2.7 \pm 2.6 \mathrm{~cm}$, TW-Mark II $-1.7 \pm 2.5 \mathrm{~cm}$). Ho major improvement was noted, when MPH or age of menarche were included. TH underestimated $A H$ by $-6.5 \pm 4.3 \mathrm{~cm}$. 8 patients with an $A H$ of 178.7 cm had two HP performed at a mean CA of 11.5 and 13.1 years. Mean HP were almost identical with 178.4 cm vs 178.3 cm (BP) and 177.7 cm vs 176.1 cm (TW-Mark II). we conclude, fairly accurate results were obtained für the total group of tall girls with almost all height predictions. Repeated HP, performed in a small number of patients, did not improve the accuracy of the method. With AH being much taller than TH the height gain in tall giris obviously exceeds the magnitude of the average secular growth change.

IGF-I, IGF BINDING PROTEIN-3 AND PROCOLLAGEN I AND $11 I$ IN ASTHPATIC CHILDREN rrealed with low doses of pheinnisol one.
O.D. Wollhers, A. Juul*, M. Hansen**, J. Hueller* and S. Pedersen Department of Paediatrics, Kolding Hospital, Kolling, "Department of Growth and Reproduction, Rigsinuspitalet and *Department of Rheumatology, Hvidovre Hospital, Demarark.

Little is known about the mechanisms of the growth whibiting effect of exogeneous glucocorticusteruids. The sim of the present study was to assesss whether low doses of oral prednisolone affect serum leveis of $[\mathrm{LF}-1$, I $\mathrm{F} F$ binding protein-3, the carboxyterminal propeptide of type i procoliagen (PICP) and the aminoterminal propeptide of type III procollagen (PIIINP). A group of 10 children with atstima aged $7-11$ years was studied. The design was a randonised double-blind cross-over trial with run-in, wash-out and two active periods of 15 days. During run-in and wash-out placebo was given. During active treatment periods 2.5 or 5 mg prednisolone were given per day. Blood samples were taken at the end of the periods. IGF-1 and IGFBP-3 were not statistically sigrificantly influenced by the treatinents. PICP (ng/mi) was 345 (run-in; $319(2.5 \mathrm{mg})$ and 275 (5 mg) ; Pages test:P<U.05. PIIINP. (ng/ml) was 7.84 (run-in), 5.96 $(2.5 \mathrm{mg})$ and $4.69(5.0 \mathrm{mg})$; Pages test: $P<0.01$. Jral predntsolone causes a dose related reduction of procollagen I and fll indicatimy a suppression of collagen synthesis. This may explain the growth retarding effect of systemic glucocorticosteroids.

348

GROWTH HORMONE TIIERAPY OF CHILDDEN WITH DOWN SYNDROME RESULTS IN NORMALIZED GROWTH VELOCITY
J. Gustafsson, C. Carlsson-Skwirut, V.R. Sara, T. Tuvemo and G. Annerén, Departments of Pediatrics and Clinical Genetics, University Hospital, Uppsala and Karolinska Institute's Department of Pathology, Karolinska Hospital, Stockholm, Sweden.

Growth velocity is markedly reduced in children with Down syndrome (DS) between 6 months and 3 years of age, but is almost normal after 3 years of age. Thus, the growth retardation becomes pronounced during the period when growth hormone (GH) starts to stimulate growth. We report the long term effects of GH-therapy in 16 children with DS. Treatment with Genotropin, $0.1 \mathrm{U} / \mathrm{kg} \mathrm{BW} /$ day was started at a mean age of 7.4 (6-9) months. The results after $12(\mathrm{n}=16), 24(\mathrm{n}=14)$ and $30(\mathrm{n}=10)$ months are presented. The mean height standard deviation score (Swedish standard) before therapy was -1.8 and the mean head circumference was -1.2 . After 12, 24 and 30 months the mean height SDS were $-1.1,-0.9$ and -0.9 and the mean head circumference SDS were $-1.1,-1.1$ and -1.2 , respectively.
Conclusion: During GH-treatment the children with DS did not deviate further from the Swedish growth standard. As compared to growth charts for children with DS (Pediatrics 81:102, 1988) the mean height started at the 50 th centile and reached the 90 th centile after 24 months of treatment. The head circumference was not affected by the therapy.

349

GARDIAC MRI IN R-AG: TREA MED ZHILDREN. P.Amendt, K.-3. Sandring any S.Gellert, Childrens Hospital and Institute for Diagnostic Radiology, "fumboldt-University (Charite"), o-1040 Berlin, Germany

To evaluate side effects of a human growth hormone therapy (r-hGf) we performed standard ECG-gated ARI (multiple slice echo sequence, 1.5 T). We investigated 12 girls with Turner's syndrome (TS, chronological age 3.5 to 19.1 years, $r-h \mathrm{G} .1$ dosis $13-24 \mathrm{IU} / \mathrm{m}^{2} /$ week, period of treatment 24 to 35 months) and 14 children (normotonic) with chronic renal failure (CRF, chron. age 4.1 to 15.8 wears, r-hGG josis $23-32 \mathrm{IU} / \mathrm{m} 2 / \mathrm{w}$, treatment period 3 to ll months). There were no pathological findings in the group of TS patients whereas in 3 of 14 cases suffering from CRF we have seen circumscriptal thickness of the central and basal part of the septum of the heart without any evidence of left ventricular hypertrophy. The signal intensity of these suspected areas were identical to normal myocardium. These abnormalitiss were found to be unchanged (e.g. without any progression) under further treatment of 5 months. Although the etiology of this regreatment myocartial hypertronhy of the intraventricular septum of the heart is still unknown, such myocardial changes may be related to metabolic disturbances in uremic children and/or to the higher r-hG't dosis used in the group of CRF in comparison to IS .

