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ABSTRACT. We studied the relationship between changes 
in auditory brainstem responses (ABR) and serum and 
cerebrospinal fluid levels of neuron-specific enolase (NSE) 
in hyperbilirubinemic 2- to 8-d-old piglets. Infusion of a 
stabilized solution of bilirubin resulted in serum bilirubin 
levels of 571.1 f 48.8 pmol/L (mean + SEM) after 6 h. 
ABR were obtained at baseline and then hourly until the 
piglets were killed. We measured peak amplitudes and 
latencies for waves I-V, as well as latency for the post-V 
trough. Changes in amplitudes and latencies were analyzed 
as slopes because of heterogeneous variances. Over time, 
a significant reduction was observed in peak 11-V ampli- 
tudes of bilirubin-infused piglets, but not in those of cor- 
responding controls. No change was observed in latencies. 
NSE was analyzed by RIA. Serum NSE remained stable 
throughout the experiment (means 5.1-6.6 &L) and did 
not differ between the groups. Cerebrospinal fluid NSE 
values also remained stable, and no differences that could 
be ascribed to hyperbilirubinemia were detected. We con- 
clude that hyperbilirubinemia induced significant changes 
in piglet ABR amplitudes without concomitant evidence of 
severe neuronal compromise, as might have been indicated 
by significant increases in serum and/or cerebrospinal fluid 
NSE levels. This provides further support to the clinical 
impression that early ABR changes during hyperbilirubi- 
nemia may be reversible. (Pediatr Res 32: 524-529, 1992) 

Abbreviations 

ABR, auditory brainstem response 
NSE, neuron-specific enolase 
CSF, cerebrospinal fluid 
dB, decibel 

Hyperbilirubinemia is one of the most common conditions 
observed in the newborn nursery (1). The most serious compli- 
cation of neonatal jaundice is kernicterus, which may result in 
death or in severe neurodevelopmental sequelae (2-5). Kernic- 
terus was initially described in term infants whose jaundice was 
caused by Rh-immunization (6-10). Although kernicterus from 
this cause is now rare in Western industrialized countries, bili- 
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rubin continues to be found at autopsy in the brains of babies 
who died from complications of prematurity or other severe 
illness in the neonatal period (1 1, 12). In some of these babies, 
serum bilirubin levels were never very high by the standards that 
ordinarily guide decisions to treat jaundice. 

Furthermore, it is known that many babies who survive pre- 
maturity and/or severe illness in the neonatal period have neu- 
rologic and/or developmental sequelae (1 3- 15). Though it has 
been difficult in some retrospective clinical studies to demon- 
strate a clear relationship between neonatal jaundice and subse- 
quent sequelae (1 6- 18), other studies are more suggestive (4, 19- 
22). Sick newborns are exposed to many potentially noxious 
influences, and it is not surprising that it should be difficult to 
determine the relative importance of each to the eventual out- 
come. Also, as the newborn brain has a considerable capacity to 
compensate for lost neurons, neuronal loss must be quite exten- 
sive before the sequelae would be detectable by the diagnostic 
methods currently at our disposal. 

It is possible that the effects of bilirubin on neuronal excitabil- 
ity may be transitory. Such effects have been observed both in 
vivo and in vitro (23-27). The ABR has recently been used to 
study jaundiced newborns, and some of these studies suggest that 
the changes observed during hyperbilirubinemia are reversible 
(23, 24, 26). However, the mechanism for the effects of hyper- 
bilirubinemia on the ABR has not been delineated. 

The ABR is an expression of activity in a group of neurons. 
Apparent reversibility of neurophysiologic changes in this group 
of neurons does not necessarily rule out permanent damage to 
individual neurons. Thus, it is of interest to study whether 
changes in the ABR, as seen in hyperbilirubinemia, are accom- 
panied by evidence of permanent damage to the neurons. 

Enolase is one of the glycolytic enzymes and is a dimer of 
three subunits: a,  p, and y (28). The y-subunit has been found 
to be identical to 14-3-2 protein, one of the nervous system- 
specific proteins (29). In the CNS, this specific protein is mainly 
localized in neuronal cells as a y  and yy enolases, so called NSE 
(30). NSE has been shown to be an indirect marker of the degree 
of neuronal damage in neurologic disease (3 1, 32). Finally, it has 
been shown that this protein appears in the plasma and CSF of 
jaundiced rats (33). 

The effects of bilirubin on the brain may include increased 
membrane permeability in the neurons (34-37). Increased 
permeability to small molecules such as ions, resulting in changes 
in the membrane potential, is likely to precede leakage of larger 
molecules such as proteins from the neurons. Therefore, to the 
extent that changes in the ABR in jaundiced, newborn piglets 
represent changes in membrane permeability, such changes 
ought to precede increases of NSE concentration in the CSF 
and/or serum, the latter indicating leakage of proteins from more 
severely compromised neurons. 
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MATERIALS AND METHODS 

The study protocol was approved by our institutional animal 
care committee. Newborn piglets (1-3 d old) were purchased 
from Parsons Farms, Hadley, MA, weaned from the sow, and 
kept in an animal care facility for 1-5 d before the study. At the 
time of the study, they weighed 1621 a 3 15 g (mean * SD) and 
were 4.5 + 2.4 d old. On the day of the study, each piglet was 
anesthetized with ketamine 10 mg/kg intramuscularly plus in- 
haled nitrous oxide (60% Nz0/40% 0 4 ,  supplemented with 1 % 
lidocaine local anesthesia. Polyethylene catheters were placed in 
the left femoral artery and vein and advanced into the abdominal 
vessels to allow for infusion and blood sampling. A 19-gauge 
teflon catheter was placed in the lumbar subdural space through 
a 17-gauge Tuohy-type epidural needle (The Kendall Company, 
Boston, MA) to allow repeated sampling of CSF. Subcutaneous 
needle electrodes were placed behind the right (active) and left 
(reference) ears and in the occipital (ground) area and secured 
with sutures, and foam rubber-padded earphones (Cadwell Insert 
Headphones, Cadwell Co., Kennewick, WA) were taped into 
both ears. A rectal probe was inserted for continuous temperature 
monitoring, and the output of an overhead radiant warmer was 
adjusted to maintain the temperature in the 38.5-39.5"C range. 
The piglet was placed in a dark box large enough to accommodate 
the animal without permitting it to turn around and allowed a 
1 -h recovery period. For purposes of sedation, the piglet contin- 
ued to breathe a N20/02 mixture as described above throughout 
the recovery period as well as the entire study period. Additional 
sedation was provided by diazepam 0.1-0.2 mg i.v. as required 
to avoid movement artifacts in the ABR. 

At the start of the experiment, an ABR was obtained from the 
right ear using a Cadwell Quantum 84 evoked potential record- 
inglaveraging machine (Cadwell Laboratories, Inc., Kennewick, 
WA) delivering single rarified square wave clicks of 100 fis 
duration at 70 dB, normal hearing level, at a rate of 1 1.1 clicks/ 
s. Cadwell insert headphones (300 ohms), supplied by the man- 
ufacturer, were used to deliver the click signals. They had a stable 
output between 100 and 4000 Hz, a drive voltage of 0.49 V root 
mean square, peak output of 104.3 dB at 1000 Hz, and total 
harmonic distortion of 2.8% at 500 Hz and 118.5 dB. Low-cut 
and high-cut filters were set at 100 and 3000 Hz, respectively. 
The headphones were secured and shielded with foam rubber 
plugs and taped into each ear. The responses to 1000 consecutive 
clicks were averaged, and the peak amplitudes (fiV) and latencies 
(ms) of waves I-V were measured using the on-screen cursor 
lines, according to the criteria of Jewett and Williston (38) to 
define the peaks. In each tracing, vertex positivity was upward. 
Baseline blood samples were drawn from the femoral artery 
catheter, and a baseline CSF sample was obtained from the 
subdural catheter. 

Bilirubin (Sigma Chemical Co., St. Louis, MO) was dissolved 
in 0.1 N NaOH, stabilized with BSA (molar ratio biliru- 
bin:albumin = 14), and diluted with 0.055 M phosphate buffer, 
pH 7.4 (final pH 4). Bilirubin was then infused into the femoral 
vein catheter at a rate of 7 mg/kg/min for 5 min, after which the 
infusion was continued at 25 mg/kg/h for 6 h. Control animals 
were infused with bilirubin-free solvent. Sulfisoxazole 80 mg/kg 
(Gantrisin, Hoffman-LaRoche Inc., Nutley, NJ) was given i.v. at 
0.5 and 2.5 h. The experiments were carried out under red light 
conditions to retard photodecomposition of the bilirubin solu- 
tion. ABR and blood as well as CSF samples were obtained 
hourly. Serum bilirubin was measured with a diazo method (39). 
Serum unbound bilirubin was estimated with the peroxidase 
method (40). Serum albumin was measured with the bromocresol 
green method (41). NSE was measured with a RIA (Pharmacia, 
Uppsala, Sweden). Hematocrit was measured using microhe- 
matocrit tubes. Blood gases and pH were measured using a 
Corning 178 pH/blood gas analyzer (Ciba Corning Diagnostics 
Corp., Medfield, MA). 

At the conclusion of the experiment, the animals were killed 

with a bolus injection of sodium pentobarbital. In the bilirubin- 
infused animals, catheters were placed in both common carotid 
arteries, the jugular veins were opened, and the brain was flushed 
in situ with cold saline until the effluent from the jugular veins 
was clear. A piece of frontal cortex, vermis cerebelli, and four 
sections of the medulla (cochlear nucleus, superior olive, lateral 
lemniscus, and inferior colliculus) were dissected out. The bili- 
rubin content of the brain tissue was estimated by acid chloro- 
form extraction followed by diazotization (42). 

Data were analyzed with t tests and two-way analysis of 
variance. However, to reduce the effect of heterogeneous vari- 
ances of the ABR measurements, the changes over time in peak 
amplitudes and latencies were calculated as a slope (fiV/h and 
ms/h) using the program LINEFIT (43). The null hypothesis of 
no change over time (slope = 0) was tested by calculating 
confidence intervals, and the null hypothesis of no difference 
between bilirubin-infused animals and controls was tested with 
unpaired t tests. Statistical significance was taken a s p  < 0.05. 

RESULTS 

The results of the blood and serum analyses are presented in 
Table 1. Unbound bilirubin is not detectable in nonjaundiced 
subjects and was therefore not analyzed in the control piglets. As 
expected, the serum albumin levels increased during the experi- 
ment because of the albumin in the infusate. For fortuitous 
reasons, the control piglets had lower hematocrit values than the 
bilirubin-infused animals. This is unlikely to have influenced the 
final results. The blood pH changed over time, mainly because 
a metabolic acidosis developed at 6 h in the bilirubin-infused 
piglets. The values for Pcoz and Poz did not change over time 
and did not differ between the groups. These data are therefore 
not reported. 

Values for peak amplitudes and latencies of the piglet ABR, 
based on the baseline ABR in all study animals, are presented in 
Table 2. As will be seen, it was possible to consistently record 
values for five peaks plus the trough after peak V. To our 
knowledge, this is the first time ABR values have been reported 
for piglets. 

The results of the analyses of changes in ABR peak amplitudes 
are presented in Table 3: The slopes of the changes in ABR peak 
amplitudes were negative for all bilirubin-infused piglets (al- 
though not significantly different from 0 for peak I), meaning 
that the ABR peak amplitudes were reduced with time of expo- 
sure to hyperbilirubinemia. Plotting of the data showed that the 
slopes were linear, and extrapolation of the slope indicated that 
isoelectricity would have been reached after 10 to 12 h if the 
same trend had continued. With the exception of peak I, there 
was no significant change over time in the amplitudes for the 
control piglets. Although the slope of the peak I amplitude 
changes was negative for the control piglets, there was no signif- 
icant difference between the apparent changes for the control 
piglets and for the bilirubin-infused piglets. The biologic signifi- 
cance of this change is therefore not clear. For ABR peak 
amplitudes 11-V, the differences in slope between bilirubin-in- 
fused piglets and controls were significant. 

To ascertain the time relationship for appearance of significant 
reductions in the ABR amplitudes, all amplitudes were recalcu- 
lated as percentages of the baseline value for that particular peak 
and subject. The values for control and bilirubin-infused piglets 
were then contrasted using unpaired t tests for each time point. 
For peak 11, these contrasts were significant from 5 h on; for 
peak 111, they were significant from 3 h on; for peak IV, none of 
the contrasts were significant because of large variances; and for 
peak V, the contrasts were significant from 2 h on. 

The results of the analyses of changes in ABR peak latencies 
are presented in Table 4. As will be seen, there were no significant 
changes over time in either the bilirubin-infused piglets or the 
controls, and there were no significant differences between the 
groups. However, the slopes for all latencies except trough were 
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Table 1. Results o f  bloodlserum analvses in hv~erbilirubinemic and control pizlets 

Effects 
Sampling time (h)t  

Time Group Group x time 

Parameter Grouv* 0 1 2 3 4 5 6 F$ P F P F P  

Bilirubin (pmol/L) B 
Mean 
SEM 

C 
Mean 
SEM 

Unbound bilirubin 
(nmol/L) 

Mean 
SEM 

Albumin (g/L) B 
Mean 
SEM 

C 
Mean 
SEM 

Hematocrit (%) B 
Mean 
SEM 

C 
Mean 
SEM 

B 
Mean 
SEM 

L 

Mean 7.42 ND 7.34 ND 7.34 ND 7.38 
SEM 0.02 0.04 0.04 0.03 

B 
Mean 0.7 ND -0.8 ND -1.4 ND -7.9 
SEM 0.9 1.1 1.3 1.4 3.7 <0.05 54.6 <0.0001 9.2 <0.0001 

C 
Mean 3.5 ND 2.4 ND 3.5 N D  5.4 
SEM 1.3 1 .O 1 .O 0.8 

* B, bilirubin (n = 7); C, controls (n = 6).  
1. ND, not determined. 
$ Two-way analysis of variance. 

Base excess 

Table 2. Baseline means and SD for piglet ABR* Table 3. Changes in ABR peak amplitudes analyzed as slope 
Amplitude Latency 

(UV) (ms) 
Intergroup 

'lope differencest 
different 

Peak I 1.02 + 0.41 1.66 k 0.08 Peak Grouv* Slope (wV/h)t from 0 t P 
Peak I1 0.80 + 0.40 2.24 + 0.15 
Peak 111 0.57 k 0.40 3.38 + 0.14 
Peak IV 0.39 + 0.25 4.36 + 0.19 
Peak V 0.32 + 0.16 5.46 + 0.35 2 B -0.0788 + 0.031 1 p <  0.05 -2.5884 <0.05 
Trough Not applicable 5.96 -t 0.35 C 0 .0177~0 .0171  No 

* n =  13. 3 B -0.0740 + 0.0224 0 < 0.01 -3.1795 <0.01 

positive, indicating a slight increase in latencies over time. The 
data were therefore recalculated as percentages of baseline value 
and reanalyzed using analysis of variance. There were no signif- 
icant group, time, or group-by-time interaction effects. The 1-11, 
1-111, I-IV, I-V, and I-trough interwave intervals were measured, 
recalculated as percentages of baseline value, and analyzed using 
analysis of variance. There were no significant group, time, or 
group-by-time interaction effects. Examples of piglet ABR trac- 
ings illustrating the changes between 0 and 6 h during hyperbil- 
irubinemia are shown in Figure I .  

* B, bilirubin-infused (n = 7);  C, controls ( n  = 6).  
t Results are presented as mean + SEM. 
$ All p values are two-tailed. 
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Table 4. Changes in ABR peak latencies analyzed as slope 

Intergroup 
'lope differences$ 

different 
Peak Group* Slope (j~V/h)i  from 0 t p  

1 B 0.003 1 + 0.0063 No 1.1945 NS 
C -0.0064 + 0.0044 NO 

Trough B -0.0082 + 0.0348 No 0.0571 NS 
C -0.0107 a 0.0240 NO 

* B, bilirubin-infused ( n  = 7); C, controls ( n  = 6). 
Results are presented as mean f SEM 

$ All p values are two-tailed. 

Fig. 1 .  Effects of hyperbilirubinemia on piglet ABR. Each division 
on the y-axis = 0.5 ~LV; the vertical positions of the tracings are arbitrary. 
Vertex positivity is upward. Upper tracing is baseline, before bilirubin 
infusion; lower tracing was obtained after 6 h of hyperbilirubinemia. 

The results of brain bilirubin extractions from medulla, cere- 
bral cortex, and vermis cerebelli are shown in Table 5.  Though 
it appeared that tissue bilirubin concentrations were higher in 
the medulla, these differences were not significant. In cats, peak 
I in the ABR is thought to have its anatomical correlate in the 
auditory nerve, peak I1 in the cochlear nucleus, peak I11 in the 
superior olive, peak IV in the lateral lemniscus, and peak V in 
the inferior colliculus (44). Data are not known for piglets, and 
correlation analyses of cochlear nucleus bilirubin concentration 

Table 5. Brain bilirubin values in bilirubin-infusedpiglets* 
Brain bilirubin 

Region a SEM) 

Cochlear nucleus 18.3 a 5.2 
Superior olive 17.4 + 3.9 
Lateral lemniscus 16.2 a 3.5 
Inferior colliculus 13.6 a 3.4 
Cerebral cortex 10.8 + 3.2 
Vermis cerebelli 12.1 + 3.9 

* n = 7 .  

with peak I1 amplitude at 6 h, superior olive bilirubin concentra- 
tions with peak I11 amplitude at 6 h, lateral lemniscus bilirubin 
concentrations with peak IV amplitude at 6 h, and inferior 
colliculus bilirubin concentrations with peak V amplitude at 6 h 
did not yield any significant correlations (data not presented). 
Further studies are needed to I)  ascertain the anatomical corre- 
lates of the various ABR peaks in piglets, and 2) determine the 
relationship, if any, between brain bilirubin levels and amplitude 
reductions. 

Finally, the results of the analyses of serum and CSF NSE are 
presented in Table 6. Normal levels of serum and CSF NSE are 
not known in piglets, but the levels of serum NSE remained 
within what is thought to be a normal range for healthy humans 
throughout the duration of the experiment and did not change 
significantly over time, nor did they differ between the groups. 
The levels of NSE in CSF were somewhat higher, but generally 
within what appears to be a normal range for rats (<I7 Fg/L) 
(45). For reasons that appear fortuitous, the CSF NSE levels were 
significantly higher in the controls than in the bilirubin-infused 
piglets. 

DISCUSSION 

Our results show that hyperbilirubinemia decreases peak am- 
plitudes in the piglet ABR. Similar effects of hyperbilirubinemia 
on the ABR have been demonstrated in rats (46), but Shapiro 
(47) also observed increased latencies for waves I1 and 111, as well 
as increased 1-11 and 1-111 interwave intervals. In human neonates, 
as well as in rhesus monkeys, both reduction of amplitudes and 
prolongation of latencies have been observed (23-25, 48-50). 
Our results provide additional evidence that bilirubin in the 
brain influences neuronal function, and this effect occurs in 
several species. The newborn piglet appears to be a useful model 
for bilirubin neurotoxicity in the newborn period. 

It is not clear whether bilirubin-induced effects on the ABR 
are due to changes in neuronal permeability or to inhibition of 
synaptic function by other mechanisms, such as neurotransmitter 
release. There is experimental evidence to suggest that bilirubin 
effects on neurons, at least in vitro, may include both increased 
membrane permeability (34-37) and inhibition of the biochem- 
ical mechanisms underlying neurotransmitter release ( 5  1). The 
lack of increase of NSE concentrations in serum and CSF in the 
present study is compatible with both of these mechanisms. If 
increased membrane permeability is indeed the mechanism un- 
derlying bilirubin effects on the ABR, the findings presented 
herein support our hypothesis that ABR changes would appear 
before the concentration of NSE in serum and/or CSF began to 
increase. On the other hand, if hyperbilirubinemia affects the 
ABR through the neurotransmitter release process rather than 
by increasing membrane permeability, NSE concentrations in 
serum and/or CSF might not increase at all. Regardless of the 
mechanism involved, the results reported here are compatible 
with clinical impressions of reversibility of ABR changes in 
jaundiced newborns. 

The increases in NSE detected in homozygous Gunn rats by 
Semba and Kato (33) were primarily seen in rats with severe 
kernicterus induced by the injection of a displacing agent (buc- 
olome) 16- 18 h before they were killed. In these, CSF NSE levels 
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Table 6. Serum and CSF NSE in hyperbilirubinemic and control piglets 
Effect 

G r o u p  
Sampling t ime  (h)? T i m e  G r o u p  x t ime  

Source Group*  0 I 2 3 4 5 6 F P F  P F P  

Serum B 
Mean  6.0 5.6 5.6 6.6 6.4 5.5 5.1 
S E M  0.4 0.3 0.7 1.1 0.7 0.6 1.0 0.2 N S  0.3 N S  0.4 N S  

C 
Mean  5.8 6.1 5.9 5.3 5.2 5.3 5.6 
S E M  0.8 1.0 1.1 0.8 1.2 0.7 1.1 

C S F  B 
Mean  14.4 14.8 11.1 11.1 10.9 11.3 10.8 
S E M  2.5 2.8 1.4 1.7 1.2 1.6 1.5 0.7 N S  4.9 <0.05 0.1 N S  

C 
Mean  21.9 17.8 15.8 13.6 14.4 14.5 15.9 
S E M  6.1 5.5 4.7 4.9 4.0 4.6 5.1 

* B, bilirubin-infused (n  = 7); c ,  controls  (n = 6). 
t Results a r e  in j~g/L. 

were 35-fold higher than in controls and were accompanied by 7. Lande L 1948 Clinical signs and development of survivors of kernicterus due 
to Rh sensitization. J Pediatr 32:693-705 evidence of brain In rats with lesser 8. Kiister F, Krings H 1950 Blood destruction and cerebral damage in haemolytic 

degrees of brain damage as shown by early degenerative changes disease of the newborn. Lancet 1:979 
in the Purkinje cells, CSF NSE levels were elevated to three to 9. Gerrard J 1952 Kernicterus. Brain 75526-570 
four times control levels. 10. Mollison PL, Cutbush M 1954 Haemolytic disease of the newborn. In: Gardner 

D (ed) Recent Advances in Pediatrics. Churchill Ltd, London, pp 110-1 32 
The time of exposure/insu1t is 'learly In the study by I I. Barmada MA, Moossy J 1982 Neonatal kernicterus and pontosubicular necro- 

Semba and Kato (33), no attempts were made to measure NSE sis. J Neuropathol Exp Neurol 41:347A(abstr) 
until 16- 18 h after the injection of bucolome. However, as the 12. Ahdab-Barmada M, Moossy J 1984 The neuropathology of kernicterus in the 
levels of NSE in CSF were increased 35-fold, it would appear premature . - neonate: diagnostic problems. J Neuropathol Exp Neurol 43:45- 

likely that significant increases in CSF NSE c~ncentra t io~were  
detectable earlier. In support of this, Steinberg et al. (45) found 
NSE levels of =I00 pg/L in rat CSF 6 h after injecting kainic 
acid in the striatum. The experiments reported herein used much 
higher serum bilirubin concentrations than those found in homo- 
zygous Gunn rats, as well as repeated injections of a displacing 
substance, resulting in higher brain bilirubin concentrations than 
one might expect to find in homozygous Gunn rats. Whether 
the insult caused by this type of manipulation equates to that of 
a more prolonged but less intense hyperbilirubinemia typically 
seen in jaundiced neonates needs to be studied further. The fact 
that some studies have reported effects on amplitudes, others 
primarily on latencies, and some on both, is another indication 
of the need for further studies in this area. 

Thus, the studies reported herein showed that hyperbilirubi- 
nemia in piglets resulted in significant reductions in ABR peak 
amplitudes ( ~ 5 0 %  reduction after 6 h), without increases in 
serum or CSF NSE concentrations. This suggests that changes in 
the ABR may occur without severe compromise of neuronal 
membrane integrity and provides further support to the idea that 
early ABR changes during hyperbilirubinemia may be reversible. 
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