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ABSTRACT. Newly identified forms of electron transfer 
flavoprotein (ETF) deficiency in two patients with glutaric 
aciduria type I1 (GA 11) were described. GA I1 has been 
attributed to a defect of either ETF or ETF dehydrogenase, 
resulting in multiple acyl-CoA dehydrogenation deficiency. 
ETF is a mitochondrial flavoprotein consisting of an a- 
subunit, a-ETF, and a @-subunit, 0-ETF. We used pulse- 
chase experiments to examine the biosynthesis of ETF in 
fibroblasts from two patients with GA 11. Patient 1 was a 
boy with the neonatal onset form, but without congenital 
anomalies, who is living at age 2 y. A defect of B-ETF 
biosynthesis was noted in this patient. Patient 2 was a boy 
with the neonatal onset form with congenital anomalies 
who died on the 3rd postnatal day. He presented with a 
peculiar face and polycystic kidneys. In patient 2, both a- 
and B-ETF were synthesized, but both the subunits were 
rapidly degraded. The lability of ETF was considered to 
be the cause of GA I1 in this patient. These two cases 
appear to be new forms of ETF deficiency in GA 11. 
(Pediatr Res 29: 60-63,1991) 

Abbreviations 

GA 11, glutaric aciduria type I1 
ETF, electron transfer flavoprotein 
a-ETF, a-subunit of ETF 
8-ETF, B-subunit of ETF 
pa-ETF, precursor of a-ETF 
ETF-DH, electron transfer flavoprotein dehydrogenase 
GC/MS, gas chromatography and mass spectrometry 
R6G, rhodamine 6G 

GA 11, first described in 1976 (I), is an inherited disorder of 
organic acid metabolism caused by metabolic blocks at several 
steps of mitochondrial flavin-containing acyl-CoA dehydrogen- 
ases: short-chain acyl-CoA dehydrogenase, medium-chain acyl- 
CoA dehydrogenase, or long-chain acyl-CoA dehydrogenase in- 
volved in fatty acid P-oxidation; isovaleryl-CoA dehydrogenase, 
isobutyryl-CoA dehydrogenase, and methylbutyryl-CoA dehy- 
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drogenase involved in branched-chain amino acid catabolism; 
glutaryl-CoA dehydrogenase in lysine, hydroxylysine, or trypto- 
phan catabolism; and sarcosine dehydrogenase (2). Many pa- 
tients with GA I1 present with hypotonia, tachypnea, hypogly- 
cemia, and, often, neonatal death, or Reye's syndrome-like ill- 
ness. Urinary organic acid analysis by GC/MS shows an increased 
excretion of characteristic compounds such as adipate, suberate, 
sebacate, glutarate, Zhydroxyglutarate, ethylmalonate, or isoval- 
erylglycine, which are the corresponding metabolites derived 
from defective steps (2). The etiology of this disorder was pos- 
tulated to be due to deficiency of a protein component common 
to acyl-CoA dehydrogenation (2-1 1). 

A genetic deficiency of ETF or ETF-DH in GA I1 was dem- 
onstrated by enzyme assay, immunoblotting, or pulse-labeling 
techniques (1 2- 14). ETF is a heterodimeric flavoprotein consist- 
ing of two subunits, an a-subunit (a-ETF) and a P-subunit (P- 
ETF), localized in the mitochondrial matrix (15-17). We now 
describe two new forms of ETF deficiency in patients with GA 
11, identified in pulse-chase experiments. In one patient there 
seems to be a defect in 8-ETF biosynthesis, and in the other, 
lability of the ETF subunits seems to be the cause. 

MATERIALS A N D  METHODS 

Fibroblasts. Skin fibroblasts obtained from two Japanese chil- 
dren with GA 11, patients l and 2, were cultured in Eagle's 
minimal essential medium containing 10% FCS (vol/vol) and 
antibiotics (standard medium). 

Patient I was a boy born to unrelated parents, and the family 
history was noncontributory. He was diagnosed with GA I1 at 
the age of 10 mo, based on the results of the urinary organic 
acids analyzed by GC/MS. Urinary organic acids such as dicar- 
boxylic acids (adipate, suberate, and sebacate), 2-hydroxy-glutar- 
ate, isovalerylglycine, and ethylmalonate were elevated. He had 
transient respiratory distress in the neonatal period and a mild 
gross motor retardation was evident in early infancy. At 5 mo of 
age, hypotonia, tachypnea, vomiting, hypoglycemia, and meta- 
bolic acidosis occurred after an infection. Subsequently, similar 
episodes occurred several times after an infection or a bout of 
diarrhea. 

Patient 2 was a boy born to unrelated parents. His brother had 
died of unknown causes 12 h after delivery. This patient died on 
the 3rd postnatal day, with apnea, hypotonia, lethargy, vomiting, 
and a peculiar body odor. Laboratory test revealed hypoglycemia, 
metabolic acidosis, and hyperammonemia. Urinary organic acids 
analysis by GC/MS revealed an increased excretion of adipate, 
sebacate, glutarate, ethylmalonate, 2-hydroxy-glutarate, and iso- 
valerylglycine. An enlarged head and anterior fontanel were also 
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noted, and polycystic kidney and fatty infiltration of the liver antibody. The immune complexes were recovered with the S. 
were revealed at autopsy. aureus cell suspension, and then subjected to SDS/PAGE using 

Materials. Tran [3SS]-Label (>lo00 Ci/mmol) as [3SS]methio- 10% gels according to the method of Laemmli (22). The gels 
nine was from ICN Radiochemicals, Irvine, CA; EN3HANCE were stained with Coomassie brilliant blue, treated with 
was from Du Pont/NEN Research Products, Boston, MA; the EN3HANCE, dried, and flurographed according to the supplier's 
fixed Staphylococcus aureus cells were from Sanraku Co., Tokyo, instructions. 
Japan; protease inhibitors were from the Peptide Institute, Osaka, 
Japan; anti-[human fibronectin1IgG (goat) was from CAPPEL 
Laboratories, West Chester, PA; and the immunoblotting system RESULTS 

was from Promega Biotec, Madison, WI. Immunoblot analysis of ETF. Figure 1 summarizes the results 
Preparation 0fETF and the antibody. ETF was purified from of immunoblot analysis of ETF. The bands for a- and B-ETF 

rat liver, and the antibody against rat ETF was raised in rabbits were clearly seen in the human liver tissue (Fig. 1, lane 2) and 
and partially purified as described (1 5). the control fibroblasts (Fig. 1, lanes 3 and 6). In both patients, 

Immunoblot a n a l y ~ i ~ .  Fibroblast extracts were applied to SDS/ bands for a- and 0-ETF were not detected (Fig. 1, lanes 4 and 5, 
PAGE, and immunoblotting was then done as described (18) respectively). Other fainter bands may be due to nonspecific 
using the system recommended in the supplier's instructions. reactions. 

Pulse-labeling and chase experiment. Fibroblasts were grown Pulse-labeling of precursor and mature subunits of ETF. Cul- 
in 6-cm plastic dishes. Pulse-labeling was performed as described tured fibroblasts were incubated for 1 h with [35S]methionjne in 
(1 8) using 200 P C ~  of [3SSlmethionine Per each dish. When R6G, the presence and the absence of R6G, an inhibitor of mitochon- 
an  inhibitor of transport of the precursors of the mitochondrial drial import of the precursor proteins. Figure 2 summarizes the 
enzymes and their ~rocessing (19) was used, it was added to the results. In the control fibroblasts, the fluorographic bands for the 
medium to give a final concentration of S/*g/mL 30 min after mature form of a-ETF and P-ETF were apparent in the absence 
start of the preincubation, and to the labeling medium, as de- of R6G (Fig. 2, lane 3). In the presence of R6G, pa-ETF was 
scribed (20,2 1 ). In pulse-chase experiments, the labeling n~edium observed migrating slightly slower than the corresponding mature 
was replaced with 3 mL of the standard medium after a I-h counterpart. The P-ETF precursor migrated at the same position 
pulse-labeling, then the cells were chased for 6 h, 24 h, and 72 as the mature subunit detected in the absence of R6G (Fig. 2, 
h, respectively, as described (1 8). lane 2). The competition experiment with purified rat ETF gave 

ImmunoPreciPitation andfluorogra~h~. The labeled and $01~- no band (Fig. 2, lane 1) or a fainter band (Fig. 2, lane 4). After 
bilized cells were treated as dfxribed ( 1  8), and immunoprecipi- fibroblasts from patient 1 were pulse-labeled, the signals for the 
tated with anti-[rat ETFIIgG. For competition experiment, about p a - E T ~  and a-ETF were clearly seen in the presence and the 
5rg of purified rat ETF was added before incubating with the absence of R6G, respectively, but no bands for @-ETF were 

R L C PI P2 C' 
detected in either lane (Fig. 2, lanes 6 and 7). In fibroblasts from 
patient 2, signals for pa-ETF, a-ETF, and 0-ETF were obtained 
(Fig. 2, lanes 10 and I I), as in the normal control. These findings 

a-ETFL suggest that patient 1 has a defect in the biosynthesis of @-ETF. 
However, in patient 2, synthesis of both a- and P-ETF seemed 
normal. 

B - E T F ~  
Pulse-chase experiments. Chase experiments were performed 

for 6 h, 24 h, and 72 h after pulse-labeling for 1 h to examine 
the stability of synthesized subunits of ETF. Figure 4 summarizes 

1 2 3 4 5 6  the results. In the normal control, the signals for both a- and 0- 
ETF were observed after a 72-h chase (Fig. 3A and B, lanes I -  

Fig. 1. Immunoblot analysis of ETF. Lane 1, purified rat ETF (5 ng 4). In patient 1, a-ETF band was visible after a 6-h chase (Fig. 
of protein applied); lanes 2 and 7, human liver (10 Kg each of protein); 3A, lanes 5 and 6) but could not be detected after a longer chase 
lanes 3 and 6, control fibroblasts (50 pg each of protein); lanes 4 and 5, (Fig. 3A, lanes 7 and 8). NO band for the P-ETF was present in 
fibroblasts of patient 1 and patient 2, respectively (50 pg each of protein). any lane (Fig. 3A, lanes 5-8). For patient 2, the bands for a- and 
R, rat ETF; L, human liver; C and C', two different control fibroblast P-ETF were seen at a 6-h chase, but both bands disappeared after 
lines; P, and P2, fibroblasts from patient 1 and patient 2, respectively. a 24-h chase (Fig. 3B, lanes 5-8). Fluorograms of mitochondrial 

Control Patient 1 Patient 2 
[ I - - - - - - r - - l  

rhodamine 6G + + - - + + - - + + - -  
competitive inhibition + - - + + - - + + - - - I -  - P. 

Fig. 2. Pulse-labeling of ETF in fibroblasts in the presence and absence of R6G. Lanes 1-4, fibroblasts from the control; lanes 5-8, patient I; 
lanes 9-12, patient 2.  Among them, lanes 2, 6, and 10 are in the presence of R6G; lanes 3, 7, and 11 are in the absence of R6G; lanes 1, 5, and 9 
are competition experiments in the presence of R6G; lanes 4,8, and 12 are competition experiments in the absence of R6G. About 5 pg of unlabeled 
rat ETF was added before immunoprecipitation for the competition experiment (lanes I ,  4, 5, 8, and 12). Arrowheads indicate the signals for pa- 
ETF and 0-ETF (upper) and p-ETF (lower). 
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A Control Patient 1 

I p ' 6 ' 2 4 ' 7 2 l  P ' 6 \ 2 4  72 
1 

._ - 1 - p-- - 

B Control Patient 2 

I P ' 6 ' 2 4 ' 7 2 '  P 1  6 24 72 
I 

Fig. 3. Pulse-chase experiments of ETF. Panel A, patient 1 (lanes 5 
and 6) and normal control (lanes 1-4); pand B, patient 2 (lanes 5-8) 
and normal control (lanes 1-4). Lanes I and 5, pulse-labeling with 200 
pCi of ["S]methionine for I h; lanes 2 and 6, chase for 6 h; lanes 3 and 
7, chase for 24 h; lanes 4 and 8, chase for 72 h. P, pulse-labeled for 1 h; 
6, 24, and 72, chased for 6, 24, and 72 h, respectively, after I h pulse- 
labeling. 

A Control Patient 1 

I P 1 6 ' 2 4 ' 7 2 '  lp161m 

B Control Patient 2 

' P  ' 6 ' 2 4 ' 7 2 '  ' P 6 24 72 
I I I I 

Fig. 4. Pulse-chase experiments of mitochondrial 3-ketoacyl-CoA 
thiolase performed as the positive control of the mitochondrial enzyme 
protein. Panel A, patient 1 (lanes 5-8) and normal control (lanes 1-4); 
panel B, patient 2 (lanes 5-8) and normal control (lanes 1-4). Abbrevi- 
ations are the same as those in Figure 3. Arrows indicate the position of 
the thiolase. 

3-ketoacyl-CoA thiolase were prepared as the positive control of 
the mitochondrial enzyme protein, using the same samples. As 
shown in Figure 4, signals were clearly observed after a 72-h 
chase, the intensity being the same for fibroblasts from the 

control and the patients. These findings indicate that the primary 
defect in patient 1 is P-ETF biosynthesis. The 8-ETF deficiency 
may secondarily cause lability of a-ETF, as assembly of the ETF 
complex in the mitochondria would not occur. In patient 2, both 
a- and P-ETF were synthesized, but were unstable. This lack of 
stability is likely to cause GA 11. 

DISCUSSION 

GA 11, also known as multiple acyl-CoA dehydrogenation 
deficiency, is characterized by severe acidosis, hypoglycemia, or 
Reye's syndrome-like illness (2). GA I1 may be caused by a defect 
in either ETF or ETF-DH involved in mitochondrial acyl-CoA 
dehydrogenases (2, 12, 13). ETF-DH deficiency has been de- 
scribed by enzyme assay and immunoblot analysis (12, 14), and 
an ETF deficiency was also shown by immunoblotting (12, 14), 
pulse-labeling (1 3), or measurement of ETF activity (23). 

ETF is a heterodimer consisting of an a- and a @-subunit, 
which are encoded by different nuclear genes, translated on 
cytosolic polyribosomes as precursors, and translocated into 
mitochondria: functional ETF is formed by assembly of a- and 
8-ETF in the mitochondrial matrix (1 5-1 7), as with many other 
mitochondrial matrix enzymes (24-26). Human a-ETF is trans- 
lated as a precursor of the 35 kD, which is 3 kD larger than the 
mature a-ETF. cDNA for human a-ETF precursor was cloned 
by Finocchiaro et al. (27). P-ETF, synthesized in the cytosol(27 
kD), is indistinguishable in size from the mature form (1 3). 

Frerman and Goodman (12) analyzed six cell lines from GA 
I1 patients by determining the ETF-DH activity and immunoblot 
analysis of ETF and ETF-DH. They concluded that four of the 
six lines were related to an ETF-DH deficiency and the other 
two had an ETF deficiency. The latter two cell lines were reported 
to have small amounts of an abnormal a-ETF and migration 
was faster on SDS/PAGE than it was for the normal a-ETF. One 
cell line (their 1441) had a normal amount of P-ETF but another 
(their 1196) had no P-ETF. Ikeda el al. (13) also studied the 
biosynthesis of ETF in eight cell lines from GA I1 patients, using 
pulse-labeling techniques. They showed that three lines had 
defects in a-ETF biosynthesis, and that one (Ikeda's 605; Frer- 
man's 1 196) from a patient reported by Przyrembel et a[. (1) had 
normal P-ETF but no a-ETF. Frerman and Goodman (12) 
reported that the cell line (their 1 196) had abnormal a-ETF and 
no 8-ETF, as determined by immunoblot analysis. Although the 
reason for this discrepancy is unclear, a possible primary defect 
of a-ETF biosynthesis in this cell line might have been identified 
in pulse-labeling experiments. Although immunoblotting is a 
simpler method for the detection of the ETF deficiency, it reveals 
only the antigen peptide at the steady state. On the other hand, 
pulse-chase experiments examine both polypeptide synthesis and 
stability. In our study, no ETF subunits were detected for either 
patient by immunoblotting, yet the results of pulse-chase exper- 
iments showed that either or both of the subunits of ETF were 
translated normally. 

A genetic deficiency of either ETF or ETF-DH deficiency has 
been identified in GA I1 patients (12-14). Cases of a-ETF defi- 
ciency were described by Frerman and Goodman (12) using 
immunoblotting, and by Ikeda et al. (13), using pulse-labeling. 
Immunoblotting was used by Loehr et al. (14) to identify P-ETF 
deficiency. Patient 1 in this report is apparently the first reported 
case of a defect in P-ETF biosynthesis to be demonstrated by 
pulse-chase experiments. As described above, in this patient, the 
lability of a-ETF may also be caused by 8-ETF deficiency. 
Degradation of a-ETF in this patient appears to be occuning 
inside the mitochondria, given that the transit peptide cleavage 
occurred in experiments using R6G, an inhibitor of transport of 
the precursor of mitochondrial enzymes. On the other hand, in 
patient 2, both a- and P-ETF were synthesized but both the 
subunits were degraded rapidly. In patient 2, mitochondrial 
degradation of ETF subunits also probably occurred, given the 
normal processing of the precursors, as seen in patient 1. The 
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lability of ETF is likely to cause GA I1 in this patient. Although 
cause of the lability is not clear, the following possibilities can be 
considered: 1) An ETF complex cannot be formed in the mito- 
chondria] matrix due to abnormality in the peptides of either a- 
or 8-ETF, and the defect results in the lability of both subunits, 
or 2) a defect of a component required for assembly or stabili- 
zation of the ETF leads to instability of the subunits of ETF. 
Thus, the two above cases are new forms of ETF deficiency in 
GA 11. 

A considerable degree of heterogeneity of expression in GA I1 
patients has been reported. Clinically, GA I1 has been classified 
into the three groups (2): 1) neonatal onset form with congenital 
anomalies, such as macrocephaly, facial dysmorphism, rocker 
bottom feet, or polycystic kidney, 2) neonatal onset form without 
anomalies, and 3) mild or late onset form. Most patients with 
the neonatal onset form, with or without congenital anomalies, 
have a severe illness and often die within the 1 wk of life, or 
early in infancy. Other patients who survive longer can have a 
Reye's syndrome-like illness. On the other hand, some patients 
with the mild form have intermittent episodes of vomiting or 
hypoglycemia, and others may have no symptoms during child- 
hood, presenting with the episodic illness in adult life (4). Loehr 
et al. (28) reported that five patients with an ETF-DH deficiency 
were cases of a neonatal onset with congenital anomalies, and 
that findings in two cell lines from ethylmalonic adipic aciduria 
(a mild form of GA 11) patients were also due to a partial 
deficiency of ETF-DH ( 1  2, 28). Ikeda et al. (1  3) described that 
all three patients showing a-ETF deficiency had the typically 
severe form. On the other hand, mild variants with a-ETF 
deficiency were also reported (14). In patient I with the 8-ETF 
deficiency, the neonatal onset form without anomalies is ex- 
pected to occur, and patient 2 will likely have the neonatal onset 
form with congenital anomalies. According to recent reviews of 
the phenotype in GA 11, deficiencies of ETF and ETF-DH have 
been noted in patients with either the severe or mild form (14, 
23, 29). On the other hand, patients with congenital anomalies 
such as facial dysmorphism, large head or polycystic kidney can 
have a deficiency of ETF, but it is less extensive than the ETF- 
DH deficiency (14,29). Thus, correlation between clinical sever- 
ity and defective sites remains ambiguous. 
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