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ABSTRACT. The primary genetic defect of Zellweger 
syndrome may be related to defective synthesis or impaired 
import of peroxisomal proteins. We analyzed the presence 
and measured the abundance of the 22-kD peroxisomal 
integral membrane protein (PMP) in patients with Zell- 
weger syndrome. We determined the intracellular localiza- 
tion of the 22-kD PMP and compared it with the localiza- 
tion of a peroxisomal 44-kD thiolase precursor protein. 
The 22-kD PMP was quantified by immunoblot analyses 
in liver tissue (n = 7 patients). Immunoblot signals were 
evaluated using transmission photometry. The intracellular 
localization of the 22-kD PMP and the peroxisomal 44- 
kD thiolase precursor protein were determined by immu- 
noblot analyses on fibroblast subcellular fractions prepared 
by Nycodenz (n = 5 patients) or sucrose density gradient 
centrifugation (n = 2 patients). The 22-kD PMP was 
present and associated with membrane fractions in all 
patients. Its abundance varied in patients as compared with 
normal human liver controls. The 22-kD PMP was located 
in subcellular membrane fractions having a lower density 
than normal peroxisomes or mitochondria. Using two dif- 
ferent gradient techniques, the 22-kD PMP and the per- 
oxisomal 44-kD thiolase precursor protein were found in 
the same low-density gradient fractions. These results sug- 
gest that in Zellweger syndrome peroxisome-like elements 
containing both the 22-kD PMP and a 44-kD thiolase 
precursor protein are formed. Globally defective synthesis 
or import of peroxisomal proteins is therefore unlikely to 
be the primary genetic defect in the patients we studied. 
(Pediatr Res 29: 141-146, 1991) 

Abbreviations 

PMP, peroxisomal integral membrane protein 
SISP, signal intensity surface product 

The cerebrohepatorenal syndrome of Zellweger (McKusick 
2 14 10) is an autosomal recessive disorder of multiple congenital 
anomalies (1, 2). It is characterized by a reduced number or 
absence of peroxisomes (3) and regarded as the prototype of 
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peroxisomal deficiency disorders. Multiple peroxisomal bio- 
chemical processes are defective, including @-oxidation of very 
long chain fatty acids (4), phytanic acid oxidation (5,6), pipecolic 
acid oxidation (7), plasmalogen biosynthesis (8), and bile acid 
metabolism (9). 

Normally, peroxisomal proteins are synthesized in the cytosol 
on free polyribosomes (10, 11). Peroxisomes are formed by the 
import of newly synthesized proteins into preexisting peroxi- 
somes, followed by growth and division (10-14). The integral 
membrane proteins, especially the 22-kD PMP, are speculated 
to have important roles in maintaining the integrity of the 
peroxisomal membrane and in transporting peroxisomal matrix 
components (10, 1 1, 15). The primary defect in Zellweger syn- 
drome is unknown but may be related to defective synthesis or 
impaired import of peroxisomal proteins (12, 16- 19). Previous 
studies have shown that in patients with Zellweger syndrome the 
22-kD PMP is absent (20), present in normal amounts (1 8, 2 l), 
or varies from absent to markedly reduced (22,23). Santos et al. 
(1 8) found the 22-kD PMP to be associated with "largely empty" 
aberrant membrane vesicles. To test current hypotheses for the 
pathogenesis of Zellweger syndrome, we analyzed the presence 
and abundance of the 22-kD PMP and determined its intracel- 
lular localization in comparison with the localization of a 44-kD 
precursor protein of the peroxisomal matrix protein, 3-ketoacyl- 
CoA thiolase. 

MATERIALS AND METHODS 

Patients and controls. Immunoblot analyses of autopsy liver 
specimens were performed in seven patients with Zellweger 
syndrome (AH, AW, CS, DM, FS, NM, and PW), three normal 
human controls, and two animal controls (rat and monkey). 
Immunoblot analyses of skin fibroblasts were carried out in five 
patients with Zellweger syndrome (BB, BH, ES, NS, and EW) 
and two normal human controls. Data on peroxisomal metabo- 
lite levels and clinical characteristics were obtained from the 
patients' medical records. All patients showed the features of 
"classical" Zellweger syndrome (1, 2). Fibroblast or other living 
cultures for complementation group analysis (24, 25) were not 
available from patients on whom liver analyses had been per- 
formed. Patients CS and FS have been included in previous 
reports (26). 

Preparation of liver samples. Liver specimens were obtained 
at autopsy and frozen at -70°C until use. Pieces (0.5-1.5 g) of 
thawed human liver and fresh monkey and rat liver were minced 
in three volumes of buffer [lo0 mM KCl, 50 mM Tris (Cl-), pH 
8.33, 1 mM EGTA], homogenized by four to five passes using a 
Potter-Elvehjem homogenizer, and centrifuged for 30 s at 3900 
x g. The supernatants were used to prepare total membranes. 
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Subcellular fractionation of cultured Jibroblasts. Skin fibro- 
blasts were maintained in culture as previously described (27). 
Cells were grown in 850 cm2 roller bottles (four to six bottles per 
experiment). Confluent cells were washed with PBS, harvested 
by trypsinization, and collected by centrifugation for 10 min at 
1000 x g. The cell pellet was washed twice with PBS and once 
with ice-cold homogenization buffer [0.25 M sucrose, 1 mM Tris 
(Cl-), pH 7.5, 0.1 mM EDTA]. All subsequent steps were per- 
formed at 4°C. Cells were resuspended in homogenization buffer 
and homogenized in a precision ball-bearing homogenizer (28) 
using 11 passes. Homogenates were loaded directly either onto a 
linear Nycodenz (Accurate Chemical & Scientific Corp., West- 
bury, NY) gradient of increasing Nycodenz concentration (1 5 to 
40%) and decreasing sucrose concentration (8.6 to 0%) or onto 
a linear sucrose gradient of increasing sucrose concentration (12 
to 60%). All gradient solutions contained I mM Tris (Cl-), pH 
7.5, and 0.1 mM EDTA. A cushion of Maxidens (Accurate 
Chemical & Scientific Corp.) was at the bottom of the tube. 
Gradients were centrifuged in a vertical ultracentrifuge rotor 
(Beckman VTi 65.1; Beckman Instruments, Inc., Palo Alto, CA) 
for 35 min at 74 300 x g. Fractions of 750 pL were collected 
from the bottom of the tube and aliquots of each fraction assayed 
for marker enzymes. Catalase activity was measured by the 
method of Peters et al. (29) and succinate dehydrogenase activity 
by the method of Pennington (30). Four hundred-eighty pL of 
each fraction were used to prepare membranes. 

Zsolation of membranes. Total membranes were purified from 
liver postnuclear supernatant fractions and fibroblast density 
gradient fractions by a carbonate procedure (3 1). In the case of 
fibroblast fractions, red blood cell ghosts (20 pg of protein/ 
fraction) were added as carrier before sodium carbonate extrac- 
tion. The use of carrier did not result in nonspecific binding of 
antisera in the subsequent immunoblots. For liver membrane 
fractions, the protein content was determined by the method of 
Lowry (32) with BSA as standard. Fifty pg of total liver mem- 
brane protein and the total fibroblast membrane pellet were used 
for immunoblot analyses. 

Zmmunoblot analyses. Antibodies against purified rat liver 
peroxisomal 3-ketoacyl-CoA thiolase (P-ketothiolase), 22-kD 
PMP, and mitochondria1 3-hydroxyacyl-CoA dehydrogenase 
were the gift of Dr. Takashi Hashimoto (Shinshu University, 
Japan). Purified protein A (P-6650; Sigma Chemical Co., St. 
Louis, MO) was labeled with 1251 after the procedure of Green- 
wood et al. (33). SDS-PAGE and immunoblotting were camed 
out as previously described (34). 

Fibroblast subcellular fractions (240 pllfraction) for immu- 
noblot analysis of peroxisomal P-ketothiolase were kept in ice- 
cold 10% trichloroacetic acid at 4°C overnight. Precipitates were 
collected by centrifugation for 10 min at 2000 x g, washed once 
with diethyl ether, solubilized in sample buffer [67.5 mM Tris 
(Cl-), pH 6.8, 1% SDS, 100 mM DTT, 0.005% bromophenol 
blue, and 10% glycerol], sonicated, and boiled for 20 min. 

Membrane fractions for immunoblot analysis of 22-kD PMP 
were solubilized in sample buffer, sonicated, and boiled for 20 
min. Membrane proteins were separated by SDS-PAGE and 
transblotted to nitrocellulose paper under conditions optimized 
for hydrophobic proteins (35). 

The blot signal was measured by transmission photometry 
using an image analysis system for quantitative autoradiography 
(36). The product of the signal area and signal intensity is referred 
to as SISP. The SISP is used in this context as a semiquantitative 
measurement of the 22-kD PMP, peroxisomal 44-kD thiolase 
precursor protein, and mitochondrial 3-hydroxyacyl-CoA dehy- 
drogenase abundance, respectively. Its units are given in mm2. 
Regression analyses revealed a linear correlation between the 
amount of rat liver membrane protein (10 to 100 pg) and the 
SISP of the 22-kD PMP immunoblot signal (n = 3, r = 0.99, p 
= 0.018). 

Biochemical assays of peroxisomal function. Concentrations 
of very long chain fatty acids in plasma and cultured fibroblasts 

were measured by gas liquid chromatography-mass spectrometry 
(27. 37). 

statistics. The correlation between two parameters was ana- 
lyzed with the rank correlation test (38). All p values of 0.05 or 
less were considered to be statistically significant. 

RESULTS 

Abundance of 22-kD PMP in Zellweger syndrome. Results of 
immunoblot analyses in total liver membranes using antibodies 
against 22-kD PMP are given in Figure 1. The 22-kD PMP was 
present in liver from all seven patients with Zellweger syndrome, 
as well as in three human and two animal controls. The apparent 
molecular weight of the 22-kD PMP in patients with Zellweger 
syndrome did not differ from controls. The SISP of the blot 
signal, namely the abundance of the 22-kD PMP, showed a 
remarkable variability in patients with Zellweger syndrome. The 
SISP ranged from 943 to 6580 mm2 (4075 + 2036 mm2, mean 
k SD). In contrast, the SISP of the three human liver controls 
was relatively equal, ranging from 5886 to 6196 (6029 + 156 
mm2, mean f SD). In patients with Zellweger syndrome and in 
controls, the 22-kD PMP was not extractable with sodium car- 
bonate, indicating that the 22-kD PMP is embedded in mem- 
branes. 

Relationship between 22-kD PMP abundance and age at death, 
histologic characteristics and biochemical parameters in patients 
with Zellweger syndrome. To determine whether or not the 
observed variable 22-kD abundance in patients with Zellweger 
syndrome was due to different degrees of liver degeneration 
before death, the 22-kD PMP SISP was correlated with the age 
at death, liver histology, and hepatic catalase activity. Statistical 
analysis revealed no correlation between the 22-kD PMP SISP 
and the age at death ( n  = 7, r = -0.5, p > 0.5). High 22-kD 
PMP SISP values were found in one severely affected patient 
who survived 94 d (patient PW) and in a patient who died as 

Fig. I .  Presence and abundance of the 22-kD PMP in liver from 
patients with Zellweger syndrome (AH, DM, NM, AW, PW, CS, FS), 
human controls (C, ,  C2, C3), rat (R ) ,  and monkey (M). Fifty pg of total 
membrane protein prepared from postmortem liver specimens were 
analyzed by SDS-PAGE and immunoblot analysis using antibodies 
against purified rat liver 22-kD PMP. The numbers represent the SISP 
in mm2. The SISP is the product of the autoradiographic signal intensity 
and the signal area. The SISP was variable in Zellweger syndrome and 
relatively equal in controls. 
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soon as 14 d after birth (patient FS). The results are also not 
indicative of a positive correlation between 22-kD PMP SISP 
and hepatic fibrosis. For example, patient PW with liver fibrosis 
had a relatively high 22-kD PMP SISP, whereas patient NM with 
no evidence for liver fibrosis had a relatively low 22-kD PMP 
SISP. In addition, the total soluble hepatic catalase activity did 
not correlate with the 22-kD PMP SISP ( n  = 7, r = -0.4, p > 
0.05). 

To exclude postmortem liver damage, the SISP of the 44-kD 
peroxisomal thiolase precursor protein and mitochondrial 3- 
hydroxyacyl-CoA dehydrogenase were analyzed in the same liver 
samples used for the PMP analyses. Although the SISP for 22- 
kD PMP in patients AH and AW differed by a factor of 2 (Fig. 
I) ,  there was no such difference between AH and AW for the 
44-kD peroxisomal thiolase precursor protein (factor: 1 ; Fig. 2A) 
or mitochondrial hydroxyacyl-CoA dehydrogenase (factor: 1; 
Fig. 2A). The same was true for patients DM and NM. There 
was a 4-fold difference in the SISP of 22-kD PMP (Fig. I), but 
no difference in the SISP of thiolase precursor (factor: 1; Fig. 
28)  and hydroxyacyl-CoA dehydrogenase (factor: 1; Fig. 2B). 

Relationship between 22-kD PMP abundance and impairment 
of peroxisomal functions in Zellweger syndrome. To determine 
if the 22-kD PMP abundance correlates with the degree of 
impairment of peroxisomal metabolic functions, plasma concen- 
trations of very long chain fatty acids were measured. A statisti- 
cally significant correlation could not be shown (C26:O: n = 4, r 

= -0.4, p > 0.05; C26:O/C22:0: n = 4, r = -0.4, p > 0.05; 
C24:O/C22:0: n = 4, r = 0.4, p > 0.05). For example, patients 
NM and PW had equally elevated plasma concentrations of very 
long chain fatty acids but a 7-fold difference in the SISP of the 
22-kD PMP. 

Subcellular localization of the 22-kD PMP in Zellweger syn- 
drome. Results of immunoblot analyses of subcellular membrane 
fractions as prepared by Nycodenz gradient centrifugation and 
carbonate extraction are shown in Figure 3. In control fibroblasts, 
the 22-kD PMP was recovered in fractions 2 and 3 (Fig. 3A). 
These fractions were enriched in a portion of catalase activity 
(Fig. 4A), which is associated with intact peroxisomes, whereas 
fractions 7 to 9 (Fig. 3A) were enriched in succinate dehydrogen- 
ase activity (Fig. 4A), a marker for mitochondria. In contrast, in 
Zellweger syndrome the 22-kD PMP was located in fractions 11 
and 12 (Fig. 3B). These fractions had a lower density than normal 

Fig. 2. Abundance of the 44-kD peroxisomal thiolase precursor pro- 
tein and mitochondrial 3-hydroxyacyl-CoA dehydrogenase (32 kD) in 
patients with Zellweger syndrome (A: AH, AW; B: DM, NM). The same 
postmortem liver specimens as for the 22-kD PMP analyses (Fig. 1) were 
investigated. Analyses were performed by SDS-PAGE and immunoblot 
analysis using 50 pg of liver homogenate and antibodies against the 
purified rat liver enzymes. The immunoblot signals were quantified by 
transmission photometry. The numbers represent the SISP in mm2. The 
SISP is the product ofthe autoradiographic signal intensity and the signal 
area. The SISP of the enzymes in patients AH and AW (A) as well as in 
patients DM and NM (B) were of a similar order of magnitude. 

Fig. 3. Subcellular localizarion of rhe 22-kD PMP and Lhc 44-kD 
peroxisomal thiolase precursor protein in Zellweger syndrome-immu- 
noblot analyses of Nycodenz gradients. Fibroblast homogenates from a 
human control (A) and patient BH with Zellweger syndrome (B and C) 
were fractionated by Nycodenz gradient technique. Fractions 1 to 14 in 
B and C are from the same gradient. Fibroblast membrane fractions 
were taken for the 22-kD PMP analysis and total fibroblast fractions for 
the 44-kD thiolase analysis. The samples were subjected to SDS-PAGE 
and immunoblot analysis using antibodies against the purified rat liver 
proteins. P and M indicate positions of the peroxisomal and mitochon- 
drial markers, respectively. In control fibroblasts, the 22-kD PMP was 
located in the peroxisomal fractions (2 and 3). In patient BH, the 22-kD 
PMP and the 44-kD peroxisomal thiolase precursor protein were found 
in the same nonperoxisomal fractions (1 1 and 12) 
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0 the 22-kD PMP and the peroxisomal 44-kD thiolase precursor 
protein was analyzed in Nycodenz gradients as well as in sucrose 
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Fig. 4. Subcellular distribution of total enzyme activity on Nycodenz 
gradients ( A ,  human control; B, patient BH) and sucrose gradient (C, 
patient BH). Fractions were analyzed for activity of the peroxisomal 
marker enzyme catalase and the mitochondrial marker enzyme succinate 
dehydrogenase. Units of enzyme activity equal percent of total gradient 
activity recovered in each faction. Fractions enriched in catalase activity 
were well separated from those enriched in succinate dehydrogenase 
activity. 

peroxisomes and mitochondria. In Zellweger syndrome, the ma- 
jority of the activity of the peroxisomal marker catalase was 
found at the top of the gradient (fractions 11 to 14; Fig. 4B), 
suggesting that normal peroxisomes are missing. As in normal 
fibroblasts, fractions 7 to 9 for Zellweger syndrome fibroblasts 
(Fig. 3B) were enriched in activity of the mitochondrial marker, 
succinate dehydrogenase (Fig. 4B). 

Presence of 22-kD PMP and thiolase precursor protein in same 
densityfractions in Zellweger syndrome. To determine whether 
in Zellweger fibroblasts the 22-kD PMP associated membranous 
elements include intraperoxisomal proteins, the localization of 

Fig. 5. Subcellular localization of the 22-kD PMP and the 44-kD 
peroxisomal thiolase precursor protein in Zellweger syndrome-immu- 
noblot analyses of a sucrose gradient. Fibroblast homogenates from 
patient BH with Zellweger syndrome were fractionated by sucrose gra- 
dient technique. Fractions 1 to 12 in A and B are from the same sucrose 
gradient. Fibroblast membrane fractions were taken for the 22-kD PMP 
analysis and total fibroblast fractions for the 44-kD thiolase analysis. The 
samples were subjected to SDS-PAGE and immunoblot analysis using 
antibodies against the purified rat liver proteins. M indicates the position 
of the mitochondrial marker. The 22-kD PMP and the 44-kD thiolase 
were found in the same gradient fractions (10 to 12) and support the 
findings obtained by Nycodenz gradient technique (Fig. 3B and C). 
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histology, or liver catalase activity. Furthermore, using the same 
postmortem liver samples, we found the abundance of peroxi- 
somal thiolase precursor and mitochondrial hydroxyacyl-CoA 
dehydrogenase to be relatively equal. The variable 22-kD PMP 
abundance in Zellweger syndrome may be due to different 
genetic defects. Somatic cell fusion studies have shown that 
patients with Zellweger syndrome are distributed among several 
different complementation groups (24, 25). Apparently, muta- 
tions in several different genes lead to a similar phenotype. 
However, the different 22-kD PMP abundances in patients AW 
and PW, who are siblings, suggest that nongenetic factors may 
affect the 22-kD PMP abundance in the membranous fractions. 

Because the 22-kD PMP appears to be present in membranous 
structures, the synthesis and import mechanisms of the 22-kD 
PMP may be intact in Zellweger syndrome. The possibility that 
the 22-kD PMP is imported into some other intracellular ore- 
ganelle membranes due to the absence of peroxisomes has al- 
ready been excluded by Santos et al. (18,39). They demonstrated 
by immunoelectron microscopy and immunofluorescence that 
the peroxisomal integral membrane proteins were very specifi- 
cally localized in rare, unusual membrane vesicles. 

The 22-kD PMP is unique to peroxisomes. It is speculated to 
have important roles in maintaining the integrity of the peroxi- 
somal membrane and in transporting peroxisomal matrix com- 
ponents (10, 11, 13-15). The 22-kD PMP was present in all our 
patients. There was no correlation between the 22-kD PMP 
abundance in the patients' liver and the degree of metabolic 
impairment of peroxisomal functions or the clinical severity of 
disease. However, in this study, the abundance of the 22-kD 
PMP was measured by immunoreactivity. It remains to be 
determined whether the structure and function of the 22-kD 
PMP are deficient in Zellweger syndrome. 

Our results reveal that in Zellweger syndrome, the 22-kD PMP 
associated membranous bodies may not be "largely empty" 
membrane "ghosts" (1 8,39) but also contain peroxisomal matrix 
elements. The 22-kD PMP associated membrane fraction and a 
peroxisomal thiolase precursor protein were consistently local- 
ized in the same low-density subcellular fractions, as already 
suspected by Balfe et al. (40). These results argue against a general 
import failure of peroxisomal matrix proteins as the primary 
defect in Zellweger syndrome. At least one matrix protein, the 
peroxisomal thiolase precursor, may be able to reach the perox- 
isome-like organelle. 

Peroxisomal thiolase is synthesized in the cytosol, imported 
into peroxisomes in a precursor form, and subsequently proc- 
essed in the peroxisomal matrix (41 42). Our results, consistent 
with those of previous studies (40,43), suggest that the processing 
of the enzyme precursor is defective in Zellweger syndrome. Our 
results further suggest that in Zellweger syndrome peroxisome- 
like elements containing the 22-kD PMP and a 44-kD precursor 
protein of the P-oxidation enzyme thiolase are formed. Globally 
defective synthesis or import of peroxisomal proteins are there- 
fore unlikely in the patients we studied. The primary defect 
preventing full development of peroxisomes remains to be deter- 
mined. 
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