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ABSTRACT. We examined the glycogenic response to 
glucose in cultured fetal and adult rat hepatocytes. After a 
48-h culture in Dulbecco's modified Eagle's medium, 1 
mM glucose, insulin, and cortisol, cells were cultured for 
4 h in serum-free medium containing glucose (1-30 mM) 
and U-'4C-glucose. Incorporation of '4C-glucose into gly- 
cogen was greater in fetal hepatocytes compared with adult 
hepatocytes at all glucose concentrations ( p  < 0.001). Net 
glycogenic rate in fetal cells was greatest between 1 and 
8.3 mM (7.7- f 1.1-fold increase) compared with a 3.8- 
2 0.6-fold increase in adult cells. In contrast, there was a 
19.4- 2 2.7-fold increase in glycogen accumulated between 
8.3 and 30 mM glucose in the adult and a 1.6- f 0.1-fold 
increase in the fetus. Total glycogen synthetase activity 
was higher in fetal than adult hepatocytes ( p  c 0.001), but 
the active a form was similar in fetal and adult hepatocytes. 
Glycogen synthase a/a+b was stimulated at 8.3 mM or 
greater glucose in fetal hepatocytes, and 5.7 mM or greater 
in adult hepatocytes ( p  < 0.05). Total phosphorylase did 
not change with medium glucose, but glycogen phospho- 
rylase a/a+b decreased in adult hepatocytes incubated in 
5.7 mM glucose or greater ( p  < 0.05). Fetal phosphorylase 
a/a+b was increased at 8.3 mM or greater glucose ( p  < 
0.05). In contrast, both adult and fetal phosphorylase were 
activated by glycogen. A glucose-induced increase in active 
phosphorylase may induce the decrease in net glycogenic 
rate at high glucose in fetal hepatocytes. A substrate- 
controlled balance between synthesis and degradation per- 
mits appropriate but not excessive glycogen storage in the 
fetal hepatocyte. (Pediatr Res 32: 714-718, 1992) 

Hepatic glycogenesis commences in the rat fetus at 17 d of 
gestation. In the interval between delivery (d 2 1.5) and the onset 
of gluconeogenesis, the large quantities of accrued hepatic gly- 
cogen are rapidly used. Because rat fetal liver does not have an 
active gluconeogenic path (phosphoenol pyruvate carboxykinase 
activity appears only after birth), all glycogenesis must proceed 
through the direct glycogenic path. It has been suggested that 
induction of glycogen synthase activity by rising insulin levels at 
d 17 of gestation is the driving force for glycogenesis in this 
species. Further, elevated glycogen synthase activity is associated 
with stable low activity of the controlling glycogenolytic hor- 
mone, glycogen phosphorylase (I). Fetal hepatic glycogen con- 
tent is controlled to some extent by maternal glucose supply to 
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the fetus (2-5). The intrauterine growth-retarded fetus stores a 
diminished amount of hepatic glycogen, whereas the large fetus 
of the experimental diabetic dam has larger glycogen stores (3, 
4). Whether this control is mediated by fetal insulinemia is not 
clear. To understand better the regulation of glycogen synthesis 
in the rat fetus, we have examined the glycogenic response to 
medium glucose of the fetal and adult rat hepatocyte cultured 
with cortisol and insulin. Further, we have correlated this re- 
sponse with studies of glycogen synthase and phosphorylase 
activity under the same conditions. These studies allow us to 
assess the capacity for autoregulation of glycogenesis in the fetal 
hepatocyte and to reassess the relationship between glycogenesis 
and glycogenolysis during the active net glycogenesis of late fetal 
life. 

MATERIALS AND METHODS 

Isolation of hepatocytes. All studies were carried out using 
hepatocytes isolated from Sprague-Dawley rats (Charles River 
Breeding Laboratories, Inc., Wilmington, MA). All laboratory 
animal studies were conducted humanely according to National 
Institutes of Health guidelines for the use and care of laboratory 
animals and were approved by the Institutional Committee on 
Research. Adult male rat hepatocytes were prepared using the 
method of Seglen (6). Rats were anesthetized with ketaminel 
xylazine, and livers were perfused with collagenase under sterile 
nonrecirculating conditions. The cell suspension was filtered 
through 250- and 62-nm nylon mesh and centrifuged at 400 rpm 
for 3 min at 4°C. The cell pellet was resuspended in cold balanced 
salt solution and washed twice. Viability was 85-95% by trypan 
blue exclusion. Fetal rat hepatocytes were prepared by the 
method of Freemark and Handwerger (7). Three to four litters 
were obtained at 20 d of gestation, the livers removed under 
sterile conditions, and hepatocytes isolated from minced livers 
incubated with shaking at 37°C in collagenase. Collagenase- 
treated liver tissue was filtered through 150-nm nylon mesh and 
incubated with desoxyribonuclease- 1 (0.002%) at room temper- 
ature for 15 min. The cell suspension was filtered through 62- 
nm nylon mesh and centrifuged at 400 rpm for 3 min at 4°C. 
The cell pellet was resuspended and washed three times with 
balanced salt solution. Viability was above 95% by trypan blue 
exclusion. 

Hepatocyte culture. Cells were cultured for 48 h in Dulbecco's 
modified Eagle's medium (D 5030, Sigma Chemical Co., St. 
Louis, MO) supplenlented with 0.2 mM glutamine, aspartate, 
and serine; 0.1 mM pyruvate; 1.0 mM glucose; 10 pM cortisol; 
1 pM porcine insulin; 50 pg/mL gentamycin; 5 pg/mL ampho- 
tericin B; and 10% FCS. Cells were plated in collagen-coated 60 
mm wells at 1.5 x 106/2-mL well for adult he~atocvtes and 3.5 
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2 and 24 h, removing residual hematopoietic elements from fetal 
hepatocytes and damaged cells from both groups. 

Glycogenesis studies. After 48 h of culture, cells were incubated 
for 4 h in 2 mL FCS-free medium per well with 1, 2, 5.7, 8.3, 
11.1, 20, or 30 mM glucose and 0.5 pCi U-'4C-glucose. The 
incubation was terminated by aspirating the medium and har- 
vesting the cells into 1 mL 0.03 N HCI. Cells were stored at 
-20°C until assayed for U-'4C-glucose incorporation into glyco- 
gen and net glycogenesis using the method of Chan and Exton 
(8). Glycogenesis was quantitated as glucose incorporation in 
pM/g protein. Protein was assayed using the Bradford dye 
method with BSA as the standard (Bio-Rad Laboratories, Rich- 
mond, CA). A comparison with total DNA was made using the 
method of Burton and Zdeoxy-d-ribose (lo-' M) as standard 
(9). 

Enzyme assays. Hepatocytes cultured for 48 h were incubated 
for 4 h in FCS-free medium containing 1, 5.7, 8.3, or 30 mM 
glucose. In some studies, glucagon was added 10 min before 
termination of incubation. Incubation was terminated by two 
rapid washes in cold buffered salt solution, and the plates were 
floated on liquid nitrogen. Cells were stored at -70°C until 
enzyme assay. Cells were harvested in 0.3 mL of iced medium 
containing 50 mM Tris buffer, 100 mM sodium fluoride, 10 mM 
EDTA, 0.5% rabbit liver glycogen purified using a mixed-bed 
ion exchange resin before use, and 5 mM DTT, pH 6.8. The cell 
suspension was homogenized for 1 min on ice using a Tekmar 
Tissumizer (Tekmar Co., Cincinnati, OH). This homogenate was 
used within 1 h after preparation for both synthase and phospho- 
rylase assays performed using the method of Golden et al. (10). 
Synthase a was assayed in the presence of 15 mM Na2S04, and 
total synthase in the presence of 3 mM glucose-6-phosphate. 
After 40 min at 37"C, the incubation was terminated by deliv- 
ering replicate 50-pL aliquots to a chloride resin column (AG 1- 
X8, 100-200 mesh) and washing with distilled water. One unit 
of glycogen synthase activity is the amount of the enzyme that 
incorporates 1 pmol of UDPglucose per min into glycogen. 
Phosphorylase was measured in the direction of glycogen synthe- 
sis by measuring the incorporation of '4C-glucose- 1 -phosphate 
into glycogen over 20 min. One unit of glycogen phosphorylase 
activity was expressed as the amount of enzyme that incorporated 
1 pM of 14C-glucose from U-14C-glucose-l-phosphate in the 
presence of 0.75 mM caffeine (a form) or in the presence of 7.5 
mM AMP (a + b form) per min into glycogen. 

Statistical analysis. All data are expressed as mean + SEM. 
Logarithmic transformation was used to normalize values before 
analysis. A paired t test with Bonferroni correction was used for 
multiple comparisons among groups. Significance has been ex- 
pressed after correction. Analysis of variance with post hoc Tukey 
test was used for comparisons between adult male and fetal 
hepatocytes. 

RESULTS 

Incorporation of medium glucose as 14C-glucose into glycogen 
was significantly greater in fetal hepatocytes than in adult hepa- 
tocytes at all glucose concentrations from 1 to 30 mM (p  < 
0.001) (Fig. 1A). The patterns of the concentration-response 
curve for fetal and adult hepatocytes were different. In fetal 
hepatocytes, incorporation was observed at 1 mM medium glu- 
cose, and the rise in the rate of incorporation was greater before 
8.3 mM glucose (7.7- + 1.1-fold increase compared with a 3.8- 
+ 0.6-fold increase in adult cells). However, in adult hepatocytes, 
glucose incorporation was observed only at 5.7 mM glucose and 
accelerated from 8.3 to 30 mM. There was a 19.4- + 2.7-fold 
increase in glycogen accumulated between 8.3 and 30 mM 
glucose in the adult and only a 1.6- + 0.1-fold increase over this 
glucose range in the fetus. Total glycogen accumulation meas- 
ured as glucosyl units was similar in fetal cultures (Fig. 1B). In 
cultures of adult hepatocytes, total glycogen accumulation ex- 
ceeded glucose incorporation and the gap between glycogen 
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Fig. 1 .  Glycogen accumulation in fetal (open burs) and adult hepa- 
tocytes (striped hrirs) cultured for 4 h at 1, 2, 5.7, 8.3, 11.1, 20, or 30 
mM glucose and 0.5 pCi U-'4C-glucose. Accumulation as 14C-glucose is 
depicted in A and net glycogen accumulation is depicted in B. 

accumulation and glucose incorporation diminished as medium 
glucose rose, but glucose incorporation was never more than half 
of total glycogen incorporation, reflecting the use of other pre- 
cursors for glycogenesis. All data are expressed per mg protein. 
Fetal hepatocytes are smaller than adult hepatocytes. Therefore, 
fetal-to-adult comparisons do not compare glycogenesis per cell. 
In the fetal cultures, there were 12.1 f 0.6 pg DNA/mg protein 
(n = 5), and in the adult, 9.5 + 0.9 pg DNA/mg protein (n = 3). 
Therefore, adult values are approximately 20% higher compared 
with fetal if expressed as glycogen per pg DNA. 

We examined the activity of glycogen synthase and phospho- 
,rylase in the cultured hepatocytes incubated at various medium 
glucose concentrations to see if the activity of enzymes of gly- 
cogen synthesis and degradation contributed to the pattern of 
glycogen accumulation that we observed in the cultured fetal 
and adult hepatocytes. Glycogen synthase a activity was stimu- 
lated significantly by 30 mM medium glucose in both adult and 
fetal hepatocytes (Fig. 2). Total synthase activity was significantly 
higher in fetal hepatocytes compared with adult hepatocytes ( p  
< 0.001), but the active a form was similar in fetal and adult 
hepatocytes. Total synthase activity did not change with increas- 
ing medium glucose in either fetal or adult cells. Glycogen 
synthase a/a+b ratio in fetal hepatocytes was significantly greater 
at 8.3 and 30 mM than in cells studied at lower medium glucose 
concentrations. Glycogen synthase a/a+b ratio in adult cells was 
significantly increased at 5.7 mM medium glucose or greater. As 
expected, phosphorylase a activity was inhibited by elevated 
medium glucose (8.3 and 30 mM) in adult hepatocytes (Fig. 3). 
Total phosphorylase did not change with medium glucose, and 
glycogen phosphorylase a/a+b decreased from 5.7 mM medium 
glucose. In contrast, fetal active glycogen phosphorylase in- 
creased. Total glycogen phosphorylase levels were not different 
in fetal and adult cells. However, in response to high medium 
glucose (5.7 and 8.3 mM), fetal hepatocyte phosphorylase a 
activity was stimulated compared with low medium glucose. At 
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Fig. 2. Glycogen synthase activity in fetal (open bars) and adult Fig. 3. Glycogen phosphorylase activity in fetal (open bars) and adult 

liepatoc,ytes (.s~ri,~c~d bars) incubated in 1, 5.7, 8.3, or 30 mM glucose. hepatocytes (slriped bars) incubated in 1, 5.7, 8.3, or 30 mM glucose. 

30 mM, fetal hepatocyte phosphorylase a activity was neither 
significantly stimulated nor inhibited. The ratio of phosphorylase 
a/(a+bj was significantly increased in the fetal hepatocyte at 8.3 
and 30 mM medium glucose compared with lower medium 
glucose concentrations. 

To examine whether fetal phosphorylase behaved differently 
to  other stimuli, cells were cultured for 45 h as described and 
incubated for 4 h with 1 or 8 mM glucose. Glucagon (lo-' M) 
was then added, and phosphorylase activity was measured after 
10 min of incubation. Phosphorylase was fully activated in fetal 
and adult cells incubated at both 1 and 8 mM glucose (Fig. 4). 

DISCUSSION 

The adult hepatocyte in the postprandial state is supplied by 
the portal vein with concentrations of glucose greater than 8 mM 
and endowed with the capacity for indirect glycogenesis through 
the gluconeogenic path. In the adult hepatocyte, the high-Km 
glucose transporter, GLUT 2, and the high-Km hexokinase, 
glucokinase, are sufficient to ensure glucose supply to the hepa- 
tocyte for glycogenesis by the direct route (1 1, 12). In contrast, 
the fetal rat liver stores glycogen at a rapid rate from d 17 of 
gestation to term despite the absence of the gluconeogenic path, 

and a limited glucose supply ( 1  3). The fetal liver is supplied with 
substrate largely by umbilical vein blood and is therefore exposed 
to a glucose concentration that is approximately 70% of maternal 
peripheral blood. We have demonstrated, as have other workers, 
an increased capacity for glycogenesis at low medium glucose in 
the fetal rat hepatocyte (14). This capacity may be related to 
enhanced transport of glucose at low ambient glucose levels as 
well as to the presence of low-Km hexokinases in fetal hepato- 
cytes, permitting glucose phosphorylation at relatively low levels 
of glucose (15, 16). Nonetheless, the drive to net glycogen accu- 
mulation rests in the relationship between glycogen synthase and 
glycogen phosphorylase. 

Glycogen synthase and phosphorylase are regulated by phos- 
phorylation-dephosphorylation reactions at multiple sites (17- 
19). We demonstrate that phosphorylase activation by glucagon 
is similar in fetal and adult hepatocytes. Dephosphorylation 
leading to activation of glycogen synthase a is intimately related 
to inactivation of phosphorylase after dephosphorylation by the 
specific phosphatase, protein phosphatase-1. Cohen (20) has 
proposed that allosteric inhibition of protein phosphatase-1 by 
phosphorylase a explains the known coordinate activation of 
glycogen synthase after inactivation of phosphorylase. Allosteric 
regulation by glycogenic substrates (glucose, glucose-6-phos- 
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200 studies in adult rats. Nuclear magnetic resonance imaging of 
E 
m adult rat liver in vixo provides strong evidence for continued 
C - 
E 

cycles of degradation and synthesis in the fasting and fed state . 
= (28). Failure of rapid accumulation of glycogen in the fed state 
C 
3 may be related to accelerated glycogen turnover rather than 
E - 
a l oo  failure of synthesis (28, 29). Whether there is glycogen degrada- 
o tion in vivo in the fetal liver is unclear. Maternal glycemia 
a - 
6 remarkably enhanced fetal liver glycogen content and incorpo- 
= 
n ration of labeled glucose in vivo, whereas phosphorylase a activity 
0 
I 

fell with modest fetal hyperglycemia (5.5 mM) and synthase a 
a activity rose over a wide range of fetal glucose to 32 mM (5). 

o Glycogen degradation could not be identified in vivo in one study 
using labeled glucose incorporation and release as a marker (30); 
however, another study suggested that glycogen synthesis and 
degradation occurred simultaneously (3 1). 

g 200 
Hormone-independent activation of glycogen synthase by sug- 

D ars in cultured adult rat hepatocytes has been noted by several 
C - 
E 

workers. Ciudad et al. (32) reported that synthase is activated by . 
a= an array of sugars including glucose, mannose, fructose, galac- 
3 tose, and tagatose. It is unclear whether these sugars all work 
E - 
I) 

through the same mechanism. Glycogen synthase phosphatase 
+ l o o  activity is stimulated in glycogen particles by high levels of 
3 glucose (20 mM or more), leading to activation of synthase (33, 
6 34), but other sugars apparently do not stimulate the phosphatase 
I 
(L directly (33). 
0 .c a Differences have been identified between fetal and adult liver 

o in regard to the enzymes of glycogenesis. There may be a fetal- 
specific glycogen synthase isozyme in the late fetal and newborn 
rat and mouse (35). In addition, protein phosphatase-1 could be 
differently regulated during fetal life (4). We suggest several 
hypotheses to explain the increase of active phosphorylase in 

120 fetal hepatocytes exposed to increased medium glucose. The fetal 

- 100 
hepatocyte differs from the adult hepatocyte in glycogen content 

c (many-fold greater than the adult at the end of incubation). Fleig 
47 

+ 80 et al. (34) have demonstrated that glycogen storage decreases 
i with increasing glycogen content in the cultured adult hepato- 

60 - cyte. In skeletal muscle, high levels of glycogen inhibit glycogen 
i? 
I 

synthase activation and inhibit phosphatase, enhancing glycogen 
Q 40 breakdown (36, 37). Hepatocytes isolated from fed adult animals 
:: .c accumulate glycogen much less readily than those from fasted 

20 animals (38). Hepatocytes incubated in high glucose medium 

o before study also do not accumulate glycogen as readily as those 
1 8 that are glycogen-depleted (39). Enhancing the glycogen content 
Medlum Glucose ( m ~ )  of a liver cell filtrate has been demonstrated to inhibit phospho- 

rylase phosphatase activity (40) as well as synthase phosphatase 
Fig. 4. Glycogen phosphorylase activity in fetal (open bars) and adult (4 1). There is glycogenolysis in freshly isolated hepatocytes from 

hepatocytes ( s ~ r i l ~ c ~ d  hurs) incubated in 1 and 8 mM glucose and then fed rats even in high glucose medium (23). The effects of glycogen 
exposed to glucagon (lo-' M) for 10 min. on phosphorylase activation are probably not direct effects of 

phosphatase. Glycogen activates phosphorylase a and b by bind- 
phate, and glucose-1-phosphate) also governs the state of acti- ing to the glycogen storage or activation sites of the muscle 
vation of glycogen synthase and glycogen phosphorylase. Glucose isoz~me, and probably the liver isozyme as well (21). One might 
binds to an active site on the muscle and liver glycogen phos- also hypothesize that fetal phosphorylase differs structurally from 
phorylase molecule, enhancing the phosphatase activity (17, 2 1, adult ~ h o s ~ h o ~ l a s e  and does not have a sensitive glucose-active 
22). Therefore, glycogen accumulation in the adult hepatocyte site. Earlier studies using electrophoretic separation of phospho- 
exposed to medium glucose levels equal to or substantially higher rylase isoz~mes suggested that fetal rat liver contained largely the 
than that normally found in vivo may be readily explained by phosphorylase isozyme found postnatally only in brain and in 
complementary increased active glycogen synthase and decreased some neoplastic tissues (42-44). The nature of glucose control 
active phosphorylase. Indeed, hyperglycemia leads to almost of the rat brain phosphorylase has not yet been defined. Certain 
complete inactivation of glycogen phosphorylase followed by naturally occurring phos~horylases (potato, yeast), do not re- 
activation of glycogen synthase in vitro (23-25). However, phos- spond to glucose control (22). It is entirely possible that brain 
phorylase inactivation is not always required for in vitro glycogen phosphorylase is similar, although the active sites of the glucose 
synthase activation. In isolated adult rat hepatocytes, fructose binding regions of human and rabbit brain phosphorylase have 
activates both glycogen synthase and glycogen phosphorylase been mapped and do not differ from muscle and liver phospho- 
(26). Further, activation of glycogen synthase by glucose is im- rylase (45). Further, in both human and rabbit fetal liver tissues, 
paired if glucose 6-phosphate levels are lowered, but phospho- it has not been possible to confirm a predominant "fetal phos- 
rylase is inactivated normally (27). phorylase" using molecular cloning techniques (45, 46). A third 

The complete inactivation of pliosphorylase by glucose in vitro possibility is that the failure of suppression of fetal phosphorylase 
has also been counter to in vivo studies. For instance, continuing at high medium glucose levels is related to the rapid rate of 
activity of glycogen synthase and glycogen phosphorylase in the phosphorylation of transported glucose in the fetal cells, because 
postprandial state has been reported in a number of in vivo glucose 1-phosphate allosterically enhances phosphorylase activ- 
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ity (2 1). The rapid phosphoryl~tion of intracellular glucose would 
therefore assure a different intracellular milieu for the fetal 
compared with the adult hepatocyte. Whatever the mechanism 
of failure of suppression of phosphorylase in the fetal hepatocyte, 
the presence of active phosphorylase in fetal hepatocytes at high 
medium glucose concentration is likely one mechanism for the 
nonlinear relationship between net glycogen accrual and medium 
glucose. 

Glycogen accumulation in isolated fetal hepatocytes is en- 
hanced by medium cortisol and insulin (47, 48). Cortisol appar- 
ently has a basal permissive effect on glycogenesis in vivo, because 
fetal cortisol deficiency diminishes hepatic glycogen stores exper- 
imentally (49). Fetal insulin deficiency may not be sufficient to 
diminish glycogen stores (4). The hyperinsulinism of the fetus of 
the diabetic dam enhances fetal hepatic glycogen stores (3). 
Experimental fetal hyperinsulinemia without elevation in gly- 
cemia also enhances glycogen stores (2). However, it is unlikely 
that the normal fetus is exposed to acute changes in insulin in 
vivo or that such acute changes influence the moment-to-mo- 
ment regulation of hepatic glycogen accumulation. Insulin re- 
sponse to acute glucose elevation is sluggish in the fetus, unless 
there has been continued exposure to hyperglycemia (50). The 
glycogenolytic response to glucagon is much less in fetal life than 
in postnatal life (5 1). Therefore, hormonally independent intrin- 
sic regulatory mechanisms may be important in maintenance of 
the homeostasis of energy storage during fetal life. The balance 
between glycogen synthesis and degradation is critical in permit- 
ting the development of appropriate but not excessive glycogen 
stores in the fetal hepatocyte. 
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