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ABSTRACT. A variety of peripheral neuropathies are 
believed to be immune-mediated. Acute inflammatory de- 
myelinating polyneuropathy or Guillain-Barre syndrome 
(GBS) is the prototype of these neuropathies. GBS is 
characterized by acute progressive motor weakness of the 
extremities and of bulbar and facial musculature. Deep 
tendon reflexes are reduced or absent, and sensory symp- 
toms are mild. Respiratory failure and autonomic dysfunc- 
tion may be seen. The cerebrospinal fluid shows increased 
protein and no or very few cells. The nerve conduction 
velocity is slowed, and the pathology shows segmental 
demyelination with mononuclear cell infiltration. Studies 
from man and experimental animals suggest an immuno- 
logic basis for demyelination of the peripheral nerves in 
GBS, but the mechanism is not well understood. Experi- 
mental allergic neuritis, an animal model of GBS, is in- 
duced in laboratory animals by immunization with myelin 
Pz protein, some peptides of Pz protein, and galactocere- 
broside. The animals develop weakness and show electro- 
physiologic and pathologic features similar to GBS. P2- 
reactive T cells and antigalactocerebroside antisera can 
adoptively transfer experimental allergic neuritis. Various 
antibodies to peripheral nerve myelin and circulating im- 
mune complexes have been found in patients with GBS. 
The target antigen(s) for these antibodies are not well 
understood, but neutral glycolipids cross-reactive with 
Forssman antigen and gangliosides are possible candidates. 
The mainstay of therapy is the management of the para- 
lyzed patient. Steroids are ineffective. Plasmapheresis, 
especially early in the course of the disease, can shorten 
the duration of paralysis and intubation. Results from a 
multicenter study in the Netherlands demonstrate the ef- 
ficacy of high-dose immune globulin therapy in GBS. In 
this review, Guillain-Barre syndrome as a putative im- 
mune-mediated neuropathy is discussed in detail. Chronic 
inflammatory demyelinating polyneuropathy, neuropathies 
associated with paraproteinemias, AIDS, and Lyme dis- 
ease are discussed briefly. Neuropathies with features of 
inflammation secondary to other infections and collagen 
vascular disorders are not the subject of this review. 
(Pediatr Res 33 (Suppl): S90-S94,1993) 

Abbreviations 

IVIG, intravenous immune globulin 

GUILLAIN-BARRE SYNDROME 

Clinical aspects. GBS is a distinct clinical entity characterized 
by acute progressive motor weakness of the extremities and of 
bulbar and facial musculature. Deep tendon reflexes are reduced 
or absent and sensory symptoms are mild. 

The CSF shows albuminocytologic dissociation with increased 
protein and no or very few cells. Electrophysiologically, the 
disease has features of demyelination and pathology shows seg- 
mental demyelination with mononuclear cell infiltration. 

An ad hoc National Institute of Neurological Disorders and 
Stroke committee produced guidelines for the diagnosis of GBS 
(I). These criteria are somewhat restrictive and exclude certain 
nosologic entities such as: 1 )  Miller Fisher syndrome of ophthal- 
moplegia, ataxia, and areflexia; 2) sensory loss and areflexia; 3) 
polyneuritis cranialis; and 4) pandysautonomia. These disorders 
are generally believed to be "variants" of GBS (1). 

Motor weakness usually develops rapidly. More than 90% of 
patients with GBS cease to progress within 4 wk into the disease. 
Recovery usually begins 2 to 4 wk after the cessation of progres- 
sion but may be delayed for months (1). Many patients are left 
with a residual deficit after 1 y (2). In another study, the median 
time of recovery to independent walking was 85 d, and for those 
on a respirator it was 169 d (3). Autonomic dysfunction such as 
cardiac arrhythmias, tachycardia, postural hypotension, and hy- 
pertension are seen and at times could be fatal. Conditions such 
as hexacarbon abuse, porphyria, diphtheria, lead poisoning, bot- 
ulism, toxic neuropathies, hysteria, tic paralysis, and poliomye- 
litis occasionally may be confused with GBS and need to be 
ruled out. 

Epidemiology. The incidence of GBS varies from 0.6 to 1.91 
100 000 per year (3). The disease is widely distributed throughout 
the world. Children and adults of both sexes are affected. There 
seems to be a bimodal distribution of patients, with the major 
peak in patients aged 16 to 25 y and a smaller peak in those aged 
45 to 60 y. Males and Caucasians seem to be most susceptible 
(4). GBS was the most likely etiology (15%) in 162 cases of 
neuropathy evaluated in the Children's Hospital of Philadelphia 

CIDP, chronic inflammatory demyelinating polyneuropa- (5). 
thy 

In a survey of more than 1000 cases of GBS, approximately 

CMV, cytomegalovirus 66% had had a viral-like illness, mainly in the respiratory and 

CSF, cerebrospinal fluid gastrointestinal tracts, within 8 wk of the onset of GBS and about 

EAN, experimental allergic neuritis 90% had had a viral-like illness within 1 mo of expressing GBS 
EBV, Epstein-Barr virus symptoms. Five percent had a previous surgical procedure and 

GBS, Guillain-Barre syndrome 4.5% had received vaccinations. A cluster of GBS occurred in 
HIV, human immunodeficiency virus the United States in 1976-1977, after vaccination with A/New 

Jersey influenza. No similar outbreak occurred in a military 
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to CMV are seen in 10-15% of GBS cases. Ten percent have 
antibodies to EBV and 5% have serologic evidence of Myco- 
plasma pneumoniae (6). An interesting association between GBS 
and Campylobacterjejuni has been reported. In one study, 38% 
of 56 consecutive GBS patients in an Australian hospital had 
positive serology for C. jejuni. None of the 57 normal patients 
and patients with other neurologic diseases had evidence of C. 
jejuni infection (7). Others have found a lower percentage (18%) 
of GBS patients to have the antibody to these bacteria (8). GBS- 
like syndromes are also seen in patients with AIDS and Lyme 
disease (9, 10). 

Pathogenesis. There is strong evidence that demyelination in 
the peripheral nerves and consequent neurologic deficit in GBS 
are the result of an immunologic attack on the peripheral nervous 
system myelin or possibly Schwann cells. This evidence is derived 
from immunologic and pathologic studies on the patients with 
GBS and data from an animal model of the disease, EAN. 

EAN is induced in various laboratory animals by immuniza- 
tion with whole nerve, peripheral nervous system myelin, one of 
the myelin basic proteins (Pz), some peptides of Pz protein ( 1  1- 
14), and galactocerebroside (15). Recently, a synthetic peptide 
corresponding to 53-78 amino acid residues of P2 protein was 
also shown to produce severe EAN in Lewis rats (16). About 2 
wk after immunization, the animals develop weight loss, flaccid 
tail, ataxia, and paraplegia, or, in severe cases, tetraplegia. The 
majority of the animals recover from the disease in about 1 wk. 

Starting 10 d after immunization, there is electrophysiologic 
evidence of slowing in the sciatic motor conduction, which is 
slowest about 24 d postimmunization. There is dispersion of 
action potentials, conduction block, and prolongation of F-wave 
latencies, which are the electrophysiologic hallmarks of demye- 
lination (14). In rats, the pathologic changes of EAN consist of 
multifocal areas of primary demyelination in dorsal root ganglia, 
roots, and sciatic nerves. Demyelinative lesions are often associ- 
ated with axonal degeneration. Large diameter, thinly myelinated 
axons indicative of recent remyelination are seen. Multifocal 
mononuclear cell infiltration frequently occurs in a perivenular 
distribution, mainly in the areas of demyelination. T cells of 
helper and suppressor phenotype, as well as B cells and macro- 
phages, are seen in the involved nerves (14-16). In whole nerve 
and P2-induced EAN, in early stages of the disease, myelin 
vesiculation and endoneurial edema can be observed in the 
absence of mononuclear cell contact (17). EAN in Lewis rats can 
be transferred with P2-reactive T cells (1 8-20). T cells reactive to 
the peptide 53-78 of bovine P2 protein also can transfer EAN 
(2 1). These observations provide direct evidence that Pz-induced 
EAN is a cell-mediated immune phenomenon. 

Schwann cells from newborn rats have MHC class I1 antigens 
on their surface and present antigen to syngeneic myelin basic 
protein reactive T cells (22). However, cells other than Schwann 
cells, and most likely macrophages, play an essential role as 
antigen-presenting cells in the peripheral nerves, as is shown by 
the successful adoptive transfer of EAN with P2-reactive T cells 
of Lewis origin into DA rats that have been lethally irradiated 
and reconstituted with (Lewis x DA) F1 bone marrow cell (23). 
Double-label experiments using antibodies to SlOO protein of 
Schwann cells and Ia molecules have demonstrated that Ia- 
positive cells are not Schwann cells and are most likely ED,- 
positive macrophages (24). Others found the same results with 
different techniques (25). Macrophages are believed to be the 
cells responsible for destruction of myelin sheath either directly 
or  by secreting proteases and inflammatory mediators (26). 

EAN induced by galactocerebroside in rabbits has a distinct 
pathology compared with myelin or Pz-induced EAN. Periven- 
ular infiltration of small lymphocytes is not seen, but macro- 
phages insinuate themselves between the myelin lamellae and 
phagocytize them. Serum showing high antigalactocerebroside 
antibody titer from rabbits immunized with galactocerebroside 
can demyelinate rat peripheral nerve when injected intraneurally. 

This form of EAN is clearly mediated through antibodies, and 
galactocerebroside seems to be the target antigen (15, 27, 28). 

Based on the observation that the herpes viruses, CMV and 
EBV, are associated with GBS, viruses have been thought to be 
possible etiologic agents for the disorder. Indeed, for some time 
GBS was called acute infective polyneuritis (29). A herpes virus 
of birds, known as Marek's disease virus, produces a lymphopro- 
liferative disorder in chickens. This disease can be associated 
with paralysis of the wings and legs in chickens and a nerve 
pathology similar to GBS (30). A condition similar to GBS in 
patients with HIV infection and high titer of antibodies to C. 
jejuni or mycoplasma is also taken as evidence that bacteria and 
viruses may be involved in the pathogenesis of GBS directly or 
indirectly through activation of elements in the immune system. 
To date, no conclusive evidence as to the infectious etiology of 
GBS is available. 

The landmark work of Asbury et al. (3 1) on the pathology of 
GBS and the finding of mononuclear infiltration in the peripheral 
nerves in the areas of segmental demyelination similar to that of 
EAN focused the attention of workers in the field on the possible 
immunologic basis for myelin injury. A variety of immunologic 
abnormalities are reported in GBS. Cell-mediated immunity to 
P2 protein has been reported in GBS (32, 33) but not confirmed 
by others (34, 35). Reports that GBS peripheral blood lympho- 
cytes can demyelinate myelinated cultures in vitro (36) cannot 
be taken as evidence of the cytotoxic capability of these cells due 
to the differences in the major histocompatibility complex of 
effector cells and target tissues. Lymphokines or antibodies se- 
creted by T and B cells or nonspecific killer cell activity may 
explain these observations. There are reports of changes in T-cell 
subsets in the peripheral blood showing a decrease in either CD4 
(T helperlinducer) or CD8 (T suppressor/cytotoxic) cells in GBS 
(37,38), but others have reported no changes in the T-cell subsets 
(39). Serum IL-2 concentration is increased in GBS and corre- 
lates with the activity of the disease, suggesting an ongoing T- 
cell activation and proliferation in these patients (40). Serum 
levels of soluble IL-2 receptors and higher proportions of periph- 
eral blood lymphocytes expressing transfemn and IL-2 receptors 
(4 1) are also indicative of the active role of T cells in GBS. These 
T cells can exert their action either directly or through the 
activation of the macrophages by helping B cells to secrete 
autoantibodies and to produce harmful cytokines to injure the 
myelin sheath and/or Schwann cells. Despite these observations, 
no clear-cut role for T cells in the pathogenesis of GBS is 
documented. 

Antigen-presenting cells in human peripheral nerves are 
thought to be Schwann cells (42); however, data from EAN (see 
above) point to resident macrophages rather than Schwann cells 
being antigen-presenting cells. 

Antibodies to various peripheral nerve components are repre- 
sented in GBS. On the basis of the observation that antigalacto- 
cerebroside antisera can demyelinate rat peripheral nerves in 
vivo, antibodies to galactocerebroside have been sought in serum 
and CSF from patients with various demyelinating disorders, 
including GBS, CIDP, multiple sclerosis, and various other neu- 
rologic disorders using various assays, including RIA and ELISA. 
No humoral immune response to galactocerebroside in human 
demyelinating disorders was observed (43). Serum from acute 
GBS can produce demyelination when injected into the rat sciatic 
nerve (44). Various antibodies to peripheral nerve components 
and circulating immune complexes have been reported in pa- 
tients with GBS (45, 46). Oligoclonal bands are seen in the CSF 
of GBS, but are usually transient, unlike multiple sclerosis. High 
titers of antibodies, including complement fixing antibodies to 
human peripheral nerve myelin, have been demonstrated in the 
serum of GBS patients compared with normal patients and those 
found in a variety of inflammatory neurologic and nonneurologic 
disorders. The target antigen(s) for these antibodies are not well 
understood, but neutral glycolipids cross-reactive with Forssman 
antigen (47), gangliosides (48), and sulfoglucoronyl glycolipids 
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(49) have been suggested as possible candidates. These observa- 
tions on the role of antibodies in GBS and EAN were the basis 
for the use and subsequent demonstration of efficacy of plas- 
mapheresis in GBS. 

Treatment. Although about 80% of GBS patients recover from 
the disease, the course of the disorder can be stormy. About 30% 
of patients in one study required intubation for an average of 5 1 
d; average hospital stay was 61 d (50). The mainstay of therapy 
is the management of paralyzed patients, which is best accom- 
plished in intensive care units. 

Plasmapheresis was found to be effective in decreasing mor- 
bidity and shortening the course of GBS. In the United States 
multicenter controlled study performed on 245 patients with 
GBS (51), the patients treated with plasmapheresis had better 
outcomes when compared with patients not treated with plas- 
mapheresis in terms of time needed to improve one clinical 
grade, outcome at 4 wk and 6 mo, and time when the patient 
could walk unaided. Plasmapheresis also reduced the number of 
days on the respirator. In severe cases, especially when ventilatory 
assistance is needed or when the patient has a rapidly progressive 
course, plasmapheresis is indicated. Once the decision to treat 
patients with plasmapheresis has been made, it should begin as 
early as possible. 

In one randomized clinical trial of corticosteroid treatment for 
GBS, no beneficial effect was observed (52). Another study, using 
ACTH, reported significant reductions in duration of disease 
(53). A British multicenter study is underway with high-dose 
methylprednisone as one treatment arm. There is no conclusive 
evidence that azathioprine and cyclophosphamide can be of any 
help in GBS (54). 

Results from a multicenter study in the Netherlands compar- 
ing high-dose IVIG with plasma exchange in 150 patients dem- 
onstrate a better outcome in patients receiving IVIG compared 
with those treated with plasma exchange. Beneficial outcome 
was defined as improvement in at least one grade on a seven- 
point functional scale 4 wk after randomization (55). 

CIDP 

CIDP is characterized by subacute onset (usually over months) 
of chronic progressive, relapsing or chronic monophasic course. 
Maximum disability is usually reached after 6-12 mo, and 
peripheral nerve demyelination can be demonstrated by electro- 
physiology and histopathology (56, 57). Inflammatory cells in 
the nerves are less prominent than in GBS. Protein is elevated 
in the CSF, but no or very few cells are found. No systemic 
disease or serum paraproteins are present. In a large series of 
CIDP patients (92 cases) (57, 58), 65% had a relapsing course 
and 35% had a progressive monophasic course. Thirty-five per- 
cent had a history of an antecedent event, mainly infectious, 
with a significantly increased level of antibodies to CMV com- 
pared with controls. A good recovery was made by 73% of CIDP 
patients, and they became independent (57, 58). The exact 
mechanism of myelin destruction is unknown, although im- 
mune-mediated mechanisms have been postulated, and binding 
of IgG to the myelin sheath with the subsequent destruction of 
myelin segments by macrophages has been proposed. The role 
of cell-mediated immunity in the pathogenesis of CIDP is spec- 
ulative (59). Prednisone is generally the drug of first choice. 
Patients not responding to prednisone or patients with a rapidly 
progressive course can be treated with plasmapheresis or a com- 
bination of plasmapheresis and prednisone (54, 60). In cases of 
failure with prednisone and plasmapheresis, other immunosup- 
pressive agents such as azathioprine or cyclophosphamide and 
IVIG may be used (6 1). 

PERIPHERAL NEUROPATHIES ASSOCIATED WITH 
PARAPROTEINEMIA 

Peripheral neuropathy can occur in association with plasma 
cell dyscrasias such as multiple myeloma, Waldenstrom's mac- 

roglobulinemia, heavy chain disease, cryoglobulinemia, nonma- 
lignant monoclonal gammopathy, and primary amyloidosis. 
Serum protein electropheresis from these patients usually shows 
homogenous bands of abnormal mobility called paraproteins or 
M proteins. Asymptomatic M proteins (not associated with 
malignant plasma cell dyscrasias) are common in adults (approx- 
imately 1%) and are referred to as benign or nonmalignant 
monoclonal gammopathy (62). Nonmalignant IgM monoclonal 
gammopathy or paraproteinemia can be associated with distal 
symmetrical sensorimotor, purely motor, or predominantly sen- 
sory neuropathies that are usually slowly progressive. Walden- 
strom's macroglobulinemia should be ruled out before the diag- 
nosis of nonmalignant IgM gammopathy and neuropathy is 
made. In some patients, M protein in the serum is shown to be 
directed against myelin-associated glycoprotein. Serum from 
other patients reacts with chondroitin sulfate or other antigens 
(62, 63). Males are predominantly affected by this disorder. 
Nonmalignant IgG and IgA monoclonal gammopathies can also 
be associated with a chronic progressive or recurrent polyneurop- 
athy. The nerve pathology in these gammopathies is usually 
demyelinative, sometimes associated with axonal degeneration, 
and shows no significant cellular infiltration. In osteosclerotic 
myeloma, which is almost always associated with X light chains, 
a syndrome of polyneuropathy, organomegaly, endocrinopathy, 
M protein, and skin changes (POEMS) has been reported (64). 
Plasmapheresis may be helpful in reducing M proteins in the 
serum. By treating underlying plasma cell dyscrasia with chemo- 
therapy and radiation therapy, the peripheral nerve deficit may 
improve. 

There are reports of association of motor neuron-like disease 
and IgM paraproteinemia. In several of these amyotrophic lateral 
sclerosis-like patients, the IgM paraproteins bind GM 1 and 
G D l b  gangliosides (65). Selective degeneration of ventral roots 
and chromatolytic changes in the anterior horn cells have been 
observed. Several patients with the syndrome have improved 
with plasma exchange and immunosuppressive therapy (66). 

NEUROPATHIES ASSOCIATED WITH HIV INFECTION 

Several peripheral nerve syndromes are reported in patients 
with HIV infection including: 1 ) distal symmetrical sensorimotor 
neuropathy, 2) CIDP, 3) mononeuritis multiplex, 4) progressive 
polyradiculopathy, 5 )  Guillain-Bank-like acute inflammatory 
polyneuropathy, and 6) autonomic neuropathy. In AIDS pa- 
tients, it is believed that acute inflammatory polyneuropathy, 
CIDP, and possibly mononeuritis multiplex have an autoim- 
mune pathogenesis. Polyradiculopathy could be due to direct 
infection by CMV, herpes virus, or HIV. The pathogenesis of 
other types of peripheral nerve disorders in AIDS is even less 
understood. Plasmapheresis has been shown to be effective in 
AIDS-related inflammatory neuropathies (67, 68). 

NEUROPATHIES ASSOCIATED WITH LYME DISEASE 

Peripheral nerve involvements are reported in infections by 
the spirochete Borrelia burgdorferi (Lyme disease). Bilateral facial 
palsy, GBS, mononeuritis multiplex, and brachial neuritis are all 
seen; and the CSF of Lyme disease patients may show lympho- 
cytic pleocytosis, oligoclonal bands, and antibody to B. burgdor- 
feri. Sural nerve biopsy shows loss of myelinated and unmyeli- 
nated axons with perivascular infiltration. Others did not report 
inflammatory changes in the nerves. The pathogenesis of periph- 
eral nerve disorders in Lyme disease is not well understood. 
Antibiotic therapy is effective in management of the 
peripheral nerve involvement in this disorder (68-70). 
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FLOOR DISCUSSION 

Dr. Frank: As was mentioned during the talks, several authors 
have shown that there are high levels of antibody to myelin in 
patients with GBS. What was not mentioned was that in studies 
done in our laboratory with Lee Koski and Moon Chen we also 
showed very high levels of membrane attack complex in most of 
those patients. We published one paper in the Journal of Clinical 
Investigation and two in Blood. We believe the way that IVIG 
works is that it prevents complement from binding to targets, 
and this mechanism was not even on your list. 

Dr. Rostami: I apologize for that. I was attempting to expedite 
the presentation. 

Dr. Frank: Also, a recent review article in the New England 
Journal of Medicine doesn't mention high levels of membrane 
attack complex either. I believe that is a real possibility and 
certainly worth further consideration. 

Dr. Rostami: Absolutely. 
Dr. Roifman: You keep saying that plasmapheresis is effective 

in Guillain-Barri, but in fact the multicenter studies showed 
almost no effect of plasmapheresis. At best, the results were 
marginal, maybe a difference of a few days under a respirator. 
That is an important issue because if plasmapheresis is effective, 
one may postulate that there may be a humoral factor involved. 
I t  may be implicated in the pathogenesis of the disease. 

Dr. Rostami: Multicenter studies have clearly shown that 
plasmapheresis is effective. In the American study, with 245 
patients (123 in the conventionally treated group and 122 in the 
plasmapheresis arm), the percentage of patients who improved 

at least one grade at 1 mo was 59% in the plasmapheresis group 
versus 39% in the group treated conventionally. The French 
study also showed significant improvement with plasmapheresis 
compared with the conventional group. 

Dr. Roifman: Effective in what? All they've shown are very 
marginal effects. 

Dr. Rostami: I disagree. As I showed in one of my slides, the 
time to reach one grade improvement was 17 d versus 34 d and 
the duration of intubation decreased significantly, so I think 
there is enough evidence to show that plasmapheresis is effective. 
Whether antibody or something else is being removed from the 
circulation we don't know. It could be cytokines. We cannot rule 
out the possibility of T cells, because it could be some cytokine 
that is being removed rather than antibody alone. 

Dr. Roifman: You mentioned the Dutch study and its prelim- 
inary results. Do we have information as to what type of patients 
were involved? Are they patients with severe Guillain Barri? 
That is an important issue as well, because if these patients are 
assessed 3 or 4 wk out, the milder cases are going to be very hard 
to assess. 

Dr. Rostami: I have spoken to Dr. Franz van der Mechi, the 
principal investigator in the Dutch study. That study was done 
at nine centers with 150 consecutive patients, and they were 
randomized. I have seen the manuscript that has been submitted 
to the New England Journal of Medicine and have no doubt that 
the study was done correctly. They took patients in the first 2 
wk of the disease and followed them for 6 mo, comparing IVIG 
and plasmapheresis. There was 53% improvement of strength, 
by one grade or more, with IVIG versus 34% with plasmapher- 
esis. This study showed that IVIG was better than plasmapher- 
esis, but there are a couple of criticisms of that study. First, more 
than 150 patients should be studied, at least 245 as in the North 
American study. Second, the rate of improvement with plasma- 
pheresis was lower in this study than in the American study, 
which points to the question of whether the plasmapheresis was 
comparable to that of the American study. 

Dr. Siami: I would like to elaborate a little bit about plasma 
exchange in GBS. The patient should not be able to walk more 
than 5 m, which indicates relatively severe disease, and the 
plasmapheresis should be started in the first week or 10 d to be 
useful. 
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